51
|
Fradet E, Bayer C, Hollfelder F, Baroud CN. Measuring Fast and Slow Enzyme Kinetics in Stationary Droplets. Anal Chem 2015; 87:11915-22. [DOI: 10.1021/acs.analchem.5b03567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Etienne Fradet
- Laboratoire
d’Hydrodynamique (LadHyX) and Department of Mechanics, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | - Christopher Bayer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, United Kingdom CB2 1GA
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, United Kingdom CB2 1GA
| | - Charles N. Baroud
- Laboratoire
d’Hydrodynamique (LadHyX) and Department of Mechanics, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| |
Collapse
|
52
|
Bithi SS, Vanapalli SA. Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks. SOFT MATTER 2015; 11:5122-5132. [PMID: 26036726 DOI: 10.1039/c5sm01077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the complex collective dynamics mediated by flow resistance interactions when trains of non-coalescing and coalescing confined drops are introduced into a microfluidic parking network (MPN). The MPN consists of serially connected loops capable of parking arrays of drops. We define parking modes based on whether drops park without breakage or drop fragments are parked subsequent to breakage or drops park after coalescence. With both non-coalescing and coalescing drops, we map the occurrence of these parking modes in MPNs as a function of system parameters including drop volume, drop spacing and capillary number. We find that the non-coalescing drops can either park or break in the network, producing highly polydisperse arrays. We further show that parking due to collision induced droplet break-up is the main cause of polydispersity. We discover that collisions occur due to a crowding instability, which is a natural outcome of the network topology. In striking contrast, with coalescing drops we show that the ability of drops to coalesce rectifies the volume of parked polydisperse drops, despite drops breaking in the network. We find that several parking modes act in concert during this hydrodynamic self-rectification mechanism, producing highly monodisperse drop arrays over a wide operating parameter space. We demonstrate that the rectification mechanism can be harnessed to produce two-dimensional arrays of microfluidic drops with highly tunable surface-to-volume ratios, paving the way for fundamental investigations of interfacial phenomena in emulsions.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
53
|
Wen H, Yu Y, Zhu G, Jiang L, Qin J. A droplet microchip with substance exchange capability for the developmental study of C. elegans. LAB ON A CHIP 2015; 15:1905-11. [PMID: 25715864 DOI: 10.1039/c4lc01377h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) has been widely used as a multicellular organism in developmental research due to its simplicity, short lifecycle, and its relevance to human genetics and biology. Droplet microfluidics is an attractive platform for the study of C. elegans in integrated mode with flexibility at the single animal resolution. However, it is still challenging to conduct the developmental study of worms within droplets initiating at the L1 larval stage, due to the small size, active movement, and the difficulty in achieving effective substance exchange within the droplets. Here, we present a multifunctional droplet microchip to address these issues and demonstrate the usefulness of this device for investigating post-embryonic development in individual C. elegans initiating at the larval L1 stage. The key components of this device consist of multiple functional units that enable parallel worm loading, droplet formation/trapping, and worm encapsulation in parallel. In particular, it exhibits superior functions in encapsulating and trapping individual larval L1 worms into droplets in a controlled way. Continuous food addition and expulsion of waste by mixing the static worm-in-droplet with moving medium plugs allows for the long-term culture of worms under a variety of conditions. We used this device to investigate the development processes of C. elegans in transgenic strains with deletion and overexpression of the hypoxia-inducible factor (HIF-1), a highly conserved transcript factor in regulating an organism's response to hypoxia. This microdevice may be a useful tool for the high throughput analysis of individual worms starting at the larval stage, and facilitates the study of developmental worms in response to multiple drugs or environmental toxins.
Collapse
Affiliation(s)
- Hui Wen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | | | | | | | | |
Collapse
|
54
|
Chen J, Zhou G, Liu Y, Ye T, Xiang X, Ji X, He Z. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection. Talanta 2015; 134:271-277. [DOI: 10.1016/j.talanta.2014.11.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
|
55
|
Jeong HH, Jin SH, Lee BJ, Kim T, Lee CS. Microfluidic static droplet array for analyzing microbial communication on a population gradient. LAB ON A CHIP 2015; 15:889-899. [PMID: 25494004 DOI: 10.1039/c4lc01097c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Quorum sensing (QS) is a type of cell-cell communication using signal molecules that are released and detected by cells, which respond to changes in their population density. A few studies explain that QS may operate in a density-dependent manner; however, due to experimental challenges, this fundamental hypothesis has never been investigated. Here, we present a microfluidic static droplet array (SDA) that combines a droplet generator with hydrodynamic traps to independently generate a bacterial population gradient into a parallel series of droplets under complete chemical and physical isolation. The SDA independently manipulates both a chemical concentration gradient and a bacterial population density. In addition, the bacterial population gradient in the SDA can be tuned by a simple change in the number of sample plug loading. Finally, the method allows the direct analysis of complicated biological events in an addressable droplet to enable the characterization of bacterial communication in response to the ratio of two microbial populations, including two genetically engineered QS circuits, such as the signal sender for acyl-homoserine lactone (AHL) production and the signal receiver bacteria for green fluorescent protein (GFP) expression induced by AHL. For the first time, we found that the population ratio of the signal sender and receiver indicates a significant and potentially interesting partnership between microbial communities. Therefore, we envision that this simple SDA could be a useful platform in various research fields, including analytical chemistry, combinatorial chemistry, synthetic biology, microbiology, and molecular biology.
Collapse
Affiliation(s)
- Heon-Ho Jeong
- Department of Chemical Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea.
| | | | | | | | | |
Collapse
|
56
|
Brouzes E, Kruse T, Kimmerling R, Strey HH. Rapid and continuous magnetic separation in droplet microfluidic devices. LAB ON A CHIP 2015; 15:908-19. [PMID: 25501881 PMCID: PMC4323160 DOI: 10.1039/c4lc01327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | | | | | | |
Collapse
|
57
|
Taberner N, Lof A, Roth S, Lamers D, Zeijlemaker H, Dogterom M. In vitro systems for the study of microtubule-based cell polarity in fission yeast. Methods Cell Biol 2015; 128:1-22. [DOI: 10.1016/bs.mcb.2015.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
58
|
Wang WS, Vanapalli SA. Millifluidics as a simple tool to optimize droplet networks: Case study on drop traffic in a bifurcated loop. BIOMICROFLUIDICS 2014; 8:064111. [PMID: 25553188 PMCID: PMC4257966 DOI: 10.1063/1.4902910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 05/07/2023]
Abstract
We report that modular millifluidic networks are simpler, more cost-effective alternatives to traditional microfluidic networks, and they can be rapidly generated and altered to optimize designs. Droplet traffic can also be studied more conveniently and inexpensively at the millimeter scale, as droplets are readily visible to the naked eye. Bifurcated loops, ladder networks, and parking networks were made using only Tygon(®) tubing and plastic T-junction fittings and visualized using an iPod(®) camera. As a case study, droplet traffic experiments through a millifluidic bifurcated loop were conducted, and the periodicity of drop spacing at the outlet was mapped over a wide range of inlet drop spacing. We observed periodic, intermittent, and aperiodic behaviors depending on the inlet drop spacing. The experimentally observed periodic behaviors were in good agreement with numerical simulations based on the simple network model. Our experiments further identified three main sources of intermittency between different periodic and/or aperiodic behaviors: (1) simultaneous entering and exiting events, (2) channel defects, and (3) equal or nearly equal hydrodynamic resistances in both sides of the bifurcated loop. In cases of simultaneous events and/or channel defects, the range of input spacings where intermittent behaviors are observed depends on the degree of inherent variation in input spacing. Finally, using a time scale analysis of syringe pump fluctuations and experiment observation times, we find that in most cases, more consistent results can be generated in experiments conducted at the millimeter scale than those conducted at the micrometer scale. Thus, millifluidic networks offer a simple means to probe collective interactions due to drop traffic and optimize network geometry to engineer passive devices for biological and material analysis.
Collapse
Affiliation(s)
- William S Wang
- Department of Chemical Engineering , Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering , Texas Tech University , Lubbock, Texas 79409-3121, USA
| |
Collapse
|
59
|
Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis. Proc Natl Acad Sci U S A 2014; 111:11293-8. [PMID: 25053808 DOI: 10.1073/pnas.1404472111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.
Collapse
|
60
|
Bhattacharjee B, Vanapalli SA. Electrocoalescence based serial dilution of microfluidic droplets. BIOMICROFLUIDICS 2014; 8:044111. [PMID: 25379096 PMCID: PMC4189215 DOI: 10.1063/1.4891775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/21/2014] [Indexed: 05/19/2023]
Abstract
Dilution of microfluidic droplets where the concentration of a reagent is incrementally varied is a key operation in drop-based biological analysis. Here, we present an electrocoalescence based dilution scheme for droplets based on merging between moving and parked drops. We study the effects of fluidic and electrical parameters on the dilution process. Highly consistent coalescence and fine resolution in dilution factor are achieved with an AC signal as low as 10 V even though the electrodes are separated from the fluidic channel by insulator. We find that the amount of material exchange between the droplets per coalescence event is high for low capillary number. We also observe different types of coalescence depending on the flow and electrical parameters and discuss their influence on the rate of dilution. Overall, we find the key parameter governing the rate of dilution is the duration of coalescence between the moving and parked drop. The proposed design is simple incorporating the channel electrodes in the same layer as that of the fluidic channels. Our approach allows on-demand and controlled dilution of droplets and is simple enough to be useful for assays that require serial dilutions. The approach can also be useful for applications where there is a need to replace or wash fluid from stored drops.
Collapse
Affiliation(s)
- Biddut Bhattacharjee
- Department of Chemical Engineering, Texas Tech University, Lubbock , Texas 79409, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock , Texas 79409, USA
| |
Collapse
|
61
|
Bithi SS, Wang WS, Sun M, Blawzdziewicz J, Vanapalli SA. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics. BIOMICROFLUIDICS 2014; 8:034118. [PMID: 25379078 PMCID: PMC4162452 DOI: 10.1063/1.4885079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 05/06/2023]
Abstract
Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - William S Wang
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Meng Sun
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79401-1021, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| |
Collapse
|
62
|
Varshney A, Gohil S, Tadavani SK, Yethiraj A, Bhattacharya S, Ghosh S. Large scale arrays of tunable microlenses. LAB ON A CHIP 2014; 14:1330-1335. [PMID: 24519377 DOI: 10.1039/c3lc51170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate a simple and robust method to produce large 2-dimensional and quasi-3-dimensional arrays of tunable liquid microlenses using a time varying external electric field as the only control parameter. With increasing frequency, the shape of the individual lensing elements (~40 μm in diameter) evolves from an oblate (lentil shaped) to a prolate (egg shaped) spheroid, thereby making the focal length a tunable quantity. Moreover, such microlenses can be spatially localized in desired configurations by patterning the electrode. This system has the advantage that it provides a large dynamic range of shape deformation (with a response time of ~30 ms for the whole range of deformation), which is useful in designing adaptive optics.
Collapse
Affiliation(s)
- Atul Varshney
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400-005, India.
| | | | | | | | | | | |
Collapse
|
63
|
Jeong HH, Noh YM, Jang SC, Lee CS. Droplet-based Microfluidic Device for High-throughput Screening. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.2.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
64
|
de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F. Electrostatic potential wells for on-demand drop manipulation in microchannels. LAB ON A CHIP 2014; 14:883-91. [PMID: 24394887 DOI: 10.1039/c3lc51121a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Precise control and manipulation of individual drops are crucial in many lab-on-a-chip applications. We present a novel hybrid concept for channel-based discrete microfluidics with integrated electrowetting functionality by incorporating co-planar electrodes (separated by a narrow gap) in one of the microchannel walls. By combining the high throughput of channel-based microfluidics with the individual drop control achieved using electrical actuation, we acquire the strengths of both worlds. The tunable strength of the electrostatic forces enables a wide range of drop manipulations, such as on-demand trapping and release, guiding, and sorting of drops in the microchannel. In each of these scenarios, the retaining electrostatic force competes with the hydrodynamic drag force. The conditions for trapping can be predicted using a simple model that balances these forces.
Collapse
Affiliation(s)
- Riëlle de Ruiter
- Physics of Complex Fluids and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
65
|
Khorshidi MA, Rajeswari PKP, Wählby C, Joensson HN, Andersson Svahn H. Automated analysis of dynamic behavior of single cells in picoliter droplets. LAB ON A CHIP 2014; 14:931-7. [PMID: 24385254 DOI: 10.1039/c3lc51136g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a droplet-based microfluidic platform to automatically track and characterize the behavior of single cells over time. This high-throughput assay allows encapsulation of single cells in micro-droplets and traps intact droplets in arrays of miniature wells on a PDMS-glass chip. Automated time-lapse fluorescence imaging and image analysis of the incubated droplets on the chip allows the determination of the viability of individual cells over time. In order to automatically track the droplets containing cells, we developed a simple method based on circular Hough transform to identify droplets in images and quantify the number of live and dead cells in each droplet. Here, we studied the viability of several hundred single isolated HEK293T cells over time and demonstrated a high survival rate of the encapsulated cells for up to 11 hours. The presented platform has a wide range of potential applications for single cell analysis, e.g. monitoring heterogeneity of drug action over time and rapidly assessing the transient behavior of single cells under various conditions and treatments in vitro.
Collapse
Affiliation(s)
- Mohammad Ali Khorshidi
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH - Royal Institute of Technology, Sweden.
| | | | | | | | | |
Collapse
|
66
|
Lee M, Collins JW, Aubrecht DM, Sperling RA, Solomon L, Ha JW, Yi GR, Weitz DA, Manoharan VN. Synchronized reinjection and coalescence of droplets in microfluidics. LAB ON A CHIP 2014; 14:509-513. [PMID: 24292863 DOI: 10.1039/c3lc51214b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Coalescence of two kinds of pre-processed droplets is necessary to perform chemical and biological assays in droplet-based microfluidics. However, a robust technique to accomplish this does not exist. Here we present a microfluidic device to synchronize the reinjection of two different kinds of droplets and coalesce them, using hydrostatic pressure in conjunction with a conventional syringe pump. We use a device consisting of two opposing T-junctions for reinjecting two kinds of droplets and control the flows of the droplets by applying gravity-driven hydrostatic pressure. The hydrostatic-pressure operation facilitates balancing the droplet reinjection rates and allows us to synchronize the reinjection. Furthermore, we present a simple but robust module to coalesce two droplets that sequentially come into the module, regardless of their arrival times. These re-injection and coalescence techniques might be used in lab-on-chip applications requiring droplets with controlled numbers of solid materials, which can be made by coalescing two pre-processed droplets that are formed and sorted in devices.
Collapse
Affiliation(s)
- Manhee Lee
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Brouzes E, Carniol A, Bakowski T, Strey HH. Precise pooling and dispensing of microfluidic droplets towards micro- to macro-world interfacing. RSC Adv 2014; 4:38542-38550. [PMID: 25485102 DOI: 10.1039/c4ra07110g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Droplet microfluidics possesses unique properties such as the ability to carry out multiple independent reactions without dispersion of samples in microchannels. We seek to extend the use of droplet microfluidics to a new range of applications by enabling its integration into workflows based on traditional technologies, such as microtiter plates. Our strategy consists in developing a novel method to manipulate, pool and deliver a precise number of microfluidic droplets. To this aim, we present a basic module that combines droplet trapping with an on-chip valve. We quantitatively analyzed the trapping efficiency of the basic module in order to optimize its design. We also demonstrate the integration of the basic module into a multiplex device that can deliver 8 droplets at every cycle. This device will have a great impact in low throughput droplet applications that necessitate interfacing with macroscale technologies. The micro- to macro- interface is particularly critical in microfluidic applications that aim at sample preparation and has not been rigorously addressed in this context.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - April Carniol
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - Tomasz Bakowski
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| | - Helmut H Strey
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281
| |
Collapse
|
68
|
|
69
|
Maddala J, Rengaswamy R. Design of multi-functional microfluidic ladder networks to passively control droplet spacing using genetic algorithms. Comput Chem Eng 2014. [DOI: 10.1016/j.compchemeng.2013.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
70
|
Sun M, Vanapalli SA. Generation of Chemical Concentration Gradients in Mobile Droplet Arrays via Fragmentation of Long Immiscible Diluting Plugs. Anal Chem 2013; 85:2044-8. [DOI: 10.1021/ac303526y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Meng Sun
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
71
|
Livak-Dahl E, Lee J, Burns MA. Nanoliter droplet viscometer with additive-free operation. LAB ON A CHIP 2013. [PMID: 23192296 DOI: 10.1039/c2lc41130j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Measurement of a solution's viscosity is an important analytic technique for a variety of applications including medical diagnosis, pharmaceutical development, and industrial processing. The use of droplet-based (e.g., water-in-oil) microfluidics for viscosity measurements allows nanoliter-scale sample volumes to be used, much smaller than those either in standard macro-scale rheometers or in single-phase microfluidic viscometers. By observing the flow rate of a sample plug driven by a controlled pressure through an abrupt constriction, we achieve accurate and precise measurement of the plug viscosity without addition of labels or tracer particles. Sample plugs in our device geometry had a volume of ~30 nL, and measurements had an average error of 6.6% with an average relative standard deviation of 2.8%. We tested glycerol-based samples with viscosities as high as 101 mPa s, with the only limitation on samples being that their viscosity should be higher than that of the continuous oil phase.
Collapse
Affiliation(s)
- Eric Livak-Dahl
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
72
|
Joensson HN, Andersson Svahn H. Tröpfchen-Mikrofluidik für die Einzelzellanalyse. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200460] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
73
|
Joensson HN, Andersson Svahn H. Droplet Microfluidics-A Tool for Single-Cell Analysis. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201200460] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
74
|
Droplet Microfluidic Technology: Mirodroplets Formation and Manipulation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60567-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
Ota S, Kitagawa H, Takeuchi S. Generation of Femtoliter Reactor Arrays within a Microfluidic Channel for Biochemical Analysis. Anal Chem 2012; 84:6346-50. [DOI: 10.1021/ac301204v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sadao Ota
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
| | - Hiroaki Kitagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo,
153-8505, Japan
- Exploratory Research for Advanced Technology (ERATO), 4-6-1, Komaba, Meguro-ku,
Tokyo 153-8505, Japan
- Japan Science and Technology Agency (JST), 4-6-1, Komaba, Meguro-ku, Tokyo
153-8505, Japan
| |
Collapse
|
76
|
Dewan A, Kim J, McLean RH, Vanapalli SA, Karim MN. Growth kinetics of microalgae in microfluidic static droplet arrays. Biotechnol Bioeng 2012; 109:2987-96. [PMID: 22711504 DOI: 10.1002/bit.24568] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/24/2012] [Accepted: 05/18/2012] [Indexed: 01/21/2023]
Abstract
We investigated growth kinetics of microalgae, Chlorella vulgaris, in immobilized arrays of nanoliter-scale microfluidic drops. These static drop arrays enabled simultaneous monitoring of growth of single as well as multiple cells encapsulated in individual droplets. To monitor the growth, individual drop volumes were kept nearly intact for more than a month by controlling the permeation of water in and out of the microfluidic device. The kinetic growth parameters were quantified by counting the increase in the number of cells in each drop over time. In addition to determining the kinetic parameters, the cell-size distribution of the microalgae was correlated with different stages of the growth. The single-cell growth kinetics of C. vulgaris showed significant heterogeneity. The specific growth rate ranged from 0.55 to 1.52 day(-1) for different single cells grown in the same microfluidic device. In comparison, the specific growth rate in bulk-scale experiment was 1.12 day(-1). It was found that the average cell size changes significantly at different stages of the cell growth. The mean cell-size increased from 5.99 ± 1.08 to 7.33 ± 1.3 µm from exponential to stationary growth phase. In particular, when multiple cells are grown in individual drops, we find that in the stationary growth phase, the cell size increases with the age of cell suggesting enhanced accumulation of fatty acids in older cells.
Collapse
Affiliation(s)
- Alim Dewan
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | | | |
Collapse
|
77
|
Zhu Z, Jenkins G, Zhang W, Zhang M, Guan Z, Yang CJ. Single-molecule emulsion PCR in microfluidic droplets. Anal Bioanal Chem 2012; 403:2127-43. [PMID: 22451171 DOI: 10.1007/s00216-012-5914-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 11/29/2022]
Abstract
The application of microfluidic droplet PCR for single-molecule amplification and analysis has recently been extensively studied. Microfluidic droplet technology has the advantages of compartmentalizing reactions into discrete volumes, performing highly parallel reactions in monodisperse droplets, reducing cross-contamination between droplets, eliminating PCR bias and nonspecific amplification, as well as enabling fast amplification with rapid thermocycling. Here, we have reviewed the important technical breakthroughs of microfluidic droplet PCR in the past five years and their applications to single-molecule amplification and analysis, such as high-throughput screening, next generation DNA sequencing, and quantitative detection of rare mutations. Although the utilization of microfluidic droplet single-molecule PCR is still in the early stages, its great potential has already been demonstrated and will provide novel solutions to today's biomedical engineering challenges in single-molecule amplification and analysis.
Collapse
Affiliation(s)
- Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | | | | | | | | |
Collapse
|
78
|
Simon MG, Lin R, Fisher JS, Lee AP. A Laplace pressure based microfluidic trap for passive droplet trapping and controlled release. BIOMICROFLUIDICS 2012; 6:14110-1411013. [PMID: 22662095 PMCID: PMC3365347 DOI: 10.1063/1.3687400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/02/2012] [Indexed: 05/10/2023]
Abstract
Here, we present a microfluidic droplet trap that takes advantage of the net Laplace pressure force generated when a droplet is differentially constricted. Mathematical simulations were first used to understand the working range of the component; followed by finite element modeling using the CFD software package to further characterize the behavior of the system. Controlled release of the trapped droplets is also demonstrated through both a mechanical method and a chemical method that manipulates the total pressure exerted on the trapped droplet. The unique design of this trapping device also provides the capability for selection of a single droplet from a train, as well as droplet fusion.
Collapse
Affiliation(s)
- Melinda G Simon
- Department of Biomedical Engineering, University of California, Irvine, 3201 Natural Sciences II, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
79
|
Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks using electric circuit analogy. LAB ON A CHIP 2012; 12:515-45. [PMID: 22179505 DOI: 10.1039/c2lc20799k] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
Collapse
Affiliation(s)
- Kwang W Oh
- SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, University at Buffalo, The State University of New York at Buffalo (SUNY-Buffalo), New York 14260, USA.
| | | | | | | |
Collapse
|
80
|
Fradet E, McDougall C, Abbyad P, Dangla R, McGloin D, Baroud CN. Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays. LAB ON A CHIP 2011; 11:4228-34. [PMID: 22045291 DOI: 10.1039/c1lc20541b] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the combination of a rails and anchors microfluidic system with laser forcing to enable the creation of highly controllable 2D droplet arrays. Water droplets residing in an oil phase can be pinned to anchor holes made in the base of a microfluidic channel, enabling the creation of arrays by the appropriate patterning of such holes. The introduction of laser forcing, via laser induced thermocapillary forces to anchored droplets, enables the selective extraction of particular droplets from an array. We also demonstrate that such anchor arrays can be filled with multiple, in our case two, droplets each and that if such droplets have different chemical contents, the application of a laser at their interface triggers their merging and a chemical reaction to take place. Finally by adding guiding rails within the microfluidic structure we can selectively fill large scale arrays with monodisperse droplets with significant control over their contents. In this way we make a droplet array filled with 96 droplets containing different concentrations of fluorescent microparticles.
Collapse
Affiliation(s)
- Etienne Fradet
- Laboratoire d'Hydrodynamique (LadHyX) and Department of Mechanics, Ecole Polytechnique, CNRS, 91128, Palaiseau, France
| | | | | | | | | | | |
Collapse
|
81
|
Sun M, Bithi SS, Vanapalli SA. Microfluidic static droplet arrays with tuneable gradients in material composition. LAB ON A CHIP 2011; 11:3949-52. [PMID: 21993897 DOI: 10.1039/c1lc20709a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe a one-step passive strategy to create concentration gradients in static droplet arrays. The technique exploits controlled exchange of materials between moving plugs and stationary drops. The concentration of soluble reagents can be varied from drop-to-drop in the presence of other soluble reagents or insoluble materials (e.g. cells) at well-defined time points.
Collapse
Affiliation(s)
- Meng Sun
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA
| | | | | |
Collapse
|
82
|
Glawdel T, Elbuken C, Ren C. Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries. LAB ON A CHIP 2011; 11:3774-84. [PMID: 21947226 DOI: 10.1039/c1lc20628a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
When droplets enter a junction they sort to the channel with the highest flow rate at that instant. Transport is regulated by a discrete time-delayed feedback that results in a highly periodic behavior where specific patterns can continue to cycle indefinitely. Between these highly ordered regimes are chaotic structures where no pattern is evident. Here we develop a model that describes droplet sorting under various asymmetries: branch geometry (length, cross-section), droplet resistance and pressures. First, a model is developed based on the continuum assumption and then, with the assistance of numerical simulations, a discrete model is derived to predict the length and composition of the sorting pattern. Furthermore we derive all unique sequences that are possible for a given distribution and develop a preliminary estimation of why chaotic regimes form. The model is validated by comparing it to numerical simulations and results from microfluidic experiments in PDMS chips with good agreement.
Collapse
Affiliation(s)
- Tomasz Glawdel
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
83
|
Design of a model-based feedback controller for active sorting and synchronization of droplets in a microfluidic loop. AIChE J 2011. [DOI: 10.1002/aic.12740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
Collier CP, Simpson ML. Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 2011; 22:516-26. [PMID: 21636262 DOI: 10.1016/j.copbio.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022]
Abstract
A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints.
Collapse
Affiliation(s)
- C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
85
|
Pompano RR, Liu W, Du W, Ismagilov RF. Microfluidics using spatially defined arrays of droplets in one, two, and three dimensions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:59-81. [PMID: 21370983 DOI: 10.1146/annurev.anchem.012809.102303] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatially defined arrays of droplets differ from bulk emulsions in that droplets in arrays can be indexed on the basis of one or more spatial variables to enable identification, monitoring, and addressability of individual droplets. Spatial indexing is critical in experiments with hundreds to millions of unique compartmentalized microscale processes--for example, in applications such as digital measurements of rare events in a large sample, high-throughput time-lapse studies of the contents of individual droplets, and controlled droplet-droplet interactions. This review describes approaches for spatially organizing and manipulating droplets in one-, two-, and three-dimensional structured arrays, including aspiration, laminar flow, droplet traps, the SlipChip, self-assembly, and optical or electrical fields. This review also presents techniques to analyze droplets in arrays and applications of spatially defined arrays, including time-lapse studies of chemical, enzymatic, and cellular processes, as well as further opportunities in chemical, biological, and engineering sciences, including perturbation/response experiments and personal and point-of-care diagnostics.
Collapse
Affiliation(s)
- Rebecca R Pompano
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
86
|
Casadevall i Solvas X, deMello A. Droplet microfluidics: recent developments and future applications. Chem Commun (Camb) 2011; 47:1936-42. [DOI: 10.1039/c0cc02474k] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
87
|
Zagnoni M, Cooper JM. Droplet microfluidics for high-throughput analysis of cells and particles. Methods Cell Biol 2011; 102:25-48. [PMID: 21704834 DOI: 10.1016/b978-0-12-374912-3.00002-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Droplet microfluidics (DM) is an area of research which combines lab-on-a-chip (LOC) techniques with emulsion compartmentalization to perform high-throughput, chemical and biological assays. The key issue of this approach lies in the generation, over tens of milliseconds, of thousands of liquid vessels which can be used either as a carrier, to transport encapsulated particles and cells, or as microreactors, to perform parallel analysis of a vast number of samples. Each compartment comprises a liquid droplet containing the sample, surrounded by an immiscible fluid. This microfluidic technique is capable of generating subnanoliter and highly monodispersed liquid droplets, which offer many opportunities for developing novel single-cell and single-molecule studies, as well as high-throughput methodologies for the detection and sorting of encapsulated species in droplets. The aim of this chapter is to give an overview of the features of DM in a broad microfluidic context, as well as to show the advantages and limitations of the technology in the field of LOC analytical research. Examples are reported and discussed to show how DM can provide novel systems with applications in high-throughput, quantitative cell and particle analysis.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW, UK.
| | | |
Collapse
|
88
|
Bithi SS, Vanapalli SA. Behavior of a train of droplets in a fluidic network with hydrodynamic traps. BIOMICROFLUIDICS 2010; 4:44110. [PMID: 21264057 PMCID: PMC3025453 DOI: 10.1063/1.3523053] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/28/2010] [Indexed: 05/10/2023]
Abstract
The behavior of a droplet train in a microfluidic network with hydrodynamic traps in which the hydrodynamic resistive properties of the network are varied is investigated. The flow resistance of the network and the individual droplets guide the movement of droplets in the network. In general, the flow behavior transitions from the droplets being immobilized in the hydrodynamic traps at low flow rates to breaking up and squeezing of the droplets at higher flow rates. A state diagram characterizing these dynamics is presented. A simple hydrodynamic circuit model that treats droplets as fluidic resistors is discussed, which predicts the experimentally observed flow rates for droplet trapping in the network. This study should enable the rational design of microfuidic devices for passive storage of nanoliter-scale drops.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | | |
Collapse
|
89
|
Srisa-Art M, deMello AJ, Edel JB. High-Efficiency Single-Molecule Detection within Trapped Aqueous Microdroplets. J Phys Chem B 2010; 114:15766-72. [DOI: 10.1021/jp105749t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monpichar Srisa-Art
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand, and Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Andrew J. deMello
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand, and Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Joshua B. Edel
- Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand, and Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
90
|
Jung SY, Retterer ST, Collier CP. On-demand generation of monodisperse femtolitre droplets by shape-induced shear. LAB ON A CHIP 2010; 10:2688-94. [PMID: 20721397 DOI: 10.1039/c0lc00120a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We describe a method for creating discrete femtolitre-scale water-in-oil droplets on demand, based solely on a geometrically induced reduction in oil/water interfacial area at microfabricated junction orifices. This on-demand generation method is driven by self-shear of droplets due to interfacial tension induced forces resulting from a localized transition in microchannel height. The magnitudes of shear stresses involved appear to be significantly less than the shearing instabilities used to split off daughter droplets from aqueous mother plugs at microfabricated junctions in continuous water-in-oil segmented flows, which implies that this method may be better suited for studying biochemical reactions and reaction kinetics in droplets of decreased volume without loss of chemical reactivity due to redistribution of surfactant density used to passivate the oil/water interface. Predictable droplet generation rates under constant pressure conditions or the gated formation of one, two or more droplets at a time with fixed pressure pulses have been demonstrated in a similar manner to active on-demand droplet generation strategies, but with a simpler system not needing actuation and sensing equipment beyond a pressure regulator.
Collapse
Affiliation(s)
- Seung-Yong Jung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, P.O. Box 2008, MS-6493, Oak Ridge, Tennessee 37831, USA
| | | | | |
Collapse
|
91
|
Affiliation(s)
- Dario Lombardi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | - Petra S Dittrich
- Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
92
|
Sgro AE, Chiu DT. Droplet freezing, docking, and the exchange of immiscible phase and surfactant around frozen droplets. LAB ON A CHIP 2010; 10:1873-7. [PMID: 20467690 PMCID: PMC5600195 DOI: 10.1039/c001108h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper describes a platform for cooling microfluidic chips so as to freeze aqueous droplets flowing in oil. Using a whole-chip cooling chamber, we can control the ambient temperature surrounding a microfluidic chip and induce cooling and freezing inside the channels. When combined with a droplet generation and droplet docking chip, this platform allows for the facile freezing of droplets immobilized in resistance-based docks. Depending on the design and shape of the docks, the frozen droplets can either be trapped stably in the docks or be released because deformed non-frozen aqueous droplets turn spherical when frozen, and thus can become dislodged from the docks. Additionally, using this chamber and chip combination we are able to exchange immiscible phases and surfactants surrounding the frozen droplets. The materials and methods are inexpensive and easily accessible to microfluidics researchers, making this a simple addition to an existing microfluidic platform.
Collapse
Affiliation(s)
- Allyson E Sgro
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
93
|
Selva B, Miralles V, Cantat I, Jullien MC. Thermocapillary actuation by optimized resistor pattern: bubbles and droplets displacing, switching and trapping. LAB ON A CHIP 2010; 10:1835-1840. [PMID: 20445893 DOI: 10.1039/c001900c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report a novel method for bubble or droplet displacement, capture and switching within a bifurcation channel for applications in digital microfluidics based on the Marangoni effect, i.e. the appearance of thermocapillary tangential interface stresses stemming from local surface tension variations. The specificity of the reported actuation is that heating is provided by an optimized resistor pattern (B. Selva, J. Marchalot and M.-C. Jullien, An optimized resistor pattern for temperature gradient control in microfluidics, J. Micromech. Microeng., 2009, 19, 065002) leading to a constant temperature gradient along a microfluidic cavity. In this context, bubbles or droplets to be actuated entail a surface force originating from the thermal Marangoni effect. This actuator has been characterized (B. Selva, I. Cantat, and M.-C. Jullien, Migration of a bubble towards a higher surface tension under the effect of thermocapillary stress, preprint, 2009) and it was found that the bubble/droplet (called further element) is driven toward a high surface tension region, i.e. toward cold region, and the element velocity increases while decreasing the cavity thickness. Taking advantage of these properties three applications are presented: (1) element displacement, (2) element switching, detailed in a given range of working, in which elements are redirected towards a specific evacuation, (3) a system able to trap, and consequently stop on demand, the elements on an alveolus structure while the continuous phase is still flowing. The strength of this method lies in its simplicity: single layer system, in situ heating leading to a high level of integration, low power consumption (P < 0.4 W), low applied voltage (about 10 V), and finally this system is able to manipulate elements within a flow velocity up to 1 cm s(-1).
Collapse
Affiliation(s)
- Bertrand Selva
- SATIE, ENS-Cachan Bretagne, CNRS, UEB, av Robert Schuman, F-35170 Bruz, France.
| | | | | | | |
Collapse
|
94
|
Abstract
This paper describes a very simple and robust microfluidic device for digitizing samples into an array of discrete volumes. The device is based on an inherent fluidic phenomenon, where an incoming aqueous sample divides itself into an array of chambers that have been primed with an immiscible phase. Self-digitization of sample volumes results from the interplay between fluidic forces, interfacial tension, channel geometry, and the final stability of the digitized samples in the chambers. Here, we describe experiments and simulations that were used to characterize these parameters and the conditions under which the self-digitization process occurred. Unlike existing methods used to partition samples into an array, our method is able to digitize 100% of a sample into a localized array without any loss of sample volume. The final volume of the discretized sample at each location is defined by the geometry and size of each chamber. Thus, we can form an array of samples with varying but predefined volumes. We exploited this feature to separate the crystal growth of otherwise concomitant polymorphs from a single solution. Additionally, we demonstrated the removal of the digitized samples from the chambers for downstream analysis, as well as the addition of reagents to the digitized samples. We believe this simple method will be useful in a broad range of applications where a large array of discretized samples is required, including digital PCR, single-cell analysis, and cell-based drug screening.
Collapse
Affiliation(s)
- Dawn E. Cohen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Thomas Schneider
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Michelle Wang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| |
Collapse
|
95
|
Theberge A, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew Chem Int Ed Engl 2010; 49:5846-68. [DOI: 10.1002/anie.200906653] [Citation(s) in RCA: 833] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
96
|
Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. Latest Developments in Micro Total Analysis Systems. Anal Chem 2010; 82:4830-47. [PMID: 20462185 DOI: 10.1021/ac100969k] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arun Arora
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Giuseppina Simone
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Georgette B. Salieb-Beugelaar
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Jung Tae Kim
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| | - Andreas Manz
- KIST Europe, Korea Institute of Science and Technology, Campus E71, 66123 Saarbrücken, Germany, FRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstrasse 19, 79104 Freiburg, Germany, IMTEK, Institute for Microsystem Technology, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany, and MESA+ Institute for Nanotechnology/Lab-on-a-Chip Group, Twente University, Building Carré, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
97
|
Zhang Q, Zeng S, Qin J, Lin B. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction. Electrophoresis 2009; 30:3181-8. [DOI: 10.1002/elps.200900331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
98
|
Cubaud T. Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:026307. [PMID: 19792249 DOI: 10.1103/physreve.80.026307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/23/2009] [Indexed: 05/28/2023]
Abstract
The dynamic response of highly viscous droplets to a sharp increase in the surrounding liquid velocity is experimentally investigated in a square microchannel junction. The local injection of the continuous phase from symmetric side channels onto a train of droplets produces a large velocity contrast between the front and the rear of droplets, yielding a broad range of time-dependent deformation and breakup. In particular, due to microscale confinement, the system displays a nonlinear behavior with the initial droplet size. Deformations, relaxation times, and fragmentation processes are examined as a function of flow parameters and fluids properties with emphasis on the formation of slender viscous structures such as spoon-shaped droplets, i.e., asymmetrical droplets.
Collapse
Affiliation(s)
- Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
99
|
Zeng S, Li B, Su X, Qin J, Lin B. Microvalve-actuated precise control of individual droplets in microfluidic devices. LAB ON A CHIP 2009; 9:1340-3. [PMID: 19417898 DOI: 10.1039/b821803j] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Integrated microvalves have been used to precisely and flexibly control the generation, size, composition of individual droplets and fusion of different droplets in microfluidic devices.
Collapse
Affiliation(s)
- Shaojiang Zeng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, China
| | | | | | | | | |
Collapse
|