51
|
Gedefaw L, Ullah S, Leung PHM, Cai Y, Yip SP, Huang CL. Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021; 10:916. [PMID: 33923537 PMCID: PMC8073302 DOI: 10.3390/cells10040916] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the most devastating infectious disease in the 21st century with more than 2 million lives lost in less than a year. The activation of inflammasome in the host infected by SARS-CoV-2 is highly related to cytokine storm and hypercoagulopathy, which significantly contribute to the poor prognosis of COVID-19 patients. Even though many studies have shown the host defense mechanism induced by inflammasome against various viral infections, mechanistic interactions leading to downstream cellular responses and pathogenesis in COVID-19 remain unclear. The SARS-CoV-2 infection has been associated with numerous cardiovascular disorders including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism. The inflammatory response triggered by the activation of NLRP3 inflammasome under certain cardiovascular conditions resulted in hyperinflammation or the modulation of angiotensin-converting enzyme 2 signaling pathways. Perturbations of several target cells and tissues have been described in inflammasome activation, including pneumocytes, macrophages, endothelial cells, and dendritic cells. The interplay between inflammasome activation and hypercoagulopathy in COVID-19 patients is an emerging area to be further addressed. Targeted therapeutics to suppress inflammasome activation may have a positive effect on the reduction of hyperinflammation-induced hypercoagulopathy and cardiovascular disorders occurring as COVID-19 complications.
Collapse
Affiliation(s)
| | | | | | | | - Shea-Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China; (L.G.); (S.U.); (P.H.M.L.); (Y.C.)
| |
Collapse
|
52
|
Spoladore R, Falasconi G, Fiore G, Di Maio S, Preda A, Slavich M, Margonato A, Fragasso G. Cardiac fibrosis: emerging agents in preclinical and clinical development. Expert Opin Investig Drugs 2021; 30:153-166. [PMID: 33356660 DOI: 10.1080/13543784.2021.1868432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Myocardial fibrosis is a remarkably dynamic process mediated by different molecular pathways that represent potential targets of novel therapeutic interventions. Transforming Growth Factor-beta (TGF-β), connective Tissue Growth Factor (cTGF) and Galectin-3 (Gal-3) represent the most promising targets on which research has been currently focusing. AREA COVERED This review initially discusses those drugs used in clinical practice for their anti-fibrotic properties and later examines emerging pathway-specific agents in preclinical and clinical development [phase I and II-concluded or ongoing trials]. We performed a PubMed, Embase and Google Scholar research including original articles, systematic reviews, ongoing and completed trials using combinations of keywords such as 'myocardial fibrosis', 'reverse remodeling', 'RAAs', 'therapy'. EXPERT OPINION A variety of preclinical evidences suggest that new drugs and molecules are potentially useful to target cardiac fibrosis and improve left ventricular function, reduce infarct size and scars, delay incident heart failure and cardiac dysfunction in animal models. However, there are very few clinical trials investigating the effect of such drugs in this setting, as well as a lack of new engineered molecules for specific targets.
Collapse
Affiliation(s)
- Roberto Spoladore
- Cardiology Division, Alessandro Manzoni Hospital, ASST-Lecco , Italy
| | - Giulio Falasconi
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| | - Giorgio Fiore
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| | - Silvana Di Maio
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| | - Alberto Preda
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| | - Massimo Slavich
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| | - Alberto Margonato
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy.,Vita-Salute San Raffaele University , Milan, Italy
| | - Gabriele Fragasso
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital , Milan, Italy.,Head- Heart Failure Unit, IRCCS San Raffaele University Hospital , Milan, Italy
| |
Collapse
|
53
|
Ding N, Wei B, Fu X, Wang C, Wu Y. Natural Products that Target the NLRP3 Inflammasome to Treat Fibrosis. Front Pharmacol 2020; 11:591393. [PMID: 33390969 PMCID: PMC7773645 DOI: 10.3389/fphar.2020.591393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Fibrosis is a common pathway followed by different organs after injury, and it can lead to parenchymal scarring, cellular dysfunction, and even organ failure. The NLRP3 inflammasome is a multiprotein complex composed of the sensor molecule NLRP3, the adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and the effector protease caspase-1. Overactivation of the NLRP3 inflammasome triggers the abundant secretion of IL-1β and IL-18, induces pyroptosis, and promotes the release of a swathe of proinflammatory proteins, all of which contribute to fibrogenic processes in multiple organs. In recent years, screening bioactive natural compounds for NLRP3 inhibitors to alleviate fibrosis has gained broad interest from the scientific community because of the associated cost-effectiveness and easy access. In this review, we systematically and comprehensively summarize the natural products, including terpenoids, phenols, and alkaloids, among others, and the plant-derived crude extracts, that have been reported to ameliorate fibrosis via inhibiting NLRP3 inflammasome activation and highlight the underlying mechanisms. Among all the compounds, diterpenoids is the most promising candidates for inhibiting NLRP3 inflammasome activation and improving fibrosis, as they possess combined inhibitory effect on NLRP3 inflammasome assembly and NF-κB signaling pathway. All the information may aid in the development of therapeutic strategies for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Bo Wei
- Research lab of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohui Fu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
54
|
Anti-Hyperuricemic Effects of Astaxanthin by Regulating Xanthine Oxidase, Adenosine Deaminase and Urate Transporters in Rats. Mar Drugs 2020; 18:md18120610. [PMID: 33271765 PMCID: PMC7759838 DOI: 10.3390/md18120610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
This study was designed to investigate the effects and underlying mechanisms of Astaxanthin (AST) on high-fructose-induced hyperuricemia (HUA) from the perspectives of the uric acid (UA) synthesis and excretion in rat models. Following six weeks of a 10% fructose diet, the level of serum UA effectively decreased in the AST groups as compared to the model group. The enzymatic activities of xanthine oxidase (XOD) and adenosine deaminase (ADA) were significantly inhibited, and the mRNA expression levels of XOD and ADA significantly decreased after the AST administration. These results suggested that the AST reduced UA synthesis by inhibiting the mRNA expressions and enzyme activities of XOD and ADA, thereby contributing to HUA improvement. On the hand, the relative expressions of the mRNA and protein of kidney reabsorption transport proteins (GLUT9 and URAT1) were significantly down-regulated by AST, while that of the kidney secretion proteins (OAT1, OAT3 and ABCG2) were significantly up-regulated by AST. These results indicated that the AST promoted UA excretion by regulating the urate transport proteins, and thus alleviated HUA. This study suggested that the AST could serve as an effective alternative to traditional medicinal drugs for the prevention of fructose-induced HUA.
Collapse
|
55
|
Alvarenga L, Cardozo LF, Borges NA, Lindholm B, Stenvinkel P, Shiels PG, Fouque D, Mafra D. Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic kidney disease? Food Res Int 2020; 136:109306. [DOI: 10.1016/j.foodres.2020.109306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
56
|
Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int J Mol Sci 2020; 21:E7165. [PMID: 32998408 PMCID: PMC7583949 DOI: 10.3390/ijms21197165] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Buono
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, 06123 Perugia, Italy;
| | - Antonino Bruno
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
57
|
Almoiliqy M, Wen J, Xu B, Sun YC, Lian MQ, Li YL, Qaed E, Al-Azab M, Chen DP, Shopit A, Wang L, Sun PY, Lin Y. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin 2020; 41:1208-1222. [PMID: 32238887 PMCID: PMC7609352 DOI: 10.1038/s41401-020-0359-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg−1 · d−1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1β, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKβ, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 μmol · L−1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.
Collapse
|
58
|
Lan Y, Wang Y, Huang K, Zeng Q. Heat Shock Protein 22 Attenuates Doxorubicin-Induced Cardiotoxicity via Regulating Inflammation and Apoptosis. Front Pharmacol 2020; 11:257. [PMID: 32269523 PMCID: PMC7109316 DOI: 10.3389/fphar.2020.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Background The antitumor effect of doxorubicin (DOX) is limited by its acute and chronic toxicity to the heart, which causes heart injury. Heat shock protein 22 (Hsp22) is a protein proved to exert anti-apoptosis and anti-inflammatory effects in other diseases and physical conditions. In this study, we aim to explore whether Hsp22 could exert a protective role during cardiac injury in response to DOX. Methods The overexpression of Hsp22 was mediated via adenovirus vector to clarify the role of Hsp22 in the cardiac injury caused by DOX. DOX-induced acute heart injury mouse model was established by single intraperitoneal injection of DOX (15 mg/kg). Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of Hsp22 on cardiac injury. H9c2 cells were used for validation in vitro. Results An increase in the expression level of Hsp22 was observed in DOX-treated heart tissue. Furthermore, cardiac-specific overexpression of Hsp22 showed reduced cardiac dysfunction, decrease in inflammatory response, and reduction in cell apoptosis in injury heart and cardiomyocytes induced by DOX in vivo and in vitro. Moreover, the suppression of Toll-like receptor (TLR)4/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) was associated with the protective effect of Hsp22. Finally, the protective effect of Hsp22 cardiac function was almost abolished by overexpression of NLRP3 in DOX-treated mice. Conclusion In summary, Hsp22 overexpression in the heart could suppress cardiac injury in response to DOX treatment through blocking TLR4/NLRP3 activation. Hsp22 may become a new therapeutic method for treating cardiac injury induced by DOX in cancer patients.
Collapse
Affiliation(s)
- Yin Lan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Ultrasound, Wuhan Asia Heart Hospital, Wuhan, China
| | - Kun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
59
|
Wang Y, Liu X, Shi H, Yu Y, Yu Y, Li M, Chen R. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med 2020; 10:91-106. [PMID: 32508013 PMCID: PMC7240865 DOI: 10.1002/ctm2.13] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an important process involved in several cardiovascular diseases (CVDs), and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a vital player in innate immunity and inflammation. In this review, we aim to provide a comprehensive summary of the current knowledge on the role and involvement of NLRP3 inflammasome in the pathogenesis and treatment of CVDs. NLRP3 inflammasome functions as a molecular platform, and triggers the activation of caspase-1 and cleavage of pro-IL-1β, pro-IL-18, and gasdermin D (GSDMD). Cleaved NT-GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and release of many intracellular pro-inflammatory molecules. NLRP3 inflammasome activation is triggered via inter-related pathways downstream of K+ efflux, lysosomal disruption, and mitochondrial dysfunction. In addition, the Golgi apparatus and noncoding RNAs are gradually being recognized to play important roles in NLRP3 inflammasome activation. Many investigations have revealed the association between NLRP3 inflammasome and CVDs, including atherosclerosis, ischemia/reperfusion (I/R) injury and heart failure induced by pressure overload or cardiomyopathy. Some existing medications, including orthodox and natural medicines, used for CVD treatment have been newly discovered to act via NLRP3 inflammasome. In addition, NLRP3 inflammasome pathway components such as NLRP3, caspase-1, and IL-1β may be considered as novel therapeutic targets for CVDs. Thus, NLRP3 inflammasome is a key molecule involved in the pathogenesis of CVDs, and further research focused on development of NLRP3 inflammasome-based targeted therapies for CVDs and the clinical evaluation of these therapies is essential.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Xiaoxiao Liu
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Hui Shi
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Yong Yu
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Ying Yu
- Department of General PracticeZhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina
| | - Minghui Li
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| | - Ruizhen Chen
- Department of CardiologyZhongshan HospitalShanghai Institute of Cardiovascular DiseasesShanghai Medical College of Fudan UniversityShanghaiChina
| |
Collapse
|
60
|
Yang Y, Zhao J, Song X, Li L, Li F, Shang J, Wang WW. Amygdalin reduces lipopolysaccharide-induced chronic liver injury in rats by down-regulating PI3K/AKT, JAK2/STAT3 and NF-κB signalling pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2688-2697. [PMID: 31257932 DOI: 10.1080/21691401.2019.1634084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was aimed to evaluate the anti-inflammatory potential of AG on lipopolysaccharide (LPS) -induced liver injury and investigate the underlying mechanism. Administration of LPSs in the rat produced rat liver injury model which was ascertained at histological and molecular levels. Those models were treated with a range of doses of LPSs (0.5, 1.0 and 1.5 mg/kg body weight), followed by measurement physical parameter and function of the liver. Within the max treatment doses, no toxicity was shown but protective effects of AG were evidenced by regulation of physical parameters and functions of the liver. Interestingly, nuclear factor kappa B (NF-κB) levels and inflammatory factors were down-regulated by AG. Furthermore, the histopathological analysis demonstrated that AG promoted recovery from dysfunction of liver tissue in the rats, which was further confirmed by observing expression changes of inflammation-associated proteins. Particularly, alteration in the PI3K/AKT and JAK2/STAT3 signalling pathway protein expression were regulated by AG in a dose-dependent manner, indicating the mechanism underlying the relief effect of AG in liver injury. Our study demonstrated the potential of AG in the management of complications related to liver injury.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Nosocomial Infection Management, the First Affiliated Hospital of Zhengzhou University , Zhengzhou , PR China
| | - Jie Zhao
- b Center of Telemedicine, the First Affiliated Hospital of Zhengzhou University , Zhengzhou , PR China
| | - Xiaoqin Song
- b Center of Telemedicine, the First Affiliated Hospital of Zhengzhou University , Zhengzhou , PR China
| | - Lifeng Li
- b Center of Telemedicine, the First Affiliated Hospital of Zhengzhou University , Zhengzhou , PR China
| | - Fuqin Li
- a Department of Nosocomial Infection Management, the First Affiliated Hospital of Zhengzhou University , Zhengzhou , PR China
| | - Jia Shang
- c Department of Infectious Diseases, Henan Provincial People's Hospital , Zhengzhou , Henan , PR China
| | - Wei-Wei Wang
- d Department of Pathology, The Fourth Affiliated Hospital Of Nantong University & The Sixth People's Hospital of Yancheng City , Yancheng , PR China
| |
Collapse
|
61
|
Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1243215. [PMID: 31871537 PMCID: PMC6913258 DOI: 10.1155/2019/1243215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.
Collapse
|
62
|
Chen L, Wang Z, Liu L, Qu S, Mao Y, Peng X, Li YX, Tian J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis. Appl Microbiol Biotechnol 2019; 103:9037-9055. [DOI: 10.1007/s00253-019-10119-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
|
63
|
The Effect of Flavored E-cigarettes on Murine Allergic Airways Disease. Sci Rep 2019; 9:13671. [PMID: 31541174 PMCID: PMC6754426 DOI: 10.1038/s41598-019-50223-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Flavored e-cigarettes are preferred by the majority of users yet their potential toxicity is unknown. Therefore our aim was to determine the effect of selected flavored e-cigarettes, with or without nicotine, on allergic airways disease in mice. Balb/c mice were challenged with PBS or house dust mite (HDM) (Days 0, 7, 14-18) and exposed to room air or e-cigarette aerosol for 30 min twice daily, 6 days/week from Days 0-18 (n = 8-12/group). Mice were exposed to Room Air, vehicle control (50%VG/%50PG), Black Licorice, Kola, Banana Pudding or Cinnacide without or with 12 mg/mL nicotine. Mice were assessed at 72 hours after the final HDM challenge. Compared to mice challenged with HDM and exposed to Room Air, nicotine-free Cinnacide reduced airway inflammation (p = 0.045) and increased peripheral airway hyperresponsiveness (p = 0.02), nicotine-free Banana Pudding increased soluble lung collagen (p = 0.049), with a trend towards increased airway inflammation with nicotine-free Black Licorice exposure (p = 0.089). In contrast, all e-cigarettes containing nicotine suppressed airway inflammation (p < 0.001 for all) but did not alter airway hyperresponsiveness or airway remodeling. Flavored e-cigarettes without nicotine had significant but heterogeneous effects on features of allergic airways disease. This suggests that some flavored e-cigarettes may alter asthma pathophysiology even when used without nicotine.
Collapse
|
64
|
Nystoriak MA, Kilfoil PJ, Lorkiewicz PK, Ramesh B, Kuehl PJ, McDonald J, Bhatnagar A, Conklin DJ. Comparative effects of parent and heated cinnamaldehyde on the function of human iPSC-derived cardiac myocytes. Toxicol In Vitro 2019; 61:104648. [PMID: 31518667 DOI: 10.1016/j.tiv.2019.104648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
Many e-cigarette products contain cinnamaldehyde as a primary constituent of cinnamon flavorings. When used as a food additive, cinnamaldehyde is generally regarded as safe for ingestion. However, little is known about the effects of cinnamaldehyde or its degradation products, generated after heating and inhalation, which may lead to elevated circulatory exposure to the heart. Hence, in this study, we tested the in vitro cardiac toxicity of cinnamaldehyde and its thermal degradation products generated by heating at low (200 ± 50 °C) and high temperatures (700 ± 50 °C) on the contractility, rhythmicity and electrical signaling properties of human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs). Cellular impedance measurements on spontaneously beating hiPSC-CMs revealed that cinnamaldehyde significantly alters contraction-dependent signal amplitude, beating rate, and cell morphology. These effects were attenuated after cinnamaldehyde was subjected to heating at low or high temperatures. Current clamp analysis of hiPSC-CM action potentials (APs) showed only modest effects of acute application of 1-100 μM cinnamaldehyde on resting membrane potential, while prolonged (~20 min) application of 100 μM cinnamaldehyde resulted in progressive depolarization and loss of rhythmic AP spiking activity. Collectively, these results suggest that micromolar levels of cinnamaldehyde could alter cardiac excitability, in part by impairing the processes that regulate membrane potential and depolarization. Our results further suggest that heating cinnamaldehyde by itself does not directly lead to the formation of products with greater cardiotoxicity in vitro.
Collapse
Affiliation(s)
- Matthew A Nystoriak
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, United States of America.
| | - Peter J Kilfoil
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America
| | - Pawel K Lorkiewicz
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States of America; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America
| | - Bhargav Ramesh
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America
| | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, NM 87108-5127, United States of America
| | - Jacob McDonald
- Lovelace Biomedical, Albuquerque, NM 87108-5127, United States of America
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, United States of America
| | - Daniel J Conklin
- American Heart Association Tobacco Regulation and Addiction Center, University of Louisville, Louisville, KY 40202, United States of America; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States of America; Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, United States of America; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, United States of America
| |
Collapse
|
65
|
Cinnamaldehyde Ameliorates High-Glucose–Induced Oxidative Stress and Cardiomyocyte Injury Through Transient Receptor Potential Ankyrin 1. J Cardiovasc Pharmacol 2019; 74:30-37. [DOI: 10.1097/fjc.0000000000000679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
66
|
Upregulation of the NLRC4 inflammasome contributes to poor prognosis in glioma patients. Sci Rep 2019; 9:7895. [PMID: 31133717 PMCID: PMC6536517 DOI: 10.1038/s41598-019-44261-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation in tumor microenvironments is implicated in the pathogenesis of tumor development. In particular, inflammasomes, which modulate innate immune functions, are linked to tumor growth and anticancer responses. However, the role of the NLRC4 inflammasome in gliomas remains unclear. Here, we investigated whether the upregulation of the NLRC4 inflammasome is associated with the clinical prognosis of gliomas. We analyzed the protein expression and localization of NLRC4 in glioma tissues from 11 patients by immunohistochemistry. We examined the interaction between the expression of NLRC4 and clinical prognosis via a Kaplan-Meier survival analysis. The level of NLRC4 protein was increased in brain tissues, specifically, in astrocytes, from glioma patients. NLRC4 expression was associated with a poor prognosis in glioma patients, and the upregulation of NLRC4 in astrocytomas was associated with poor survival. Furthermore, hierarchical clustering of data from the Cancer Genome Atlas dataset showed that NLRC4 was highly expressed in gliomas relative to that in a normal healthy group. Our results suggest that the upregulation of the NLRC4 inflammasome contributes to a poor prognosis for gliomas and presents a potential therapeutic target and diagnostic marker.
Collapse
|
67
|
Ragavendran V, Muthunatesan S, Santhanam V, Arsic B. Synthesis and characterization of cinnamylidene acetone – A study on tuning of band gap by vibrational spectroscopic tools. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
Tartey S, Kanneganti TD. Differential role of the NLRP3 inflammasome in infection and tumorigenesis. Immunology 2019; 156:329-338. [PMID: 30666624 DOI: 10.1111/imm.13046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dysregulated inflammation is one of the hallmarks of cancer initiation and progression. Emerging evidence indicates that inflammasomes play a central role in regulating immune cell functions in various infections and cancer. Inflammasomes are multimeric complexes consisting of nucleotide-binding oligomerization domain (NOD) -like receptors (NLRs). Among the NLRs, NOD1, NOD2 and NLRP3 respond to a variety of endogenous (i.e. damage-associated molecular patterns) and exogenous (i.e. pathogen-associated molecular patterns) stimuli. The NLRP3 inflammasome is associated with the onset and progression of autoinflammatory and autoimmune diseases, including metabolic disorders, multiple sclerosis, inflammatory bowel disease, and cryopyrin-associated periodic fever syndrome. NLRP3 is also associated with a wide variety of infections and tumorigenesis that are closely correlated with chemotherapy response and prognosis. In this review, we explore the rapidly expanding body of research on the expression and functions of NLRP3 in infections and cancers and outline novel inhibitors targeting the NLRP3 inflammasome that could be developed as therapeutic alternatives to current anticancer treatment.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
69
|
Mateen S, Shahzad S, Ahmad S, Naeem SS, Khalid S, Akhtar K, Rizvi W, Moin S. Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:70-78. [PMID: 30668414 DOI: 10.1016/j.phymed.2018.09.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/10/2018] [Accepted: 09/03/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory autoimmune disease which leads to bone and cartilage erosion. Oxidative stress and pro-inflammatory cytokines plays crucial role in the pathophysiology of RA. Cinnamaldehyde and eugenol have a long history of medical use in various inflammatory disorders. PURPOSE The drugs available for the treatment of RA are associated with various side effects. The present study was conducted to evaluate the anti-arthritic effects of cinnamaldehyde and eugenol in rat model of arthritis. METHODS Type II collagen was intradermally injected to rats for the induction of arthritis. Cinnamaldehyde (10 and 20 mg/kg/day) and eugenol (10 and 20 mg/kg/day) were given orally for 15 days, starting from day 21 to 35. Dexamethasone treated rats served as positive control. Histological, radiological and scanning electron microscopic analysis were done to monitor the effect of compounds on collagen induced arthritis (CIA). Reactive oxygen species (ROS) formation, nitric oxide and antioxidant status were also determined. The markers of biomolecular oxidation (protein, lipid and DNA) and activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase, catalase and glutathione reductase) were also evaluated in the joint homogenate and plasma of rats. For detecting inflammation, levels of TNF-α, IL-6 and IL-10 were monitored by ELISA. RESULTS Our results showed anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol in arthritic rats. Scanning electron microscopy, histopathological and radiological findings also confirmed the anti-arthritic effects of cinnamaldehyde and eugenol. Both the compounds were effective in bringing significant decrease in the levels of ROS, nitric oxide, markers of biomolecular oxidation and increase in enzymatic and non-enzymatic antioxidants. The levels of TNF-α, IL-6 and IL-10 were also ameliorated by cinnamaldehyde and eugenol treatment. Between the two phytochemicals used, eugenol was found to be more effective than cinnamaldehyde in reducing the severity of arthritis. CONCLUSION Cinnamaldehyde and eugenol were effective in ameliorating oxidative stress and inflammation in arthritic rats. These findings indicate that cinnamaldehdye and eugenol have a great potential to be used as an adjunct in the management of RA.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sumayya Shahzad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shafeeque Ahmad
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India; Department of Biochemistry, AL-Falah School of Medical Science and Research Centre, Al-Falah University, Faridabad, Haryana, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saifullah Khalid
- Department of Radiodiagnosis, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kafil Akhtar
- Department of Pathology, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Waseem Rizvi
- Department of Pharmacology, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
70
|
Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr Med Chem 2019; 25:5487-5502. [DOI: 10.2174/0929867324666170828125328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023]
Abstract
Background:
Exposure to solar ultraviolet (UV) radiation is a causative factor in
skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism
underlying detrimental effects of acute and chronic UV exposure. The health and economic
burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development
of improved molecular strategies for photoprotection and photochemoprevention.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature
revealed 139 articles including our own that are presented and critically evaluated in this
TLR4-directed review.
Objective:
To understand the molecular role of Toll-like receptor 4 (TLR4) as a key regulator
of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation. The
specific focus of this review is on recent published evidence suggesting that TLR4 represents
a novel molecular target for skin photoprotection and cancer photochemoprevention.
Results:
Cumulative experimental evidence indicates that pharmacological and genetic antagonism
of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation
of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. TLR4-directed
small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and
resatorvid] have now been identified as a novel class of molecular therapeutics. TLR4 antagonists
are in various stages of preclinical and clinical development for the modulation of
dysregulated TLR4-dependent inflammatory signaling that may also contribute to skin photodamage
and photocarcinogenesis in human populations.
Conclusion:
Future research should explore the skin photoprotective and photochemopreventive
efficacy of topical TLR4 antagonism if employed in conjunction with other molecular
strategies including sunscreens.
Collapse
Affiliation(s)
- Sally E. Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
71
|
Structural Moieties Required for Cinnamaldehyde-Related Compounds to Inhibit Canonical IL-1β Secretion. Molecules 2018; 23:molecules23123241. [PMID: 30544610 PMCID: PMC6321442 DOI: 10.3390/molecules23123241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022] Open
Abstract
Suppressing canonical NOD-like receptor protein 3 (NLRP3) inflammasome-mediated interleukin (IL)-1β secretion is a reliable strategy for the development of nutraceutical to prevent chronic inflammatory diseases. This study aimed to find out the functional group responsible for the inhibitory effects of cinnamaldehyde-related compounds on the canonical IL-1β secretion. To address this, the suppressing capacities of six cinnamaldehyde-related compounds were evaluated and compared by using the lipopolysaccharide (LPS)-primed and adenosine 5′-triphosphate (ATP)-activated macrophages. At concentrations of 25~100 μM, cinnamaldehyde and 2-methoxy cinnamaldehyde dose-dependently inhibited IL-1β secretion. In contrast, cinnamic acid, cinnamyl acetate, cinnamyl alcohol and α-methyl cinnamaldehyde did not exert any inhibition. Furthermore, cinnamaldehyde and 2-methoxy cinnamaldehyde diminished expressions of NLRP3 and pro-IL-1β. Meanwhile, cinnamaldehyde and 2-methoxy cinnamaldehyde prevented the ATP-induced reduction of cytosolic pro-caspase-1 and increase of secreted caspase-1. In conclusion, for cinnamaldehyde-related compounds to suppress NLRP3 inflammasome-mediated IL-1β secretion, the propenal group of the side chain was essential, while the substituted group of the aromatic ring played a modifying role. Cinnamaldehyde and 2-methoxy cinnamaldehyde exerted dual abilities to inhibit canonical IL-1β secretion at both stages of priming and activation. Therefore, there might be potential to serve as complementary supplements for the prevention of chronic inflammatory diseases.
Collapse
|
72
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
73
|
Yan L, Song F, Li H, Li Y, Li J, He QY, Zhang D, Wang F, Zhang M, Zhao H, Feng T, Zhao YY, Wang SW. Submicron emulsion of cinnamaldehyde ameliorates bleomycin-induced idiopathic pulmonary fibrosis via inhibition of inflammation, oxidative stress and epithelial-mesenchymal transition. Biomed Pharmacother 2018; 102:765-771. [PMID: 29604596 DOI: 10.1016/j.biopha.2018.03.145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/09/2023] Open
Abstract
AIMS Idiopathic pulmonary fibrosis (IPF) is the most frequent and severe form of idiopathic interstitial pneumonias. The pathogenesis is associated with inflammation and oxidative stress and epithelial-mesenchymal transition (EMT). Cinnamaldehyde exhibits antiinflammatory and antioxidant properties, but its effect on IPF is unknown. The present study is to investigate the anti-fibrotic effect and action mechanism of cinnamaldehyde on IPF. MATERIALS AND METHODS IPF was induced by intratracheal bleomycin in mice. Submicron emulsion of cinnamaldehyde was given by intraperitoneal injection once everyday for 7 or 21 continuous days after bleomycin administration. Lung histological and injury indexes were analyzed. The protein expressions of inflammation and oxidative stress as well as EMT markers alpha-smooth muscle actin (α-SMA) and E-cadherin in mice and cultured A549 cells were measured. RESULTS Cinnamaldehyde attenuated the bleomycin-induced histological injury, reduced hydroxyproline level and improved pulmonary function by the inhibiting inflammatory cytokines and reactive oxygen species production as well as enhancing total superoxide dismutase activity in bleomycin-induced mice. Cinnamaldehyde also inhibited EMT in both bleomycin-induced mice and TGF-β1-stimulated A549 cells. CONCLUSIONS Cinnamaldehyde ameliorated bleomycin-induced IPF via inhibition of inflammation and oxidative stress and EMT.
Collapse
Affiliation(s)
- Li Yan
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Fan Song
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Hua Li
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Century Road, Xianyang, 712000, China
| | - Jie Li
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Qiao-Yan He
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Di Zhang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Fang Wang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Meng Zhang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Hang Zhao
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Tian Feng
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Si-Wang Wang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
74
|
Yi D, Fang Q, Hou Y, Wang L, Xu H, Wu T, Gong J, Wu G. Dietary Supplementation with Oleum Cinnamomi Improves Intestinal Functions in Piglets. Int J Mol Sci 2018; 19:E1284. [PMID: 29693599 PMCID: PMC5983671 DOI: 10.3390/ijms19051284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 01/09/2023] Open
Abstract
The present study was to determine the efficacy of dietary supplementation with oleum cinnamomi (OCM) on growth performance and intestinal functions in piglets. Sixteen piglets (24-day-old) were randomly assigned to the control or OCM groups. Piglets in the control group were fed a basal diet, whereas piglets in the OCM group were fed the basal diet supplemented with 50 mg/kg OCM. On day 20 of the trial, blood samples and intestinal tissues were obtained from piglets. Compared with the control group, dietary OCM supplementation increased (p < 0.05) average daily feed intake, plasma insulin levels, villus width and villous surface area in the duodenum and jejunum, DNA levels and RNA/DNA ratios in the ileum, the abundance of Enterococcus genus and Lactobacillus genus in caecum digesta, mRNA levels for epithelial growth factor receptor (EGFR), Ras, extracellular signal-regulated kinase 1/2 (Erk1/2), b-cell lymphoma-extra large (Bcl-xL), villin, junctional adhesion molecule A (JAM-A), myxovirus resistance (MX) 1, MX2 and regenerating islet-derived protein 3 gamma (REG3G), and protein abundances of Ras and claudin-1, but decreased (p < 0.05) diarrhoea incidence; the abundances of Enterobacteriaceae family, Enterococcus genus, Lactobacillus genus, Bifidobacterium genus, and Clostrium coccoides in the colon digesta, and AMP-activated protein kinase (AMPK) mRNA levels and caspase-3 protein abundance in the jejunal mucosa of piglets. Taken together, these data indicate that dietary OCM supplementation modulates intestinal microbiota and improves intestinal function in weanling pigs. OCM is an effective feed additive and alternative to feed antibiotics for improving intestinal health in swine.
Collapse
Affiliation(s)
- Dan Yi
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Qiuhong Fang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Lei Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Haiwang Xu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Tao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Guoyao Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
75
|
Choe JY, Kim SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation 2018; 40:980-994. [PMID: 28326454 DOI: 10.1007/s10753-017-0542-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to identify the role of thioredoxin-interacting protein (TXNIP) and its interaction with antioxidants in the activation of the fructose-induced NOD-like receptor protein 3 (NLRP3) inflammasome in human macrophages. The study was performed with U937 and THP-1 macrophage cell lines. Total reactive oxygen species (ROS) were measured by flow cytometry. Interleukin-1β (IL-1β), IL-18, NLRP3, TXNIP, and caspase-1 protein expression was detected using western blotting. Quantitative real-time polymerase chain reaction was used to detect IL-1β, IL-18, and caspase-1 gene expression. Intracellular shuttling of TXNIP was assessed by immunofluorescent staining with MitoTracker Red. Increased production of ROS and expression of IL-1β, IL-18, and caspase-1 genes and proteins were observed in U937 and THP-1 cells incubated with fructose and were effectively inhibited by quercetin and ascorbic acid. Intracellular shuttling of TXNIP from the nucleus into the mitochondria was detected under stimulation with fructose, which was also attenuated by antioxidants quercetin and ascorbic acid but not butylated hydroxyanisole. Treatment of macrophages with fructose promoted the association between TXNIP and NLRP3 in the cytosol, sequentially resulting in the activation of the NLRP3 inflammasome. This study revealed that intracellular TXNIP protein is a critical regulator of activation of the fructose-induced NLRP3 inflammasome, which can be effectively blocked by the antioxidants quercetin and ascorbic acid.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea.,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu, 42472, Republic of Korea. .,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea.
| |
Collapse
|
76
|
High fructose diet-induced metabolic syndrome: Pathophysiological mechanism and treatment by traditional Chinese medicine. Pharmacol Res 2018; 130:438-450. [PMID: 29471102 DOI: 10.1016/j.phrs.2018.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
Abstract
Fructose is a natural monosaccharide broadly used in modern society. Over the past few decades, epidemiological studies have demonstrated that high fructose intake is an etiological factor of metabolic syndrome (MetS). This review highlights research advances on fructose-induced MetS, especially the underlying pathophysiological mechanism as well as pharmacotherapy by traditional Chinese medicine (TCM), using the PubMed, Web of science, China National Knowledge Infrastructure, China Science and Technology Journal and Wanfang Data. This review focuses on de novo lipogenesis (DNL) and uric acid (UA) production, two unique features of fructolysis different from glucose glycolysis. High level of DNL and UA production can result in insulin resistance, the key pathological event in developing MetS, mostly through oxidative stress and inflammation. Some other pathologies like the disturbance in brain and gut microbiota in the development of fructose-induced MetS in the past years, are also discussed. In management of MetS, TCM is an excellent representative in alternative and complementary medicine with a complete theory system and substantial herbal remedies. TCMs against MetS or MetS components, including Chinese patent medicines, TCM compound formulas, single TCM herbs and active compounds of TCM herbs, are reviewed on their effects and molecular mechanisms. TCMs with hypouricemic activity, which specially target fructose-induced MetS, are highlighted. And new technologies and strategies (such as high-throughput assay and systems biology) in this field are further discussed. In summary, fructose-induced MetS is a multifactorial disorder with the underlying complex mechanisms. Current clinical and pre-clinical evidence supports the potential of TCMs in management of MetS. Additionally, TCMs may show some advantages against complex MetS as their holistic feature through multiple target actions. However, further work is needed to confirm the effectivity and safety of TCMs by high-standard clinical trials, clarify the molecular mechanisms, and develop new anti-MetS drugs by development and application of optimized and feasible strategies and methods.
Collapse
|
77
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
78
|
Worke LJ, Barthold JE, Seelbinder B, Novak T, Main RP, Harbin SL, Neu CP. Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis. Adv Healthc Mater 2017; 6. [PMID: 28881428 DOI: 10.1002/adhm.201700114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/10/2017] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is a disease state characterized by excessive collagenous matrix accumulation within the myocardium that can lead to ventricular dilation and systolic failure. Current treatment options are severely lacking due in part to the poor understanding of the complexity of molecular pathways involved in cardiac fibrosis. To close this gap, in vitro model systems that recapitulate the defining features of the fibrotic cellular environment are in need. Type I collagen, a major cardiac extracellular matrix protein and the defining component of fibrotic depositions, is an attractive choice for a fibrosis model, but demonstrates poor mechanical strength due to solubility limits. However, plastic compression of collagen matrices is shown to significantly increase its mechanical properties. Here, confined compression of oligomeric, type I collagen matrices is utilized to resemble defining hallmarks seen in fibrotic tissue such as increased collagen content, fibril thickness, and bulk compressive modulus. Cardiomyocytes seeded on compressed matrices show a strong beating abrogation as observed in cardiac fibrosis. Gene expression analysis of selected fibrosis markers indicates fibrotic activation and cardiomyocyte maturation with regard to the existing literature. With these results, a promising first step toward a facile heart-on-chip model is presented to study cardiac fibrosis.
Collapse
Affiliation(s)
- Logan J. Worke
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Jeanne E. Barthold
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Benjamin Seelbinder
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| | - Tyler Novak
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
| | - Russell P. Main
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Sherry L. Harbin
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Basic Medical Sciences; Purdue University; West Lafayette IN USA 47906
| | - Corey P. Neu
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA 47906
- Department of Mechanical Engineering; University of Colorado Boulder; Boulder CO USA 80309
| |
Collapse
|
79
|
Sun NN, Yu CH, Pan MX, Zhang Y, Zheng BJ, Yang QJ, Zheng ZM, Meng Y. Mir-21 Mediates the Inhibitory Effect of Ang (1-7) on AngII-induced NLRP3 Inflammasome Activation by Targeting Spry1 in lung fibroblasts. Sci Rep 2017; 7:14369. [PMID: 29084974 PMCID: PMC5662719 DOI: 10.1038/s41598-017-13305-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022] Open
Abstract
MicroRNA-21 (mir-21) induced by angiotensin II (AngII) plays a vital role in the development of pulmonary fibrosis, and the NLRP3 inflammasome is known to be involved in fibrogenesis. However, whether there is a link between mir-21 and the NLRP3 inflammasome in pulmonary fibrosis is unknown. Angiotensin-converting enzyme 2/angiotensin(1-7) [ACE2/Ang(1-7)] has been shown to attenuate AngII-induced pulmonary fibrosis, but it is not clear whether ACE2/Ang(1-7) protects against pulmonary fibrosis by inhibiting AngII-induced mir-21 expression. This study's aim was to investigate whether mir-21 activates the NLRP3 inflammasome and mediates the different effects of AngII and ACE2/Ang(1-7) on lung fibroblast apoptosis and collagen synthesis. In vivo, AngII exacerbated bleomycin (BLM)-induced lung fibrosis in rats, and elevated mir-21 and the NLRP3 inflammasome. In contrast, ACE2/Ang(1-7) attenuated BLM-induced lung fibrosis, and decreased mir-21 and the NLRP3 inflammasome. In vitro, AngII activated the NLRP3 inflammasome by up-regulating mir-21, and ACE2/Ang(1-7) inhibited NLRP3 inflammasome activation by down-regulating AngII-induced mir-21. Over-expression of mir-21 activated the NLRP3 inflammasome via the ERK/NF-κB pathway by targeting Spry1, resulting in apoptosis resistance and collagen synthesis in lung fibroblasts. These results indicate that mir-21 mediates the inhibitory effect of ACE2/Ang(1-7) on AngII-induced activation of the NLRP3 inflammasome by targeting Spry1 in lung fibroblasts.
Collapse
Affiliation(s)
- Na-Na Sun
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang-Hui Yu
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miao-Xia Pan
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Jun Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian-Jie Yang
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze-Mao Zheng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
80
|
Yan Y, Lu B, Li P, Wang J. NOD receptor and TLR9 modulation in severe acute pancreatitis‑induced intestinal injury. Mol Med Rep 2017; 16:8471-8476. [PMID: 28990073 DOI: 10.3892/mmr.2017.7661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
Severe acute pancreatitis (SAP) has a rapid onset and may cause multiple organ dysfunction syndrome (MODS), which has high mortality. Nucleotide binding oligomerization domain (NOD) receptor and Toll‑like receptor 9 (TLR9), a pattern recognition receptor in innate immunity, are involved in inflammation, immunity and pathogen recognition. The role and mechanism of the NOD receptor and TLR9 in early MODS of SAP‑induced intestinal injury, however, remain unclear. Wistar rats were divided into control, SAP, TLR9 inhibitor and NOD receptor activation groups. Reverse transcription‑quantitative polymerase chain reaction was used to analyze the expression of TLR9, NOD1 and NOD2 in the experimental treatment groups. Serum amylase, creatinine and alanine aminotransferase indices were measured, ELISA was used to determine the expression of tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β) and western blot analysis was used to assess nuclear factor (NF)‑κB expression levels in intestinal tissues. Reactive oxygen species (ROS) levels and superoxide dismutase (SOD) activity were quantified by spectrometry. SAP and NOD receptor activation groups exhibited significantly elevated TLR9, NOD1, NOD2, TNF‑α, IL‑1β and nuclear factor (NF)‑κB levels compared with the control group. Furthermore, ROS production was increased, SOD activity was decreased and higher serum indices were exhibited, compared with the control group. The NOD receptor group presented more significant differences compared with the SAP group. The TLR9 inhibitor group exhibited opposite effects, with markedly decreased TLR9, NOD1, NOD2, TNF‑α, IL‑1β and NF‑κB levels. The TLR9 inhibitor group also presented reduced ROS production, increased SOD activity and lower serum indexes compared to the SAP group. The present study therefore indicated that NOD receptor and TLR9 may modulate the inflammatory response and further impact upon intestinal injury of SAP, via the regulation of NF‑κB expression and the oxidation/antioxidation balance, suggesting therapeutically targeting NOD receptor and TLR9 might be a useful approach for the treatment of severe acute pancreatitis.
Collapse
Affiliation(s)
- Yupeng Yan
- Intensive Care Unit, China Meitan General Hospital, Beijing 100028, P.R. China
| | - Bin Lu
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, P.R. China
| | - Pengyang Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing 100010, P.R. China
| | - Ji Wang
- Intensive Care Unit, China Meitan General Hospital, Beijing 100028, P.R. China
| |
Collapse
|
81
|
Ke B, Shen W, Fang X, Wu Q. The NLPR3 inflammasome and obesity-related kidney disease. J Cell Mol Med 2017; 22:16-24. [PMID: 28857469 PMCID: PMC5742686 DOI: 10.1111/jcmm.13333] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, the prevalence of obesity has increased, accompanied by a parallel increase in the prevalence of chronic kidney disease (CKD). Mounting evidence suggests that high body mass index (BMI) and obesity are important risk factors for CKD, but little is known about the mechanisms of obesity‐related kidney disease (ORKD). The NLRP3 inflammasome is a polyprotein complex that plays a crucial role in the inflammatory process, and numerous recent studies suggest that the NLRP3 inflammasome is involved in ORKD development and may serve as a key modulator of ORKD. Moreover, inhibiting activation of the NLRP3 inflammasome has been shown to attenuate ORKD. In this review, we summarize recent progress in understanding the link between the NLRP3 inflammasome and ORKD and discuss targeting the NLRP3 inflammasome as a novel therapeutic approach for ORKD.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
82
|
Khan SN, Khan S, Iqbal J, Khan R, Khan AU. Enhanced Killing and Antibiofilm Activity of Encapsulated Cinnamaldehyde against Candida albicans. Front Microbiol 2017; 8:1641. [PMID: 28900419 PMCID: PMC5581813 DOI: 10.3389/fmicb.2017.01641] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022] Open
Abstract
Candida sp. impelled opportunistic infection in immune-compromised patients ensuing from asymptomatic colonization to pathogenic forms. Moreover, slow spread of Candida species inducing refractory mucosal and invasive infections brings acute resistance to antifungal drugs. Hence, here we probed the effect of encapsulated preparation of cinnamaldehyde (CNMA) in multilamellar liposomes (ML) against Candida albicans. The efficacy of ML-CNMA against Candida biofilm was assessed by scanning electron microscopy, transmission electron microscopy, as well as light microscopy and its percent inhibition, was determined by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] and crystal violet assay. ML-CNMA showed more fungicidal activity than free CNMA as well as multilamellar liposomal amphotericin B (ML-Amp B), which was further confirmed by spot test assay and Log-logistic dose–response analysis. Antifungal activity was driven by reactive oxygen species and cellular damage by sustained release of CNMA. Effect on hyphal formation during 48 h in presence/absence of ML-CNMA was observed under a microscope and further substantiated by RT-PCR by amplifying HWP1, the gene responsible for hyphal wall protein formation. Apoptotic programmed cell death was analyzed by FACS analysis which was further confirmed by cytochrome C release assay. This study elucidates the mechanistic insight of the enhanced antifungal activity of ML preparation of CNMA against Candida infections.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Shakir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Jawed Iqbal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Rosina Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim UniversityAligarh, India
| |
Collapse
|
83
|
Qi H, Liu Y, Li S, Chen Y, Li L, Cao Y, E M, Shi P, Song C, Li B, Sun H. Activation of AMPK Attenuated Cardiac Fibrosis by Inhibiting CDK2 via p21/p27 and miR-29 Family Pathways in Rats. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:277-290. [PMID: 28918029 PMCID: PMC5527157 DOI: 10.1016/j.omtn.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/22/2023]
Abstract
Cardiac fibrosis is pathological damage associated with nearly all forms of heart disease. AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme. Emerging evidences indicate that AMPK plays an important role in cardiac fibrosis and cell proliferation. However, less is known about the detailed mechanism of AMPK activation on cardiac fibrosis. In this study, we found the AMPK activation improved the impaired cardiac function of cardiac fibrosis rats and decreased interstitial fibrosis. Further results indicated AMPK activation promoted p21 and p27 and inhibited CDK2 and cyclin E protein expressions both in vivo and in vitro. Moreover, AMPK activation repressed downstream transcription factor hepatocyte nuclear factor 4 alpha (HNF-4α) expression and decreased the binding of HNF-4α to TGF-β1 promoters, which eventually resulted in TGF-β1 downregulation and miR-29 family upregulation. Furthermore, miR-29, in turn, inhibited the progression of cardiac fibrosis through suppressing its target CDK2. Taken together, activation of AMPK, on the one hand, upregulated p21 and p27 expression, further inhibited CDK2 and cyclin E complex, and finally suppressed the progression of cardiac fibrosis, and, on the other hand, repressed HNF-4α expression, further downregulated the activity of TGF-β1 promoter, promoted miR-29 expression, and finally prevented the development of cardiac fibrosis.
Collapse
Affiliation(s)
- Hanping Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Yan Liu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Shuzhi Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Yunping Chen
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Lei Li
- Department of Orthopedics, Fifth Clinical College of Harbin Medical University, Daqing, Heilongjiang 163316, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Mingyao E
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Chao Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hongli Sun
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
84
|
Lee SC, Wang SY, Li CC, Liu CT. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice. J Food Drug Anal 2017; 26:211-220. [PMID: 29389558 PMCID: PMC9332676 DOI: 10.1016/j.jfda.2017.03.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Cinnamomum osmophloeum Kanehira is a Taiwan native plant that belongs to genus Cinnamomum and is also known as pseudocinnamomum or indigenous cinnamon. Its leaf is traditionally used by local people in cooking and as folk therapy. We previously demonstrated the chemical composition and anti-inflammatory effect of leaf essential oil of Cinnamomum osmophloeum Kanehira of linalool chemotype in streptozotocin-induced diabetic rats and on endotoxin-injected mice. The aim of the present study is to evaluate whether cinnamaldehyde and linalool the active anti-inflammatory compounds in leaf essential oil of Cinnamomum osmophloeum Kanehira. Before the injection of endotoxin, C57BL/6 mice of the experimental groups were administered cinnamaldehyde (0.45 or 0.9 mg/kg body weight) or linalool (2.6 or 5.2 mg/kg body weight), mice of the positive control group were administered the leaf essential oil (13 mg/kg body weight), and mice of the negative group were administered vehicle (corn oil, 4 mL/kg body weight) by gavage every other day for two weeks. All mice received endotoxin (i.p. 10 mg/mL/kg body weight) the next day after the final administration and were killed 12 h after the injection. Normal control mice were pretreated with vehicle followed by the injection with saline. None of the treatment found to affect body weight or food or water intake of mice before the injection of endotoxin. Cinnamaldehyde and linalool were found significantly reversed endotoxin-induced body weight loss and lymphoid organ enlargement compared with vehicle (P < 0.05). Both compounds also significantly lowered endotoxin-induced levels of peripheral nitrate/nitrite, interleukin (IL)-1β, IL-18, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and High-mobility group box 1 protein (HMGB-1), and levels of nitrate/nitrite, IL-1β, TNF-α, and IFN-γ in spleen and mesenteric lymph nodes (MLNs) (P < 0.05). Endotoxin-induced expression of toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), myeloid differentiation protein 2 (MD2), Nod-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), and caspase-1 in spleen and mesenteric lymph nodes (MLNs) were inhibited by all tested doses of cinnamaldehyde and linalool (P < 0.05). Subsequently, the activation of nuclear factor (NF)-κB and the activity of caspase-1 in spleen and MLNs were also suppressed by these two compounds (P < 0.05). In addition, cinnamaldehyde and linalool at the dose equivalent to their corresponding content in the tested dose of the leaf essential oil, which was 0.9 mg/kg and 5.2 mg/kg, respectively, showed similar or slightly less inhibitory activity for most of these inflammatory parameters compared with that of the leaf essential oil. Our data confirmed the potential use of leaf essential oil of Cinnamomum osmophloeum Kanehira as an anti-inflammatory natural product and provide evidence for cinnamaldehyde and linalool as two potent agents for prophylactic use in health problems associated with inflammations that being attributed to over-activated TLR4 and/or NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Shih-Chieh Lee
- Department of BioIndustry Technology, Da-Yeh University, No. 168, University Rd., Dacun, Changhua, Taiwan, Republic of China
| | - Shih-Yun Wang
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China
| | - Cheng-Tzu Liu
- School of Nutrition, Chung Shan Medical University, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China; Department of Nutrition, Chung Shan Medical University Hospital, No. 110, Sec. 1, Chien Kuo N. Rd., Taichung, Taiwan, Republic of China.
| |
Collapse
|
85
|
Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017; 9:nu9040385. [PMID: 28420091 PMCID: PMC5409724 DOI: 10.3390/nu9040385] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022] Open
Abstract
The rapid increase in metabolic diseases, which occurred in the last three decades in both industrialized and developing countries, has been related to the rise in sugar-added foods and sweetened beverages consumption. An emerging topic in the pathogenesis of metabolic diseases related to modern nutrition is the role of Advanced Glycation Endproducts (AGEs). AGEs can be ingested with high temperature processed foods, but also endogenously formed as a consequence of a high dietary sugar intake. Animal models of high sugar consumption, in particular fructose, have reported AGE accumulation in different tissues in association with peripheral insulin resistance and lipid metabolism alterations. The in vitro observation that fructose is one of the most rapid and effective glycating agents when compared to other sugars has prompted the investigation of the in vivo fructose-induced glycation. In particular, the widespread employment of fructose as sweetener has been ascribed by many experimental and observational studies for the enhancement of lipogenesis and intracellular lipid deposition. Indeed, diet-derived AGEs have been demonstrated to interfere with many cell functions such as lipid synthesis, inflammation, antioxidant defences, and mitochondrial metabolism. Moreover, emerging evidence also in humans suggest that this impact of dietary AGEs on different signalling pathways can contribute to the onset of organ damage in liver, skeletal and cardiac muscle, and the brain, affecting not only metabolic control, but global health. Indeed, the most recent reports on the effects of high sugar consumption and diet-derived AGEs on human health reviewed here suggest the need to limit the dietary sources of AGEs, including added sugars, to prevent the development of metabolic diseases and related comorbidities.
Collapse
|
86
|
Kim JK, Jin HS, Suh HW, Jo EK. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol 2017; 95:584-592. [PMID: 28356568 DOI: 10.1038/icb.2017.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 12/22/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that cause the release of biologically active interleukin-1β. The best-characterized inflammasome is the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 or Nod-like receptor protein 3) inflammasome. The NLRP3 inflammasome forms an assembly consisting of the ASC (apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain) adaptor protein and the effector, caspase-1 (cysteine-dependent aspartate-directed protease-1). Numerous agents and ligands derived from pathogens, modified self-cells and the environment induce NLRP3 inflammasome complex formation. NLRP3 inflammasome activation is tightly controlled at the transcriptional and post-translational levels to prevent unwanted excessive inflammation. Recent studies have highlighted the roles and mechanisms of several negative regulators that inhibit the assembly of NLRP3 inflammasome complexes and suppress inflammatory responses. The identification and characterization of new players in the regulation of NLRP3 inflammasome may lead to the development of inflammasome-targeting therapeutics against various inflammatory diseases related to NLRP3 inflammasome-associated pathogenesis.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea.,Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Korea
| | - Hyun-Woo Suh
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
87
|
Zhang DM, Jiao RQ, Kong LD. High Dietary Fructose: Direct or Indirect Dangerous Factors Disturbing Tissue and Organ Functions. Nutrients 2017; 9:E335. [PMID: 28353649 PMCID: PMC5409674 DOI: 10.3390/nu9040335] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
High dietary fructose is a major contributor to insulin resistance and metabolic syndrome, disturbing tissue and organ functions. Fructose is mainly absorbed into systemic circulation by glucose transporter 2 (GLUT2) and GLUT5, and metabolized in liver to produce glucose, lactate, triglyceride (TG), free fatty acid (FFA), uric acid (UA) and methylglyoxal (MG). Its extrahepatic absorption and metabolism also take place. High levels of these metabolites are the direct dangerous factors. During fructose metabolism, ATP depletion occurs and induces oxidative stress and inflammatory response, disturbing functions of local tissues and organs to overproduce inflammatory cytokine, adiponectin, leptin and endotoxin, which act as indirect dangerous factors. Fructose and its metabolites directly and/or indirectly cause oxidative stress, chronic inflammation, endothelial dysfunction, autophagy and increased intestinal permeability, and then further aggravate the metabolic syndrome with tissue and organ dysfunctions. Therefore, this review addresses fructose-induced metabolic syndrome, and the disturbance effects of direct and/or indirect dangerous factors on the functions of liver, adipose, pancreas islet, skeletal muscle, kidney, heart, brain and small intestine. It is important to find the potential correlations between direct and/or indirect risk factors and healthy problems under excess dietary fructose consumption.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Rui-Qing Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
88
|
Bernardes N, Ayyappan P, De Angelis K, Bagchi A, Akolkar G, da Silva Dias D, Belló-Klein A, Singal PK. Excessive consumption of fructose causes cardiometabolic dysfunctions through oxidative stress and inflammation. Can J Physiol Pharmacol 2017; 95:1078-1090. [PMID: 28187269 DOI: 10.1139/cjpp-2016-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rapid rise in obesity, as well as physical inactivity, in industrialized countries is associated with fructose-consumption-mediated metabolic syndrome having a strong association with cardiovascular disease. Although insulin resistance is thought to be at the core, visceral obesity, hypertension, and hypertriglyceridemia are also considered important components of this metabolic disorder. In addition, various other abnormalities such as inflammation, oxidative stress, and elevated levels of uric acid are also part of this syndrome. Lifestyle changes through improved physical activity, as well as nutrition, are important approaches to minimize metabolic syndrome and its deleterious effects.
Collapse
Affiliation(s)
- Nathalia Bernardes
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Prathapan Ayyappan
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Katia De Angelis
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Ashim Bagchi
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gauri Akolkar
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Danielle da Silva Dias
- a Universidade Nove de Julho, Diretoria de Mestrado, Av. Francisco Matatazzo, 612, 10 andar, Centro de Pos Graduacao Stricto Sensu, Barra Funda, Sao Paulo, Brazil
| | - Adriane Belló-Klein
- c Laboratory of Cardiovascular Physiology, Institute of Basic Health Science (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Pawan K Singal
- b Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
89
|
Ye XF, Xue Y, Ling T, Wang Y, Yu XN, Cheng C, Feng G, Hu L, Shi Z, Chen J. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Molecules 2016; 22:E15. [PMID: 28029133 PMCID: PMC6155710 DOI: 10.3390/molecules22010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.
Collapse
Affiliation(s)
- Xie-Feng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanfeng Xue
- Nanjing Yangzi Modern Agriculture Investment and Development Co. Ltd., Nanjing 211899, China.
| | - Tianxiao Ling
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yong Wang
- Chongqing Tobacco Corporation, Chongqing 400023, China.
| | - Xiao-Na Yu
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Changxin Cheng
- Hongyun Honghe Tobacco Group Co. Ltd., Kunming 650231, China.
| | - Guosheng Feng
- Henan Tobacco Corporation Queshan Branch, Queshan 463200, China.
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| |
Collapse
|
90
|
Recent Progress in the Molecular Recognition and Therapeutic Importance of Interleukin-1 Receptor-Associated Kinase 4. Molecules 2016; 21:molecules21111529. [PMID: 27845762 PMCID: PMC6274160 DOI: 10.3390/molecules21111529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/09/2016] [Indexed: 11/17/2022] Open
Abstract
Toll-like receptors (TLRs) are the most upstream pattern recognition receptors in the cell, which detect pathogen associated molecular patterns and initiate signal transduction, culminating in the transcription of pro-inflammatory cytokines and antiviral interferon. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a key mediator in TLR (except for TLR3) and interleukin-1 receptor signaling pathways. The loss of kinase function of IRAK4 is associated with increased susceptibility to various pathogens, while its over-activation causes autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and cancer. The therapeutic importance of this master kinase has been advocated by a number of recent preclinical studies, where potent inhibitors have been administered to improve various TLR-mediated pathologies. Increasing studies of X-ray crystallographic structures with bound inhibitors have improved our knowledge on the molecular recognition of ligands by IRAK4, which will be crucial for the development of new inhibitors with improved potencies. In this review, we briefly discuss the structural aspect of ligand recognition by IRAK4 and highlight its therapeutic importance in the context of TLR-associated unmet medical needs.
Collapse
|
91
|
Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie Y, Yang Q, Wang S. Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: The regulation of autophagy and ROS production. J Mol Cell Cardiol 2016; 101:11-24. [PMID: 27838370 DOI: 10.1016/j.yjmcc.2016.10.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Cinnamaldehyde (CA), a major bioactive compound extracted from the essential oil of Cortex Cinnamomi, exhibits anti-inflammatory activity on endotoxemia. Accumulating evidence indicates reactive oxygen species (ROS) and autophagy play a vital role in the cardiac dysfunction during endotoxemia. The aim of this study was to unveil the mechanism of CA on ROS production and autophagy during endotoxemia. Male Sprague-Dawley rats were stimulated by LPS (20mg/kg i.v.) with or without treatment of CA. Cardiac function and histopathological staining were preformed 4h after LPS stimulation. The levels of TNF-α, IL-1β and IL-6 were detected by ELISA. The expression of p-JNK, p-ERK, p-p38, TLR4, NOX4, NOX2, ATG5 and LC3 proteins were determined by Western blot. The results showed that CA inhibited cardiac dysfunction, inflammatory infiltration and the levels of TNF-α, IL-1β and IL-6 in LPS stimulated rats by blocking the TLR4, NOX4, MAPK and autophagy signalings. In order to obtain further confirmation of the mechanism of CA on endotoxemia in vitro, a limited time-course study was firstly performed by Western blot. TLR4, NOX4 and LC3 were significantly increased after 4h LPS stimulation. CA reversed the intracellular ROS production and MAPK signaling activation induced by LPS. Electron microscopy, mRFP-GFP-LC3 transfection and western blot results revealed autophagic flux were attenuated after CA treatment. The siRNA and molecular docking results suggest that CA can suppress both TLR4 and NOX4 during endotoxemia. Our data revealed that CA ameliorated LPS-induced cardiac dysfunction by inhibiting ROS production and autophagy through TLR4-NOX4 pathway.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Meng Zhang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Fuxing Zhou
- Department of Obstetrics and Gynecology, Xijing Hospital, The First Affiliated Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Linlin Bi
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Yanhua Xie
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China
| | - Qian Yang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| | - Siwang Wang
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an 710032, China.
| |
Collapse
|