51
|
Abstract
Optical biosensors have begun to move from the laboratory to the point of use. This trend will be accelerated by new concepts for molecular recognition, integration of microfluidics and optics, simplified fabrication technologies, improved approaches to biosensor system integration, and dramatically increased awareness of the applicability of sensor technology to improve public health and environmental monitoring. Examples of innovations are identified that will lead to smaller, faster, cheaper optical biosensor systems with capacity to provide effective and actionable information.
Collapse
Affiliation(s)
- Frances S Ligler
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, 455 Overlook Avenue South West, Washington, DC 20375, USA
| |
Collapse
|
52
|
Myers FB, Lee LP. Innovations in optical microfluidic technologies for point-of-care diagnostics. LAB ON A CHIP 2008; 8:2015-31. [PMID: 19023464 DOI: 10.1039/b812343h] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite a growing focus from the academic community, the field of microfluidics has yet to produce many commercial devices for point-of-care (POC) diagnostics. One of the main reasons for this is the difficulty in producing low-cost, sensitive, and portable optical detection systems. Although electrochemical methods work well for certain applications, optical detection is generally regarded as superior and is the method most widely employed in laboratory clinical chemistry. Conventional optical systems, however, are costly, require careful alignment, and do not translate well to POC devices. Furthermore, many optical detection paradigms such as absorbance and fluorescence suffer at smaller geometries because the optical path length through the sample is shortened. This review examines the innovative techniques which have recently been developed to address these issues. We highlight microfluidic diagnostic systems which demonstrate practical integration of sample preparation, analyte enrichment, and optical detection. We also examine several emerging detection paradigms involving nanoengineered materials which do not suffer from the same miniaturization disadvantages as conventional measurements.
Collapse
Affiliation(s)
- Frank B Myers
- Biomolecular Nanotechnology Center, Berkeley Sensor and Actuator Center, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
53
|
Godin J, Chen CH, Cho SH, Qiao W, Tsai F, Lo YH. Microfluidics and photonics for Bio-System-on-a-Chip: a review of advancements in technology towards a microfluidic flow cytometry chip. JOURNAL OF BIOPHOTONICS 2008; 1:355-76. [PMID: 19343660 PMCID: PMC2746115 DOI: 10.1002/jbio.200810018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microfluidics and photonics come together to form a field commonly referred to as 'optofluidics'. Flow cytometry provides the field with a technology base from which both microfluidic and photonic components be developed and integrated into a useful device. This article reviews some of the more recent developments to familiarize a reader with the current state of the technologies and also highlights the requirements of the device and how researchers are working to meet these needs.
Collapse
Affiliation(s)
- Jessica Godin
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | |
Collapse
|
54
|
Beiderman M, Tam T, Fish A, Jullien GA, Yadid-Pecht O. A Low-Light CMOS Contact Imager With an Emission Filter for Biosensing Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2008; 2:193-203. [PMID: 23852969 DOI: 10.1109/tbcas.2008.2001866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this paper, a fully functional low light 128 X 128 contact image sensor for cell detection in biosensing applications is presented. The imager, fabricated in 0.18 mum CMOS technology, provides low-noise operation by employing both a modified version of the active reset (AR) technique and a modified version of the active column sensor (ACS) readout method. High-sensitivity, low noise performance of the presented sensor is well-suited for fluorescence imaging. For this purpose, an emission filter was fabricated and integrated with the sensor. The filter was fabricated using PDMS and Sudan II Blue dye mix, spin-coated and deposited in a class 1000 clean room. The designed filter is suitable for excitation at wavelengths below 340 nm and emission at 450 nm and above. The fabricated imager architecture and operation are described, noise analysis is presented and measurements from a test chip are shown. Experimental results using live neurons from the pond snail, Lymnaea stagnalis, and fluorescence polystyrene micro-beads prove the functionality of the fabricated system and indicate its biocompatiblity.
Collapse
|
55
|
Ateya DA, Erickson JS, Howell PB, Hilliard LR, Golden JP, Ligler FS. The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 2008; 391:1485-98. [PMID: 18228010 PMCID: PMC2746035 DOI: 10.1007/s00216-007-1827-5] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 11/29/2022]
Abstract
Recent developments in microflow cytometry have concentrated on advancing technology in four main areas: (1) focusing the particles to be analyzed in the microfluidic channel, (2) miniaturization of the fluid-handling components, (3) miniaturization of the optics, and (4) integration and applications development. Strategies for focusing particles in a narrow path as they pass through the detection region include the use of focusing fluids, nozzles, and dielectrophoresis. Strategies for optics range from the use of microscope objectives to polymer waveguides or optical fibers embedded on-chip. While most investigators use off-chip fluidic control, there are a few examples of integrated valves and pumps. To date, demonstrations of applications are primarily used to establish that the microflow systems provide data of the same quality as laboratory systems, but new capabilities-such as automated sample staining-are beginning to emerge. Each of these four areas is discussed in detail in terms of the progress of development, the continuing limitations, and potential future directions for microflow cytometers.
Collapse
Affiliation(s)
- Daniel A. Ateya
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| | - Jeffrey S. Erickson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| | - Peter B. Howell
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| | - Lisa R. Hilliard
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| | - Joel P. Golden
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| | - Frances S. Ligler
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA, e-mail:
| |
Collapse
|
56
|
West J, Becker M, Tombrink S, Manz A. Micro Total Analysis Systems: Latest Achievements. Anal Chem 2008; 80:4403-19. [PMID: 18498178 DOI: 10.1021/ac800680j] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan West
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Marco Becker
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Sven Tombrink
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| | - Andreas Manz
- ISAS, Institute for Analytical Sciences, Bunsen-Kirchhoff-Strasse 11, D-44139 Dortmund, Germany
| |
Collapse
|
57
|
Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt SC. Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 2008; 391:2453-67. [PMID: 18458889 PMCID: PMC2516543 DOI: 10.1007/s00216-008-2062-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/04/2008] [Accepted: 03/06/2008] [Indexed: 12/18/2022]
Abstract
In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms.
Collapse
Affiliation(s)
- S Derveaux
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
58
|
Pais A, Banerjee A, Klotzkin D, Papautsky I. High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection. LAB ON A CHIP 2008; 8:794-800. [PMID: 18432351 DOI: 10.1039/b715143h] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a high-sensitivity, disposable lab-on-a-chip with a thin-film organic light-emitting diode (OLED) excitation source and an organic photodiode (OPD) detector for on-chip fluorescence analysis. A NPB/Alq3 thin-film green OLED with an active area of 0.1 cm(2) was used as the excitation source, while a CuPC/C(60) thin-film OPD with 0.6 cm(2) active area was used as a photodetector. A novel cost-effective, cross-polarization scheme was used to filter out excitation light from a fluorescent dye emission spectrum. The excitation light from the OLED was linearly polarized and used to illuminate a microfluidic device containing a 1 microL volume of dye dissolved in ethanol. The detector was shielded by a second polarizer, oriented orthogonally to the excitation light, thus reducing the photocurrent due to excitation light leakage on the detector by approximately 25 dB. The fluorescence emission light, which is randomly polarized, is only attenuated by approximately 3 dB. Fluorescence signals from Rhodamine 6G (peak emission wavelength of 570 nm) and fluorescein (peak emission wavelength of 494 nm) dyes were measured in a dilution series in the microfluidic device with emission signals detected by the OPD. A limit-of-detection of 100 nM was demonstrated for Rhodamine 6G, and 10 microM for fluorescein. This suggests that an integrated microfluidic device, with an organic photodiode and LED excitation source and integrated polarizers, can be fabricated to realize a compact and economical lab-on-a-chip for point-of-care fluorescence assays.
Collapse
Affiliation(s)
- Andrea Pais
- Department of Electrical and Computer Engineering, University of Cincinnati, 814 Rhodes Hall, ML030, Cincinnati, OH 45221, USA
| | | | | | | |
Collapse
|
59
|
Ziegler J, Zimmermann M, Hunziker P, Delamarche E. High-Performance Immunoassays Based on Through-Stencil Patterned Antibodies and Capillary Systems. Anal Chem 2008; 80:1763-9. [DOI: 10.1021/ac702160x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Ziegler
- University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Martin Zimmermann
- University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Patrick Hunziker
- University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Emmanuel Delamarche
- University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland, and IBM Research GmbH, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
60
|
Bliss CL, McMullin JN, Backhouse CJ. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection. LAB ON A CHIP 2008; 8:143-51. [PMID: 18094772 DOI: 10.1039/b711601b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We demonstrate the fabrication and characterization of a novel, inexpensive microchip capable of laser induced fluorescence (LIF) detection using integrated waveguides with built-in optical filters. Integrated wavelength-selective optical waveguides are fabricated by doping poly(dimethysiloxane) (PDMS) with dye molecules. Liquid-core waveguides are created within dye-doped PDMS microfluidic chips by filling channels with high refractive index liquids. Dye molecules are allowed to diffuse into the liquid core from the surrounding dye-doped PDMS. The amount of diffusion is controlled by choosing either polar (low diffusion) or apolar (high diffusion) liquid waveguide cores. The doping dye is chosen to absorb excitation light and to transmit fluorescence emitted by the sample under test. After 24 h, apolar waveguides demonstrate propagation losses of 120 dB cm(-1) (532 nm) and 4.4 dB cm(-1) (633 nm) while polar waveguides experience losses of 8.2 dB cm(-1) (532 nm) and 1.1 dB cm(-1) (633 nm) where 532 and 633 nm light represent the excitation and fluorescence wavelengths, respectively. We demonstrate the separation and detection of end-labelled DNA fragments using polar waveguides for excitation light delivery and apolar waveguides for fluorescence collection. We demonstrate that the dye-doped waveguides can provide performance comparable to a commercial dielectric filter; however, for the present choice of dye, their ultimate performance is limited by autofluorescence from the dye. Through the detection of a BK virus polymerase chain reaction (PCR) product, we demonstrate that the dye-doped PDMS system is an order of magnitude more sensitive than a similar undoped system (SNR: 138 vs. 9) without the use of any external optical filters at the detector.
Collapse
Affiliation(s)
- Christopher L Bliss
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
61
|
Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 2007; 390:89-111. [DOI: 10.1007/s00216-007-1692-2] [Citation(s) in RCA: 467] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/05/2007] [Accepted: 10/09/2007] [Indexed: 01/11/2023]
|
62
|
Lee KS, Lee HLT, Ram RJ. Polymer waveguide backplanes for optical sensor interfaces in microfluidics. LAB ON A CHIP 2007; 7:1539-1545. [PMID: 17960283 DOI: 10.1039/b709885p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A polymer optical backplane capable of generic luminescence detection within microfluidic chips is demonstrated using large core polymer waveguides and vertical couplers. The waveguides are fabricated through a new process combining mechanical machining and vapor polishing with elastomer microtransfer molding. A backplane approach enables general optical integration with planar array microfluidics since optical backplanes can be independently designed but still integrated with planar fluidic circuits. Fabricated large core waveguides exhibit a loss of 0.1 dB cm(-1) at 626 nm, a measured numerical aperture of 0.50, and a collection efficiency of 2.86% in an n = 1.459 medium, comparable to a 0.50 NA microscope objective. In addition to vertical couplers for out-of-plane collection and excitation, polymer waveguides are doped with organic dyes to provide wavelength selective filtering within waveguides, further improving optical device integration. With large core low loss waveguides, luminescence collection is improved and measurements can be performed with simple LEDs and photodetectors. Fluorescein detection via fluorescence intensity with a limit of detection (3sigma) of 200 nM in a 1 microL volume is demonstrated. Phosphorescence lifetime based oxygen detection in water in an oxygen controllable microbial cell culture chip with a limit of detection (3sigma) of 0.08% or 35 ppb is also demonstrated utilizing the waveguide backplane. Single waveguide luminescence collection performance is equivalent to a back collection geometry fiber bundle consisting of nine 500 microm diameter collection fibers.
Collapse
Affiliation(s)
- Kevin S Lee
- MIT, EECS, 32 Vassar St. 26-459, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
63
|
Llobera A, Demming S, Wilke R, Büttgenbach S. Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing. LAB ON A CHIP 2007; 7:1560-6. [PMID: 17960286 DOI: 10.1039/b704454b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Compact poly(dimethylsiloxane)-based (PDMS) multiple internal reflection systems which comprise self-alignment systems, lenses, microfluidic channels and mirrors have been developed for highly sensitive absorbance measurements. With the proper definition of air mirrors at both sides of the sensing region, the optical path of the light from the LED has been meaningfully lengthened without a dramatic increase of the mean flow cell volume. By recursive positioning of such air mirrors, propagating multiple internal reflection (PMIR) systems have been designed, simulated and characterized. Experimental results confirm the ray-tracing predictions and allow the determining that there are some regions of the mean flow cell volume that do not contribute to the increase of the sensitivity. The tailoring of the sensing region, following the optical path, results in a similar limit of detection (110 nM) for fluorescein diluted in phosphate buffer. Finally, a ring configuration, labelled RMIR, has also been developed. With the addition of a third air mirror, the LOD can be decreased to 41 nM with the additional advantage of a substantial decrease of the length of the sensing region. These results confirm the validity of the proposed systems for high sensitivity measurements.
Collapse
Affiliation(s)
- A Llobera
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Strasse 203, 38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
64
|
Roman GT, Kennedy RT. Fully integrated microfluidic separations systems for biochemical analysis. J Chromatogr A 2007; 1168:170-88; discussion 169. [PMID: 17659293 DOI: 10.1016/j.chroma.2007.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Over the past decade a tremendous amount of research has been performed using microfluidic analytical devices to detect over 200 different chemical species. Most of this work has involved substantial integration of fluid manipulation components such as separation channels, valves, and filters. This level of integration has enabled complex sample processing on miniscule sample volumes. Such devices have also demonstrated high throughput, sensitivity, and separation performance. Although the miniaturization of fluidics has been highly valuable, these devices typically rely on conventional ancillary equipment such as power supplies, detection systems, and pumps for operation. This auxiliary equipment prevents the full realization of a "lab-on-a-chip" device with complete portability, autonomous operation, and low cost. Integration and/or miniaturization of ancillary components would dramatically increase the capability and impact of microfluidic separations systems. This review describes recent efforts to incorporate auxiliary equipment either as miniaturized plug-in modules or directly fabricated into the microfluidic device.
Collapse
Affiliation(s)
- Gregory T Roman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
65
|
Kuswandi B, Nuriman, Huskens J, Verboom W. Optical sensing systems for microfluidic devices: A review. Anal Chim Acta 2007; 601:141-55. [PMID: 17920386 DOI: 10.1016/j.aca.2007.08.046] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/22/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
|
66
|
Hunt HC, Wilkinson JS. Optofluidic integration for microanalysis. MICROFLUIDICS AND NANOFLUIDICS 2007; 4:53-79. [PMID: 32214954 PMCID: PMC7087941 DOI: 10.1007/s10404-007-0223-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/25/2007] [Indexed: 05/09/2023]
Abstract
This review describes recent research in the application of optical techniques to microfluidic systems for chemical and biochemical analysis. The "lab-on-a-chip" presents great benefits in terms of reagent and sample consumption, speed, precision, and automation of analysis, and thus cost and ease of use, resulting in rapidly escalating adoption of microfluidic approaches. The use of light for detection of particles and chemical species within these systems is widespread because of the sensitivity and specificity which can be achieved, and optical trapping, manipulation and sorting of particles show significant benefits in terms of discrimination and reconfigurability. Nonetheless, the full integration of optical functions within microfluidic chips is in its infancy, and this review aims to highlight approaches, which may contribute to further miniaturisation and integration.
Collapse
Affiliation(s)
- Hamish C. Hunt
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ UK
| | - James S. Wilkinson
- Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ UK
| |
Collapse
|
67
|
Dandin M, Abshire P, Smela E. Optical filtering technologies for integrated fluorescence sensors. LAB ON A CHIP 2007; 7:955-77. [PMID: 17653336 DOI: 10.1039/b704008c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Numerous approaches have been taken to miniaturizing fluorescence sensing, which is a key capability for micro-total-analysis systems. This critical, comprehensive review focuses on the optical hardware required to attenuate excitation light while transmitting fluorescence. It summarizes, evaluates, and compares the various technologies, including filtering approaches such as interference filters and absorption filters and filterless approaches such as multicolor sensors and light-guiding elements. It presents the physical principles behind the different architectures, the state-of-the-art micro-fluorometers and how they were microfabricated, and their performance metrics. Promising technologies that have not yet been integrated are also described. This information will permit the identification of methods that meet particular design requirements, from both performance and integration perspectives, and the recognition of the remaining technological challenges. Finally, a set of performance metrics are proposed for evaluating and reporting spectral discrimination characteristics of integrated devices in order to promote side-by-side comparisons among diverse technologies and, ultimately, to facilitate optimized designs of micro-fluorometers for specific applications.
Collapse
Affiliation(s)
- Marc Dandin
- Department of Electrical Engineering and Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
68
|
Schmidt O, Bassler M, Kiesel P, Knollenberg C, Johnson N. Fluorescence spectrometer-on-a-fluidic-chip. LAB ON A CHIP 2007; 7:626-9. [PMID: 17476382 DOI: 10.1039/b618879f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A chip-size spectrometer is realized by combining a linear variable band-pass filter with a CMOS camera. The filter converts the spectral information of the incident light into a spatially dependent signal that is analyzed by the camera. A fluidic platform is integrated onto the spectrometer for analyzing the fluorescence from moving objects. The target is continuously excited within an anti-resonant waveguide, and its fluorescence spectrum is recorded as the object traverses the detection area.
Collapse
Affiliation(s)
- Oliver Schmidt
- Palo Alto Research Center Inc. (PARC), 3333 Coyote Hill Rd, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|