51
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
52
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
53
|
Propensity for super energy transfer as a function of collision energy for the H + C2H2 system. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
54
|
Westermayr J, Gastegger M, Schütt KT, Maurer RJ. Perspective on integrating machine learning into computational chemistry and materials science. J Chem Phys 2021; 154:230903. [PMID: 34241249 DOI: 10.1063/5.0047760] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties-be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.
Collapse
Affiliation(s)
- Julia Westermayr
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michael Gastegger
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
| | - Kristof T Schütt
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
55
|
Abstract
Machine learning (ML) techniques applied to chemical reactions have a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to computational platforms for reaction planning. ML-based techniques can be particularly relevant for problems involving both computation and experiments. For one, Bayesian inference is a powerful approach to develop models consistent with knowledge from experiments. Second, ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques, and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, in both research and academic teaching.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
56
|
Qu C, Houston PL, Conte R, Nandi A, Bowman JM. Breaking the Coupled Cluster Barrier for Machine-Learned Potentials of Large Molecules: The Case of 15-Atom Acetylacetone. J Phys Chem Lett 2021; 12:4902-4909. [PMID: 34006096 PMCID: PMC8279733 DOI: 10.1021/acs.jpclett.1c01142] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Machine-learned potential energy surfaces (PESs) for molecules with more than 10 atoms are typically forced to use lower-level electronic structure methods such as density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). While these are efficient and realistic, they fall short of the accuracy of the "gold standard" coupled-cluster method, especially with respect to reaction and isomerization barriers. We report a major step forward in applying a Δ-machine learning method to the challenging case of acetylacetone, whose MP2 barrier height for H-atom transfer is low by roughly 1.1 kcal/mol relative to the benchmark CCSD(T) barrier of 3.2 kcal/mol. From a database of 2151 local CCSD(T) energies and training with as few as 430 energies, we obtain a new PES with a barrier of 3.5 kcal/mol in agreement with the LCCSD(T) barrier of 3.5 kcal/mol and close to the benchmark value. Tunneling splittings due to H-atom transfer are calculated using this new PES, providing improved estimates over previous ones obtained using an MP2-based PES.
Collapse
Affiliation(s)
- Chen Qu
- Department
of Chemistry & Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Paul L. Houston
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Department
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Riccardo Conte
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Apurba Nandi
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
57
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
58
|
Sharipov AS, Loukhovitski BI. Energy disposal into the vibrational degrees of freedom of bimolecular reaction products: Key factors and simple model. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
59
|
Papp D, Czakó G. Facilitated inversion complicates the stereodynamics of an S N2 reaction at nitrogen center. Chem Sci 2021; 12:5410-5418. [PMID: 34168784 PMCID: PMC8179618 DOI: 10.1039/d1sc00490e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bimolecular nucleophilic substitution (SN2) reactions at carbon center are well known to proceed with the stereospecific Walden-inversion mechanism. Reaction dynamics simulations on a newly developed high-level ab initio analytical potential energy surface for the F− + NH2Cl nitrogen-centered SN2 and proton-transfer reactions reveal a hydrogen-bond-formation-induced multiple-inversion mechanism undermining the stereospecificity of the N-centered SN2 channel. Unlike the analogous F− + CH3Cl SN2 reaction, F− + NH2Cl → Cl− + NH2F is indirect, producing a significant amount of NH2F with retention, as well as inverted NH2Cl during the timescale within the unperturbed NH2Cl molecule gets inverted with only low probability, showing the important role of facilitated inversions via an FH…NHCl−-like transition state. Proton transfer leading to HF + NHCl− is more direct and becomes the dominant product channel at higher collision energies. Multiple-inversion, the analogue of the double-inversion pathway recently revealed for SN2@C, is the key mechanism in SN2 at N center undermining stereospecificity.![]()
Collapse
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
60
|
Yin Z, Braams BJ, Fu B, Zhang DH. Neural Network Representation of Three-State Quasidiabatic Hamiltonians Based on the Transformation Properties from a Valence Bond Model: Three Singlet States of H3+. J Chem Theory Comput 2021; 17:1678-1690. [DOI: 10.1021/acs.jctc.0c01336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengxi Yin
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bastiaan J. Braams
- Centrum Wiskunde & Informatica (CWI), the Dutch National Center for Mathematics and Computer Science, 1098 XG Amsterdam, Netherlands
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
61
|
Bowen KP, Hillenbrand PM, Liévin J, Savin DW, Urbain X. Dynamics of the isotope exchange reaction of D with H 3 +, H 2D +, and D 2H . J Chem Phys 2021; 154:084307. [PMID: 33639774 DOI: 10.1063/5.0038434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have measured the merged-beams rate coefficient for the titular isotope exchange reactions as a function of the relative collision energy in the range of ∼3 meV-10 eV. The results appear to scale with the number of available sites for deuteration. We have performed extensive theoretical calculations to characterize the zero-point energy corrected reaction path. Vibrationally adiabatic minimum energy paths were obtained using a combination of unrestricted quadratic configuration interaction of single and double excitations and internally contracted multireference configuration interaction calculations. The resulting barrier height, ranging from 68 meV to 89 meV, together with the various asymptotes that may be reached in the collision, was used in a classical over-the-barrier model. All competing endoergic reaction channels were taken into account using a flux reduction factor. This model reproduces all three experimental sets quite satisfactorily. In order to generate thermal rate coefficients down to 10 K, the internal excitation energy distribution of each H3 + isotopologue is evaluated level by level using available line lists and accurate spectroscopic parameters. Tunneling is accounted for by a direct inclusion of the exact quantum tunneling probability in the evaluation of the cross section. We derive a thermal rate coefficient of <1×10-12 cm3 s-1 for temperatures below 44 K, 86 K, and 139 K for the reaction of D with H3 +, H2D+, and D2H+, respectively, with tunneling effects included. The derived thermal rate coefficients exceed the ring polymer molecular dynamics prediction of Bulut et al. [J. Phys. Chem. A 123, 8766 (2019)] at all temperatures.
Collapse
Affiliation(s)
- K P Bowen
- Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA
| | - P-M Hillenbrand
- Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA
| | - J Liévin
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - D W Savin
- Columbia Astrophysics Laboratory, Columbia University, New York, New York 10027, USA
| | - X Urbain
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
62
|
Nandi A, Qu C, Houston PL, Conte R, Bowman JM. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J Chem Phys 2021; 154:051102. [DOI: 10.1063/5.0038301] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chen Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Paul L. Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA and Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
63
|
Fu YL, Lu X, Han YC, Fu B, Zhang DH. Supercollisions of fast H-atom with ethylene on an accurate full-dimensional potential energy surface. J Chem Phys 2021; 154:024302. [PMID: 33445911 DOI: 10.1063/5.0033682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The collisions transferring large portions of energy are often called supercollisions. In the H + C2H2 reactive system, the rovibrationally cold C2H2 molecule can be activated with substantial internal excitations by its collision with a translationally hot H atom. It is interesting to investigate the mechanisms of collisional energy transfer in other important reactions of H with hydrocarbons. Here, an accurate, global, full-dimensional potential energy surface (PES) of H + C2H4 was constructed by the fundamental invariant neural network fitting based on roughly 100 000 UCCSD(T)-F12a/aug-cc-pVTZ data points. Extensive quasi-classical trajectory calculations were carried out on the full-dimensional PES to investigate the energy transfer process in collisions of the translationally hot H atoms with C2H4 in a wide range of collision energies. The computed function of the energy-transfer probability is not a simple exponential decay function but exhibits large magnitudes in the region of a large amount of energy transfer, indicating the signature of supercollisions. The supercollisions among non-complex-forming nonreactive (prompt) trajectories are frustrated complex-forming processes in which the incoming H atom penetrates into C2H4 with a small C-H distance but promptly and directly leaves C2H4. The complex-forming supercollisions, in which either the attacking H atom leaves (complex-forming nonreactive collisions) or one of the original H atoms of C2H4 leaves (complex-forming reactive trajectories), dominate large energy transfer from the translational energy to internal excitation of molecule. The current work sheds valuable light on the energy transfer of this important reaction in the combustion and may motivate related experimental investigations.
Collapse
Affiliation(s)
- Yan-Lin Fu
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Chang Han
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
64
|
Qu C, Conte R, Houston PL, Bowman JM. Full-dimensional potential energy surface for acetylacetone and tunneling splittings. Phys Chem Chem Phys 2021; 23:7758-7767. [DOI: 10.1039/d0cp04221h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New, full-dimensional potential energy surface for acetylacetone allows for description of H-tunneling dynamics and characterization of stationary points.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry & Biochemistry
- University of Maryland
- College Park
- USA
| | - Riccardo Conte
- Dipartimento di Chimica
- Università Degli Studi di Milano
- 20133 Milano
- Italy
| | - Paul L. Houston
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca
- USA
- Department of Chemistry and Biochemistry
| | - Joel M. Bowman
- Cherry L. Emerson Center for Scientific Computations and Department of Chemistry
- Atlanta
- USA
| |
Collapse
|
65
|
Valentini P, Grover MS, Josyula E. Constructing feed-forward artificial neural networks to fit potential energy surfaces for molecular simulation of high-temperature gas flows. Phys Rev E 2020; 102:053302. [PMID: 33327180 DOI: 10.1103/physreve.102.053302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 11/07/2022]
Abstract
Kinetic rates for thermochemical nonequilibrium models are generally computed from quasiclassical trajectory (QCT) calculations on accurate ab initio potential energy surfaces (PES). In this article, we use a feed-forward artificial neural network (ANN) to fit existing single-point energies for N_{2}+N_{2} interactions [Bender et al., J. Chem. Phys. 143, 054304 (2015)JCPSA60021-960610.1063/1.4927571] to construct a PES suitable for molecular simulation of high-temperature gas flows. We then perform detailed comparisons with a widely used N_{4} PES that was built using the permutation invariant polynomials (PIP) method. Specific physical considerations in the construction of the ANN for this application are detailed. Translation, rotation, and permutation invariance are precisely satisfied by mapping the interatomic distances onto a set of permutation invariant inputs, known as fundamental invariants (FI) that generate the permutation invariant polynomial ring. The diatomic energy is imposed by decomposing the total potential energy into a sum of a two-body and a many-body energy contribution. To obtain the correct dynamical behavior with the most basic, yet computationally efficient ANN, spurious long-distance interactions must be removed to avoid incorrect physical behavior at the dissociation threshold. We use a simple apodization function to smoothly taper off to zero any residual many-body interaction at large separations. Both accuracy and performance of the FI-ANN PES are assessed. QCT calculations are used to compute dissociation probabilities and vibrational energy distributions at various equilibrium temperatures. Excellent agreement with the results obtained from the PIP PES is found. For our test case, the ANN PES is also significantly more computationally efficient than the PIP PES at comparable root-mean-square error levels.
Collapse
Affiliation(s)
- Paolo Valentini
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Maninder S Grover
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Eswar Josyula
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| |
Collapse
|
66
|
Hillenbrand PM, Bowen KP, Dayou F, Miller KA, de Ruette N, Urbain X, Savin DW. Experimental study of the proton-transfer reaction C + H 2+ → CH + + H and its isotopic variant (D 2+). Phys Chem Chem Phys 2020; 22:27364-27384. [PMID: 33231243 DOI: 10.1039/d0cp04810k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of Er ∼ 0.01-10 eV. We used photodetachment of C- to produce a pure beam of atomic C in the ground electronic 3P term, with statistically populated fine-structure levels. The H2+ and D2+ were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH2+ electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 14A' and 14A'' states of CH2+via the reaction C(3P) + H2+(2Σ+g) → CH+(3Π) + H(2S). We also hypothesize that at low collision energies only H2+(v ≤ 2) and D2+(v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ⪅0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30-50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.
Collapse
|
67
|
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020; 121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.
Collapse
Affiliation(s)
- Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boulevard Lionel-Boulet, Varennes, Québec City, Québec J3X 1S2, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston Ontario K7L 3N6, Canada
| |
Collapse
|
68
|
Nejad A, Crittenden DL. On the separability of large-amplitude motions in anharmonic frequency calculations. Phys Chem Chem Phys 2020; 22:20588-20601. [PMID: 32966420 DOI: 10.1039/d0cp03515g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear vibrational theories based upon the Watson Hamiltonian are ubiquitous in quantum chemistry, but are generally unable to model systems in which the wavefunction can delocalise over multiple energy minima, i.e. molecules that have low-energy torsion and inversion barriers. In a 2019 Chemical Reviews article, Puzzarini et al. note that a common workaround is to simply decouple these problematic modes from all other vibrations in the system during anharmonic frequency calculations. They also point out that this approximation can be "ill-suited", but do not quantify the errors introduced. In this work, we present the first systematic investigation into how separating out or constraining torsion and inversion vibrations within potential energy surface (PES) expansions affects the accuracy of computed fundamental wavenumbers for the remaining vibrational modes, using a test set of 19 tetratomic molecules for which high quality analytic potential energy surfaces and fully-coupled anharmonic reference fundamental frequencies are available. We find that the most effective and efficient strategy is to remove the mode in question from the PES expansion entirely. This introduces errors of up to +10 cm-1 in stretching fundamentals that would otherwise couple to the dropped mode, and ±5 cm-1 in all other fundamentals. These errors are approximately commensurate with, but not necessarily additional to, errors due to the choice of electronic structure model used in constructing spectroscopically accurate PES.
Collapse
Affiliation(s)
- Arman Nejad
- Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, D-37077 Göttingen, Germany.
| | - Deborah L Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
69
|
Liu Y, Li J. Quantitative Dynamics of the N 2O + C 2H 2 → Oxadiazole Reaction: A Model for 1,3-Dipolar Cycloadditions. ACS OMEGA 2020; 5:23343-23350. [PMID: 32954185 PMCID: PMC7496009 DOI: 10.1021/acsomega.0c03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The reaction N2O + C2H2 → oxadiazole has been considered as a prototype for 1,3-dipolar cycloadditions. Here, we report a comprehensive dynamical study of this important reaction on a full-dimensional potential energy surface, which is fitted to about 64 000 high-level ab initio data by a machine learning approach. Comprehensive dynamical simulations are carried out to provide quantitative chemical insight into its reaction dynamics. In addition to confirming the enhancement effect of the N2O bending mode on the reactivity, intricate mode specificity effects of other vibrational modes in reactants are revealed for the first time. The asymmetric stretching mode of N2O and the C-C-H bending mode of C2H2 show no effect. All remaining modes can enhance the reactivity. In particular, the vibrational excitation of the N2O symmetric stretching mode shows similar enhancement effect on the title reaction, compared to its bending mode excitation. Detailed analysis reveals that the concerted mechanism dominates with the reactants propelled sufficiently close to each other to yield product. This study advances our understanding of the chemical dynamics of the title reaction.
Collapse
|
70
|
Papp D, Czakó G. Full-dimensional MRCI-F12 potential energy surface and dynamics of the F(2P3/2) + C2H6 → HF + C2H5 reaction. J Chem Phys 2020; 153:064305. [DOI: 10.1063/5.0018894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H 6720, Hungary
| |
Collapse
|
71
|
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts 2020. [DOI: 10.3390/catal10060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts.
Collapse
|
72
|
Brieuc F, Schran C, Uhl F, Forbert H, Marx D. Converged quantum simulations of reactive solutes in superfluid helium: The Bochum perspective. J Chem Phys 2020; 152:210901. [DOI: 10.1063/5.0008309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Felix Uhl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
73
|
Chen R, Shao K, Fu B, Zhang DH. Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms. J Chem Phys 2020; 152:204307. [PMID: 32486688 DOI: 10.1063/5.0010104] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Symmetry adaptation is crucial in representing a permutationally invariant potential energy surface (PES). Due to the rapid increase in computational time with respect to the molecular size, as well as the reliance on the algebra software, the previous neural network (NN) fitting with inputs of fundamental invariants (FIs) has practical limits. Here, we report an improved and efficient generation scheme of FIs based on the computational invariant theory and parallel program, which can be readily used as the input vector of NNs in fitting high-dimensional PESs with permutation symmetry. The newly developed method significantly reduces the evaluation time of FIs, thereby extending the FI-NN method for constructing highly accurate PESs to larger systems beyond five atoms. Because of the minimum size of invariants used in the inputs of the NN, the NN structure can be very flexible for FI-NN, which leads to small fitting errors. The resulting FI-NN PES is much faster on evaluating than the corresponding permutationally invariant polynomial-NN PES.
Collapse
Affiliation(s)
- Rongjun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
74
|
Conte R, Qu C, Houston PL, Bowman JM. Efficient Generation of Permutationally Invariant Potential Energy Surfaces for Large Molecules. J Chem Theory Comput 2020; 16:3264-3272. [PMID: 32212729 PMCID: PMC7997398 DOI: 10.1021/acs.jctc.0c00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
An
efficient method is described for generating a fragmented, permutationally
invariant polynomial basis to fit electronic energies and, if available,
gradients for large molecules. The method presented rests on the fragmentation
of a large molecule into any number of fragments while maintaining
the permutational invariance and uniqueness of the polynomials. The
new approach improves on a previous one reported by Qu and Bowman
by avoiding repetition of polynomials in the fitting basis set and
speeding up gradient evaluations while keeping the accuracy of the
PES. The method is demonstrated for CH3–NH–CO–CH3 (N-methylacetamide) and NH2–CH2–COOH (glycine).
Collapse
Affiliation(s)
- Riccardo Conte
- Dipartimento di Chimica, Università Degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chen Qu
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
75
|
Avila G, Papp D, Czakó G, Mátyus E. Exact quantum dynamics background of dispersion interactions: case study for CH 4·Ar in full (12) dimensions. Phys Chem Chem Phys 2020; 22:2792-2802. [PMID: 31957778 DOI: 10.1039/c9cp04426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full-dimensional ab initio potential energy surface of spectroscopic quality is developed for the van-der-Waals complex of a methane molecule and an argon atom. Variational vibrational states are computed on this surface including all twelve (12) vibrational degrees of freedom of the methane-argon complex using the GENIUSH computer program and the Smolyak sparse grid method. The full-dimensional computations make it possible to study the fine details of the interaction and distortion effects and to make a direct assessment of the reduced-dimensionality models often used in the quantum dynamics study of weakly-bound complexes. A 12-dimensional (12D) vibrational computation including only a single harmonic oscillator basis function (9D) to describe the methane fragment (for which we use the ground-state effective structure as the reference structure) has a 0.40 cm-1 root-mean-square error (rms) with respect to the converged 12D bound-state excitation energies, which is less than half of the rms of the 3D model set up with the 〈r〉0 methane structure. Allowing 10 basis functions for the methane fragment in a 12D computation performs much better than the 3D models by reducing the rms of the bound state vibrational energies to 0.07 cm-1. The full-dimensional potential energy surface correctly describes the dissociation of the system, which together with further development of the variational (ro)vibrational methodology opens a route to the study of the role of dispersion forces in the excited methane vibrations and the energy transfer from the intra- to the intermolecular vibrational modes.
Collapse
Affiliation(s)
- Gustavo Avila
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Edit Mátyus
- Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
76
|
Tasi DA, Győri T, Czakó G. On the development of a gold-standard potential energy surface for the OH− + CH3I reaction. Phys Chem Chem Phys 2020; 22:3775-3778. [DOI: 10.1039/c9cp07007a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We develop the first accurate full-dimensional ab initio PES for the OH− + CH3I SN2 and proton-transfer reactions treating the failure of CCSD(T) at certain geometries.
Collapse
Affiliation(s)
- Domonkos A. Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| |
Collapse
|
77
|
Czakó G, Győri T, Olasz B, Papp D, Szabó I, Tajti V, Tasi DA. Benchmark ab initio and dynamical characterization of the stationary points of reactive atom + alkane and SN2 potential energy surfaces. Phys Chem Chem Phys 2020; 22:4298-4312. [DOI: 10.1039/c9cp04944d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review composite ab initio and dynamical methods and their applications to characterize stationary points of atom/ion + molecule reactions.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Balázs Olasz
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - István Szabó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| | - Domonkos A. Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science
- Institute of Chemistry
- University of Szeged
- Szeged H-6720
| |
Collapse
|
78
|
Karmakar S, Keshavamurthy S. Intramolecular vibrational energy redistribution and the quantum ergodicity transition: a phase space perspective. Phys Chem Chem Phys 2020; 22:11139-11173. [DOI: 10.1039/d0cp01413c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The onset of facile intramolecular vibrational energy flow can be related to features in the connected network of anharmonic resonances in the classical phase space.
Collapse
Affiliation(s)
- Sourav Karmakar
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | | |
Collapse
|
79
|
Rangel C, Garcia-Chamorro M, Corchado JC, Espinosa-Garcia J. Kinetics and dynamics study of the OH + C 2H 6 → H 2O + C 2H 5 reaction based on an analytical global potential energy surface. Phys Chem Chem Phys 2020; 22:14796-14810. [PMID: 32578642 DOI: 10.1039/d0cp02776f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To describe the gas-phase hydrogen abstraction reaction between the hydroxyl radical and the ethane molecule, an analytical full-dimensional potential energy surface was developed within the Born-Oppenheimer approximation. This reactive process is a ten-body system with 24 degrees of freedom, which represents a theoretical challenge. The new surface, named PES-2020, presents low barrier, 3.76 kcal mol-1, high exothermicity, -16.20 kcal mol-1, and intermediate complexes in the entrance and exit channels. To test the quality and accuracy of the analytical surface several stringent tests were performed and, in general, PES-2020 reasonably simulates the theoretical information used as input, it is a continuous and smooth potential, without spurious minima, it presents great versatility and a reasonable description of this ten-body reaction. Based on this surface, an exhaustive kinetics and dynamics study was performed with a double objective: to analyze the capacity of the new surface to simulate the experimental evidence, and to help understand the mechanism of reaction and the role of the ethyl group in the reaction. In the kinetics study, three approaches were used: variational transition-state theory with multidimensional tunnelling (VTST/MT), ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) results, in the temperature range 200-2000 K. There is general agreement between the three approaches and they reasonably simulate the experimental behaviour, which gives confidence to the fitness of the new surface to describe the system. In the dynamics study, QCT calculations were performed at 298 K for a direct comparison with the only experimental result reported. We found that ethyl fragment presents a noticeable internal energy (∼20%) and so cannot be considered as a spectator. The water product vibrational energy is reasonably reproduced, though when a level-by-level distribution is analyzed the agreement is only qualitative.
Collapse
Affiliation(s)
- C Rangel
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - M Garcia-Chamorro
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - J C Corchado
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - J Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
80
|
Li L, Fu B, Yang X, Zhang DH. A global ab initio potential energy surface and dynamics of the proton-transfer reaction: OH− + D2 → HOD + D−. Phys Chem Chem Phys 2020; 22:8203-8211. [DOI: 10.1039/d0cp00107d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms of OH− + D2 → HOD + D− were first revealed by theory, based on an accurate full-dimensional PES.
Collapse
Affiliation(s)
- Lulu Li
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xueming Yang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| | - Dong H. Zhang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei 230026
- China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
| |
Collapse
|
81
|
Győri T, Czakó G. Automating the Development of High-Dimensional Reactive Potential Energy Surfaces with the robosurfer Program System. J Chem Theory Comput 2019; 16:51-66. [DOI: 10.1021/acs.jctc.9b01006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
82
|
Guan Y, Guo H, Yarkony DR. Extending the Representation of Multistate Coupled Potential Energy Surfaces To Include Properties Operators Using Neural Networks: Application to the 1,21A States of Ammonia. J Chem Theory Comput 2019; 16:302-313. [DOI: 10.1021/acs.jctc.9b00898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
83
|
Morrow Z, Liu C, Kelley CT, Jakubikova E. Approximating Periodic Potential Energy Surfaces with Sparse Trigonometric Interpolation. J Phys Chem B 2019; 123:9677-9684. [PMID: 31631663 DOI: 10.1021/acs.jpcb.9b08210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential energy surface (PES) describes the energy of a chemical system as a function of its geometry and is a fundamental concept in computational chemistry. A PES provides much useful information about the system, including the structures and energies of various stationary points, such as local minima, maxima, and transition states. Construction of full-dimensional PESs for molecules with more than 10 atoms is computationally expensive and often not feasible. Previous work in our group used sparse interpolation with polynomial basis functions to construct a surrogate reduced-dimensional PESs along chemically significant reaction coordinates, such as bond lengths, bond angles, and torsion angles. However, polynomial interpolation does not preserve the periodicity of the PES gradient with respect to angular components of geometry, such as torsion angles, which can lead to nonphysical phenomena. In this work, we construct a surrogate PES using trigonometric basis functions, for a system where the selected reaction coordinates all correspond to the torsion angles, resulting in a periodically repeating PES. We find that a trigonometric interpolation basis not only guarantees periodicity of the gradient but also results in slightly lower approximation error than polynomial interpolation.
Collapse
Affiliation(s)
- Zachary Morrow
- Department of Mathematics , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Chang Liu
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - C T Kelley
- Department of Mathematics , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Elena Jakubikova
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
84
|
Song Q, Zhang Q, Meng Q. Neural-network potential energy surface with small database and high precision: A benchmark of the H + H2 system. J Chem Phys 2019; 151:114302. [PMID: 31542037 DOI: 10.1063/1.5118692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingfei Song
- Department of Applied Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Ministry-of-Education Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| | - Qiuyu Zhang
- Department of Applied Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Ministry-of-Education Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| | - Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
- Ministry-of-Education Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi’an, China
| |
Collapse
|
85
|
Shu Y, Kryven J, Sampaio de Oliveira-Filho AG, Zhang L, Song GL, Li SL, Meana-Pañeda R, Fu B, Bowman JM, Truhlar DG. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited 2Σ+ state of OH by molecular hydrogen. J Chem Phys 2019; 151:104311. [DOI: 10.1063/1.5111547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Joanna Kryven
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Antonio Gustavo Sampaio de Oliveira-Filho
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- Departamento de Química, Laboratório Computacional de Espectroscopia e Cinética, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto-SP, Brazil
| | - Linyao Zhang
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Guo-Liang Song
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Shaohong L. Li
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Rubén Meana-Pañeda
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Bina Fu
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Joel M. Bowman
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
86
|
Nandi A, Qu C, Bowman JM. Full and fragmented permutationally invariant polynomial potential energy surfaces for trans and cis N-methyl acetamide and isomerization saddle points. J Chem Phys 2019; 151:084306. [DOI: 10.1063/1.5119348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Chen Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
87
|
Yang CH, Hu LL, Liu K. Imaging pair-correlated reaction cross sections in F + CH 3D(ν b = 0, 1) → CH 2D(ν 4 = 1) + HF(ν). Phys Chem Chem Phys 2019; 21:13934-13942. [PMID: 29989118 DOI: 10.1039/c8cp03443e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title reactions were studied in a crossed-beam experiment at collisional energies (Ec) from 0.5 to 4.7 kcal mol-1. The νb (ν4) vibrational mode denotes the bending (umbrella) motion of the CH3D reactant (CH2D product). Using a time-sliced, velocity-map imaging technique, we extracted the state-specific, pair-correlated integral and differential cross sections. As with other isotopically analogous ground-state reactions, an inverted vibrational population of the HF coproduct was observed. Both the step-like excitation function near the threshold and the oscillatory forward-backward peakings in the Ec-evolution of the two dominant pair-correlated angular distributions at lower Ec suggest a resonance-mediated, time-delay mechanism. As Ec increases, the angular distribution of the HF(ν = 2) product evolves into a smooth and broad swath in the backward hemisphere, indicative of a direct rebound mechanism. One quantum excitation of the bending modes of CH3D(νb = 1) promotes the reaction rate by two- to three-fold up to Ec = 2.1 kcal mol-1. Broadly speaking, all major findings are qualitatively in line with previous results in the reactions of the F atom with other isotopologues. However, the rainbow feature recently observed in the CH2D(00) + HF(ν = 3) product channel is entirely absent. A possible rationale is put forward, which reinforces the previous reactive rainbow conjecture and calls for future theoretical investigations.
Collapse
Affiliation(s)
- Chung-Hsin Yang
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, 10617, Taiwan.
| | | | | |
Collapse
|
88
|
Lenzen T, Eisfeld W, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(2P) + CH4→ HX + CH3reactions: Neural network potentials for X = Cl. J Chem Phys 2019; 150:244115. [DOI: 10.1063/1.5109877] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
89
|
Guan Y, Guo H, Yarkony DR. Neural network based quasi-diabatic Hamiltonians with symmetry adaptation and a correct description of conical intersections. J Chem Phys 2019; 150:214101. [DOI: 10.1063/1.5099106] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
90
|
Li J. Ring-polymer molecular dynamics studies of thermal rate coefficients for reaction F + H2O → HF + OH. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1808186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
91
|
Liu C, Kelley CT, Jakubikova E. Molecular Dynamics Simulations on Relaxed Reduced-Dimensional Potential Energy Surfaces. J Phys Chem A 2019; 123:4543-4554. [PMID: 31038956 DOI: 10.1021/acs.jpca.9b02298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulations with full-dimensional potential energy surfaces (PESs) obtained from high-level ab initio calculations are frequently used to model reaction dynamics of small molecules (i.e., molecules with up to 10 atoms). Construction of full-dimensional PESs for larger molecules is, however, not feasible since the number of ab initio calculations required grows rapidly with the increase of dimension. Only a small number of coordinates are often essential for describing the reactivity of even very large systems, and reduced-dimensional PESs with these coordinates can be built for reaction dynamics studies. While analytical methods based on transition-state theory framework are well established for analyzing the reduced-dimensional PESs, MD simulation algorithms capable of generating trajectories on such surfaces are more rare. In this work, we present a new MD implementation that utilizes the relaxed reduced-dimensional PES for standard microcanonical (NVE) and canonical (NVT) MD simulations. The method is applied to the pyramidal inversion of a NH3 molecule. The results from the MD simulations on a reduced, three-dimensional PES are validated against the ab initio MD simulations, as well as MD simulations on full-dimensional PES and experimental data.
Collapse
|
92
|
Yao Q, Xie C, Guo H. Competition between Proton Transfer and Proton Isomerization in the N2 + HOC+ Reaction on an Ab Initio-Based Global Potential Energy Surface. J Phys Chem A 2019; 123:5347-5355. [DOI: 10.1021/acs.jpca.9b04115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qian Yao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
93
|
Qu C, Bowman JM. A fragmented, permutationally invariant polynomial approach for potential energy surfaces of large molecules: Application to N-methyl acetamide. J Chem Phys 2019; 150:141101. [PMID: 30981221 DOI: 10.1063/1.5092794] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe and apply a method to extend permutationally invariant polynomial (PIP) potential energy surface (PES) fitting to molecules with more than 10 atoms. The method creates a compact basis of PIPs as the union of PIPs obtained from fragments of the molecule. An application is reported for trans-N-methyl acetamide, where B3LYP/cc-pVDZ electronic energies and gradients are used to develop a full-dimensional potential for this prototype peptide molecule. The performance of several fragmented bases is verified against a benchmark PES using all (66) Morse variables. The method appears feasible for much larger molecules.
Collapse
Affiliation(s)
- Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
94
|
Nandi A, Qu C, Bowman JM. Using Gradients in Permutationally Invariant Polynomial Potential Fitting: A Demonstration for CH4 Using as Few as 100 Configurations. J Chem Theory Comput 2019; 15:2826-2835. [DOI: 10.1021/acs.jctc.9b00043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apurba Nandi
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chen Qu
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
95
|
Lenzen T, Manthe U. Vibronically and spin-orbit coupled diabatic potentials for X(P) + CH4→ HX + CH3reactions: General theory and application for X(P) = F(2P). J Chem Phys 2019; 150:064102. [DOI: 10.1063/1.5063907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tim Lenzen
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
96
|
Li J, Song K, Behler J. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry. Phys Chem Chem Phys 2019; 21:9672-9682. [DOI: 10.1039/c8cp06919k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several symmetry strategies have been compared in fitting full dimensional accurate potentials for reactive systems based on a neural network approach.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 401331
- China
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie
- 37077 Göttingen
| | - Kaisheng Song
- School of Chemistry and Chemical Engineering, Chongqing University
- Chongqing 401331
- China
| | - Jörg Behler
- Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie
- 37077 Göttingen
- Germany
| |
Collapse
|
97
|
Wang H, Bettens RPA. Modelling potential energy surfaces for small clusters using Shepard interpolation with Gaussian-form nodal functions. Phys Chem Chem Phys 2019; 21:4513-4522. [DOI: 10.1039/c8cp07640e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new interpolation method based on Gaussian functions to reliably generate potential energy surfaces.
Collapse
Affiliation(s)
- Haina Wang
- Department of Chemistry
- Princeton University
- Princeton
- USA
| | | |
Collapse
|
98
|
Liu Y, Bai M, Song H, Xie D, Li J. Anomalous kinetics of the reaction between OH and HO2on an accurate triplet state potential energy surface. Phys Chem Chem Phys 2019; 21:12667-12675. [DOI: 10.1039/c9cp01553a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quasi-classical trajectory predicts the rate coefficient of the OH + HO2→ H2O + O2reaction based on a full dimensional accurate PIP-NN PES, which is fit to 108 000 points calculated at the CCSD(T)-F12a/AVTZ level.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Mengna Bai
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
99
|
Dawes R, Quintas‐Sánchez E. THE CONSTRUCTION OF AB INITIO‐BASED POTENTIAL ENERGY SURFACES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
100
|
Tan JA, Kuo JL. Multilevel Approach for Direct VSCF/VCI MULTIMODE Calculations with Applications to Large “Zundel” Cations. J Chem Theory Comput 2018; 14:6405-6416. [DOI: 10.1021/acs.jctc.8b00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jake A. Tan
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, No. 1 Roosevelt Road, Section 4, Taipei 10617, Taiwan (ROC)
| |
Collapse
|