51
|
Guillemette R, Ushijima B, Jalan M, Häse CC, Azam F. Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus. PLoS One 2020; 15:e0227864. [PMID: 31990915 PMCID: PMC6986712 DOI: 10.1371/journal.pone.0227864] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) is a nanomachine capable of killing adjacent microbial cells in a contact-dependent manner. Due to limited studies, relatively little is known about the range of marine bacteria that are susceptible to T6SS attack. Here, 15 diverse marine bacterial isolates from the phyla Bacteroidetes and Ɣ-Proteobacteria were challenged against the marine bacterium and human pathogen, Vibrio cholerae, which has a well described T6SS. V. cholerae killed several of the tested Ɣ-Proteobacteria, including members of the orders Vibrionales, Alteromonadales, Oceanospirillales, and Pseudomonadales. In contrast, V. cholerae co-existed with multiple Bacteroidetes and Ɣ-Proteobacteria isolates, but was killed by Vibrio coralliilyticus. Follow-up experiments revealed that five V. coralliilyticus strains, including known coral and shellfish pathogens survived the T6SS challenge and killed V. cholerae. By using predicted protein comparisons and mutagenesis, we conclude that V. coralliilyticus protected itself in the challenge by using its own T6SS to kill V. cholerae. This study provides valuable insight into the resilience and susceptibility of marine bacteria to the V. cholerae T6SS, and provides the first evidence for a functional T6SS in V. coralliilyticus, both of which have implications for human and ocean health.
Collapse
Affiliation(s)
- Ryan Guillemette
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, United States of America
| | - Blake Ushijima
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Mihika Jalan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, United States of America
| | - Claudia C. Häse
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States of America
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, United States of America
| |
Collapse
|
52
|
Allsopp LP, Bernal P, Nolan LM, Filloux A. Causalities of war: The connection between type VI secretion system and microbiota. Cell Microbiol 2020; 22:e13153. [PMID: 31872954 PMCID: PMC7540082 DOI: 10.1111/cmi.13153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/23/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.
Collapse
Affiliation(s)
- Luke P Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Nolan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| |
Collapse
|
53
|
Liaw J, Hong G, Davies C, Elmi A, Sima F, Stratakos A, Stef L, Pet I, Hachani A, Corcionivoschi N, Wren BW, Gundogdu O, Dorrell N. The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization. Front Microbiol 2019; 10:2864. [PMID: 31921044 PMCID: PMC6927950 DOI: 10.3389/fmicb.2019.02864] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
The role of the Type VI secretion system (T6SS) in Campylobacter jejuni is poorly understood despite an increasing prevalence of the T6SS in recent C. jejuni isolates in humans and chickens. The T6SS is a contractile secretion machinery capable of delivering effectors that can play a role in host colonization and niche establishment. During host colonization, C. jejuni is exposed to oxidative stress in the host gastrointestinal tract, and in other bacteria the T6SS has been linked with the oxidative stress response. In this study, comparisons of whole genome sequences of a novel human isolate 488 with previously sequenced strains revealed a single highly conserved T6SS cluster shared between strains isolated from humans and chickens. The presence of a functional T6SS in the 488 wild-type strain is indicated by expression of T6SS genes and secretion of the effector TssD. Increased expression of oxidative stress response genes katA, sodB, and ahpC, and increased oxidative stress resistance in 488 wild-type strain suggest T6SS is associated with oxidative stress response. The role of the T6SS in interactions with host cells is explored using in vitro and in vivo models, and the presence of the T6SS is shown to increase C. jejuni cytotoxicity in the Galleria mellonella infection model. In biologically relevant models, the T6SS enhances C. jejuni interactions with and invasion of chicken primary intestinal cells and enhances the ability of C. jejuni to colonize chickens. This study demonstrates that the C. jejuni T6SS provides defense against oxidative stress and enhances host colonization, and highlights the importance of the T6SS during in vivo survival of T6SS-positive C. jejuni strains.
Collapse
Affiliation(s)
- Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Geunhye Hong
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Cadi Davies
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Abdi Elmi
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Alexandros Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Lavinia Stef
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Ioan Pet
- Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
54
|
Jana B, Salomon D. Type VI secretion system: a modular toolkit for bacterial dominance. Future Microbiol 2019; 14:1451-1463. [DOI: 10.2217/fmb-2019-0194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria use toxin delivery systems, such as the type VI secretion system (T6SS), to antagonize competitors. The T6SS transports toxins, called effectors, directly into recipient cells. In the absence of cognate immunity proteins that protect against kin-intoxication, these effectors target conserved and essential cell components resulting in growth arrest or cell death. Here, we focus on antibacterial T6SS effectors and explore their different activities, modes of delivery, and the domains and proteins that are associated with them to provide a modular and dynamic toxin arsenal. We conclude that these natural machines present a lucrative pool and platform for future antibacterial treatments.
Collapse
Affiliation(s)
- Biswanath Jana
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dor Salomon
- Department of Clinical Microbiology & Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
55
|
Lewis JM, Deveson Lucas D, Harper M, Boyce JD. Systematic Identification and Analysis of Acinetobacter baumannii Type VI Secretion System Effector and Immunity Components. Front Microbiol 2019; 10:2440. [PMID: 31736890 PMCID: PMC6833914 DOI: 10.3389/fmicb.2019.02440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Many Gram-negative bacteria use a type VI secretion system (T6SS) for microbial warfare and/or host manipulation. Acinetobacter baumannii is an important nosocomial pathogen and many A. baumannii strains utilize a T6SS to deliver toxic effector proteins to surrounding bacterial cells. These toxic effectors are usually delivered together with VgrG proteins, which form part of the T6SS tip complex. All previously identified A. baumannii T6SS effectors are encoded within a three- or four-gene locus that also encodes a cognate VgrG and immunity protein, and sometimes a chaperone. In order to characterize the diversity and distribution of T6SS effectors and immunity proteins in this species, we first identified all vgrG genes in 97 A. baumannii strains via the presence of the highly conserved VgrG domain. Most strains encoded between two and four different VgrG proteins. We then analyzed the regions downstream of the identified vgrG genes and identified more than 240 putative effectors. The presence of conserved domains in these effectors suggested a range of functions, including peptidoglycan hydrolases, lipases, nucleases, and nucleic acid deaminases. However, 10 of the effector groups had no functionally characterized domains. Phylogenetic analysis of these putative effectors revealed that they clustered into 32 distinct groups that appear to have been acquired from a diverse set of ancestors. Corresponding immunity proteins were identified for all but two of the effector groups. Effectors from eight of the 32 groups contained N-terminal rearrangement hotspot (RHS) domains. The C-terminal regions of these RHS proteins, which are predicted to confer the toxic effector function, were very diverse, but the N-terminal RHS domains clustered into just two groups. While the majority of A. baumannii strains contained an RHS type effector, no strains encoded two RHS effectors with similar N-terminal sequences, suggesting that the presence of similar N-terminal RHS domains leads to competitive exclusion. Together, these analyses define the extreme diversity of T6SS effectors within A. baumannii and, as many have unknown functions, future detailed characterization of these effectors may lead to the identification of proteins with novel antibacterial properties.
Collapse
Affiliation(s)
- Jessica M Lewis
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
56
|
Human gut bacteria contain acquired interbacterial defence systems. Nature 2019; 575:224-228. [PMID: 31666699 PMCID: PMC6938237 DOI: 10.1038/s41586-019-1708-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
Abstract
The human gastrointestinal tract consists of a dense and diverse microbial community, the composition of which is intimately linked to health. Extrinsic factors such as diet and host immunity are insufficient to explain the constituents of this community, and direct interactions between co-resident microorganisms have been implicated as important drivers of microbiome composition. The genomes of bacteria derived from the gut microbiome contain several pathways that mediate contact-dependent interbacterial antagonism1-3. Many members of the Gram-negative order Bacteroidales encode the type VI secretion system (T6SS), which facilitates the delivery of toxic effector proteins into adjacent cells4,5. Here we report the occurrence of acquired interbacterial defence (AID) gene clusters in Bacteroidales species that reside within the human gut microbiome. These clusters encode arrays of immunity genes that protect against T6SS-mediated intra- and inter-species bacterial antagonism. Moreover, the clusters reside on mobile elements, and we show that their transfer is sufficient to confer resistance to toxins in vitro and in gnotobiotic mice. Finally, we identify and validate the protective capability of a recombinase-associated AID subtype (rAID-1) that is present broadly in Bacteroidales genomes. These rAID-1 gene clusters have a structure suggestive of active gene acquisition and include predicted immunity factors of toxins derived from diverse organisms. Our data suggest that neutralization of contact-dependent interbacterial antagonism by AID systems helps to shape human gut microbiome ecology.
Collapse
|
57
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
58
|
Crisan CV, Chande AT, Williams K, Raghuram V, Rishishwar L, Steinbach G, Watve SS, Yunker P, Jordan IK, Hammer BK. Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biol 2019; 20:163. [PMID: 31405375 PMCID: PMC6691524 DOI: 10.1186/s13059-019-1765-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Like many bacteria, Vibrio cholerae deploys a harpoon-like type VI secretion system (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V. cholerae. RESULTS We sequence two dozen V. cholerae strain genomes from diverse sources and develop a novel and adaptable bioinformatics tool based on hidden Markov models. We identify two new T6SS auxiliary gene clusters and describe Aux 5 here. Four Aux 5 loci are present in the host strain, each with an atypical effector/immunity gene organization. Structural prediction of the putative effector indicates it is a lipase, which we name TleV1 (type VI lipase effector Vibrio). Ectopic TleV1 expression induces toxicity in Escherichia coli, which is rescued by co-expression of the TliV1a immunity factor. A clinical V. cholerae reference strain expressing the Aux 5 cluster uses TleV1 to lyse its parental strain upon contact via its T6SS but is unable to kill parental cells expressing the TliV1a immunity factor. CONCLUSION We develop a novel bioinformatics method and identify new T6SS gene clusters in V. cholerae. We also show the TleV1 toxin is delivered in a T6SS manner by V. cholerae and can lyse other bacterial cells. Our web-based tool can be modified to identify additional novel T6SS genomic loci in diverse bacterial species.
Collapse
Affiliation(s)
- Cristian V Crisan
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Aroon T Chande
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Kenneth Williams
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Vishnu Raghuram
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
| | - Lavanya Rishishwar
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Gabi Steinbach
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Samit S Watve
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Peter Yunker
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - I King Jordan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA
- Applied Bioinformatics Laboratory, Atlanta, GA, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Brian K Hammer
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA, 30332-0230, USA.
| |
Collapse
|
59
|
Jana B, Fridman CM, Bosis E, Salomon D. A modular effector with a DNase domain and a marker for T6SS substrates. Nat Commun 2019; 10:3595. [PMID: 31399579 PMCID: PMC6688995 DOI: 10.1038/s41467-019-11546-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteria deliver toxic effectors via type VI secretion systems (T6SSs) to dominate competitors, but the identity and function of many effectors remain unknown. Here we identify a Vibrio antibacterial T6SS effector that contains a previously undescribed, widespread DNase toxin domain that we call PoNe (Polymorphic Nuclease effector). PoNe belongs to a diverse superfamily of PD-(D/E)xK phosphodiesterases, and is associated with several toxin delivery systems including type V, type VI, and type VII. PoNe toxicity is antagonized by cognate immunity proteins (PoNi) containing DUF1911 and DUF1910 domains. In addition to PoNe, the effector contains a domain of unknown function (FIX domain) that is also found N-terminal to known toxin domains and is genetically and functionally linked to T6SS. FIX sequences can be used to identify T6SS effector candidates with potentially novel toxin domains. Our findings underline the modular nature of bacterial effectors harboring delivery or marker domains, specific to a secretion system, fused to interchangeable toxins. Bacteria deliver toxic effectors via type VI secretion systems (T6SSs) to dominate competitors. Here, the authors identify a Vibrio antibacterial effector that contains a new DNase toxin domain and a domain of unknown function that can be used as a marker to identify new T6SS effectors.
Collapse
Affiliation(s)
- Biswanath Jana
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Chaya M Fridman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College of Engineering, 2161002, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
60
|
Coulthurst S. The Type VI secretion system: a versatile bacterial weapon. Microbiology (Reading) 2019; 165:503-515. [DOI: 10.1099/mic.0.000789] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
61
|
Abstract
The Type VI secretion system (T6SS) is a protein nanomachine that is widespread in Gram-negative bacteria and is used to translocate effector proteins directly into neighbouring cells. It represents a versatile bacterial weapon that can deliver effectors into distinct classes of target cells, playing key roles in inter-bacterial competition and bacterial interactions with eukaryotic cells. This versatility is underpinned by the ability of the T6SS to deliver a vast array of effector proteins, with many distinct activities and modes of interaction with the secretion machinery. Recent work has highlighted the importance and diversity of interactions mediated by T6SSs within polymicrobial communities, and offers new molecular insights into effector delivery and action in target cells.
Collapse
Affiliation(s)
- Sarah Coulthurst
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
62
|
De Gregorio E, Zarrilli R, Di Nocera PP. Contact-dependent growth inhibition systems in Acinetobacter. Sci Rep 2019; 9:154. [PMID: 30655547 PMCID: PMC6336857 DOI: 10.1038/s41598-018-36427-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022] Open
Abstract
In bacterial contact-dependent growth inhibition (CDI) systems, CdiA proteins are exported to the outer membrane by cognate CdiB proteins. CdiA binds to receptors on susceptible bacteria and subsequently delivers its C-terminal toxin domain (CdiA-CT) into neighbouring target cells. Whereas self bacteria produce CdiI antitoxins, non-self bacteria lack antitoxins and are therefore inhibited in their growth by CdiA. In silico surveys of pathogenic Acinetobacter genomes have enabled us to identify >40 different CDI systems, which we sorted into two distinct groups. Type-II CdiAs are giant proteins (3711 to 5733 residues) with long arrays of 20-mer repeats. Type-I CdiAs are smaller (1900-2400 residues), lack repeats and feature central heterogeneity (HET) regions, that vary in size and sequence and can be exchanged between CdiA proteins. HET regions in most type-I proteins confer the ability to adopt a coiled-coil conformation. CdiA-CT and pretoxin modules differ significantly between type-I and type-II CdiAs. Moreover, type-II genes only have remnants of genes in their 3' end regions that have been displaced by the insertion of novel cdi sequences. Type-I and type-II CDI systems are equally abundant in A. baumannii, whereas A. pittii and A. nosocomialis predominantly feature type-I and type-II systems, respectively.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.,Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Raffaele Zarrilli
- Dipartimento di Sanità Pubblica, Università Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via Sergio Pansini 5, Naples, 80131, Italy.
| |
Collapse
|
63
|
García-Bayona L, Comstock LE. Bacterial antagonism in host-associated microbial communities. Science 2018; 361:361/6408/eaat2456. [PMID: 30237322 DOI: 10.1126/science.aat2456] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Antagonistic interactions are abundant in microbial communities and contribute not only to the composition and relative proportions of their members but also to the longer-term stability of a community. This Review will largely focus on bacterial antagonism mediated by ribosomally synthesized peptides and proteins produced by members of host-associated microbial communities. We discuss recent findings on their diversity, functions, and ecological impacts. These systems play key roles in ecosystem defense, pathogen invasion, spatial segregation, and diversity but also confer indirect gains to the aggressor from products released by killed cells. Investigations into antagonistic bacterial interactions are important for our understanding of how the microbiota establish within hosts, influence health and disease, and offer insights into potential translational applications.
Collapse
Affiliation(s)
- Leonor García-Bayona
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
64
|
Ghequire MGK, Öztürk B. A Colicin M-Type Bacteriocin from Pseudomonas aeruginosa Targeting the HxuC Heme Receptor Requires a Novel Immunity Partner. Appl Environ Microbiol 2018; 84:e00716-18. [PMID: 29980560 PMCID: PMC6121995 DOI: 10.1128/aem.00716-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Pyocins are bacteriocins secreted by Pseudomonas aeruginosa, and they assist in the colonization of different niches. A major subset of these antibacterial proteins adopt a modular organization characteristic of polymorphic toxins. They include a receptor-binding domain, a segment enabling membrane passage, and a toxin module at the carboxy terminus, which eventually kills the target cells. To protect themselves from their own products, bacteriocin-producing strains express an immunity gene concomitantly with the bacteriocin. We show here that a pyocin equipped with a phylogenetically distinct ColM toxin domain, PaeM4, mediates antagonism against a large set of P. aeruginosa isolates. Immunity to PaeM4 is provided by the inner membrane protein PmiC, which is equipped with a transmembrane topology not previously described for the ColM family. Given that strains lacking a pmiC gene are killed by PaeM4, the presence of such an immunity partner likely is a key criterion for escaping cellular death mediated by PaeM4. The presence of a TonB box in PaeM4 and enhanced bacteriocin activity under iron-poor conditions strongly suggested the targeting of a TonB-dependent receptor. Evaluation of PaeM4 activities against TonB-dependent receptor knockout mutants in P. aeruginosa PAO1 revealed that the heme receptor HxuC (PA1302) serves as a PaeM4 target at the cellular surface. Because other ColM-type pyocins may target the ferrichrome receptor FiuA, our results illustrate the versatility in target recognition conferred by the polymorphic nature of ColM-type bacteriocins.IMPORTANCE The antimicrobial armamentarium of a bacterium is a major asset for colonizing competitive environments. Bacteriocins comprise a subset of these compounds. Pyocins are an example of such antibacterial proteins produced by Pseudomonas aeruginosa, killing other P. aeruginosa strains. A large group of these molecules show a modular protein architecture that includes a receptor-binding domain for initial target cell attachment and a killer domain. In this study, we have shown that a novel modular pyocin (PaeM4) that kills target bacteria via interference with peptidoglycan assembly takes advantage of the HxuC heme receptor. Cells can protect themselves from killing by the presence of a dedicated immunity partner, an integral inner membrane protein that adopts a transmembrane topology distinct from that of proteins currently known to provide immunity against such toxin activity. Understanding the receptors with which pyocins interact and how immunity to pyocins is achieved is a pivotal step toward the rational design of bacteriocin cocktails for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
| | - Başak Öztürk
- Leibniz Institut DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
65
|
Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci U S A 2018; 115:E8528-E8537. [PMID: 30127013 PMCID: PMC6130350 DOI: 10.1073/pnas.1808302115] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Competition among cooccurring bacteria can change the structure and function of a microbial community. However, little is known about the molecular mechanisms that impact such interactions in vivo. We used the association between bioluminescent bacteria and their squid host to study how environmentally transmitted bacteria compete for a limited number of host colonization sites. Our work suggests that Vibrio fischeri use a type VI secretion system, acting as a contact-dependent interbacterial “weapon,” to eliminate competing strains from cooccupying sites in the host. This work illuminates a mechanism by which strain-specific differences drive closely related bacteria to engage in lethal battles as they establish a beneficial symbiosis, revealing how genetic variation among potential colonizers directly impacts the spatial structure of the host-associated population. Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescent Vibrio fischeri strains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caught Euprymna scolopes squid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of different V. fischeri strains, we found “lethal” and “nonlethal” isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.
Collapse
|
66
|
Wu CF, Smith DA, Lai EM, Chang JH. The Agrobacterium Type VI Secretion System: A Contractile Nanomachine for Interbacterial Competition. Curr Top Microbiol Immunol 2018; 418:215-231. [PMID: 29992360 DOI: 10.1007/82_2018_99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The bacterial type VI secretion system (T6SS) is a contractile nanomachine dedicated to delivering molecules out of bacterial cells. T6SS-encoding loci are in the genome sequences of many Gram-negative bacteria, and T6SS has been implicated in a plethora of roles. In the majority of cases, the T6SSs deliver effector proteins in a contact-dependent manner to antagonize other bacteria. Current models suggest that the effectors are deployed to influence social interactions in microbial communities. In this chapter, we describe the structure, function, and regulation of the T6SS and its effectors. We provide focus on the T6SS of Agrobacterium tumefaciens, the causative agent of crown gall disease, and relate the role of the T6SS to the ecology of A. tumefaciens.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Delaney A Smith
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
67
|
Abstract
Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi, a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola, a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli. Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo. Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli. Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities.
Collapse
|
68
|
The Role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer. Cell Rep 2017; 21:3927-3940. [DOI: 10.1016/j.celrep.2017.12.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 01/13/2023] Open
|
69
|
Abstract
Horizontal gene transfer (HGT) can have profound effects on bacterial evolution by allowing individuals to rapidly acquire adaptive traits that shape their strategies for competition. One strategy for intermicrobial antagonism often used by Proteobacteria is the genetically encoded contact-dependent type VI secretion system (T6SS), a weapon used to kill heteroclonal neighbors by direct injection of toxic effectors. Here, we experimentally demonstrate that Vibrio cholerae can acquire new T6SS effector genes via horizontal transfer and utilize them to kill neighboring cells. Replacement of one or more parental alleles with novel effectors allows the recombinant strain to dramatically outcompete its parent. Using spatially explicit modeling, we examine how this process could affect the ecology and evolution of surface-attached microbial populations. HGT of T6SS effector-immunity pairs is risky: transformation brings a cell into conflict with its former clone mates but can be adaptive when superior T6SS alleles are acquired. More generally, we find that these costs and benefits are not symmetric and that high rates of HGT can act as a hedge against competitors with unpredictable T6SS efficacy. We conclude that antagonism and horizontal transfer drive successive rounds of weapon optimization and selective sweeps, dynamically shaping the composition of microbial communities. The contact-dependent type VI secretion system (T6SS) is frequently used by Proteobacteria to kill adjacent competitors. While DNA released by T6 killing can be horizontally acquired, it remains untested whether T6 genes themselves can be horizontally acquired and then utilized to compete with neighboring cells. Using naturally transformable Vibrio cholerae, we provide the first direct empirical support for the hypothesis that T6 genes are exchanged horizontally (e.g., from dead competitors) and functionally deployed to compete with neighboring cells. Using computational simulations, we also demonstrate that high rates of HGT can be adaptive, allowing V. cholerae to improve upon existing T6 weaponry and survive direct encounters with otherwise superior competitors. We anticipate that our evolutionary results are of broad microbiological relevance, applying to many bacteria capable of HGT that utilize the T6SS or similar antagonistic systems, and highlight the profound impact of HGT in shaping microbial community structure.
Collapse
|
70
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|