51
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
52
|
Li C, Zhao Y, Zhou J, Wang X, Hou J, Song Y, Liu W, Han G. Synthesis of difluoroalkylated 2-azaspiro[4.5]decane derivatives via copper-catalyzed difluoroalkylation/dearomatization of N-benzylacrylamides. Org Biomol Chem 2020; 18:8376-8380. [DOI: 10.1039/d0ob01833c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed synthesis of difluoroalkylated spiro-azacycles from N-benzylacrylamides is presented. The reaction involves the β-difluoroalkylation of acrylamide, 5-exo cyclization, and dearomatization.
Collapse
Affiliation(s)
- Chengwen Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yilin Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Xue Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Wenjuan Liu
- Jiangsu Duxingzhiyuan New Material Technology Co. Ltd
- Nantong
- 226300
- P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| |
Collapse
|
53
|
Zhang H, Chen B, Zhang G. Enantioselective 1,2-Alkylhydroxylmethylation of Alkynes via Chromium/Cobalt Cocatalysis. Org Lett 2019; 22:656-660. [DOI: 10.1021/acs.orglett.9b04430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hanwen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| |
Collapse
|
54
|
Upadhyay NS, Chaładaj W. Palladium‐Catalyzed Carboperfluoroalkylation of Alkynes with Fluoroalkyl Iodides and Arylstannanes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Wojciech Chaładaj
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw Poland
| |
Collapse
|
55
|
Li K, Zhang X, Chen J, Gao Y, Yang C, Zhang K, Zhou Y, Fan B. Blue Light Induced Difluoroalkylation of Alkynes and Alkenes. Org Lett 2019; 21:9914-9918. [DOI: 10.1021/acs.orglett.9b03855] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kangkui Li
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Xuexin Zhang
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Jingchao Chen
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Yang Gao
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Chunhui Yang
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Keyang Zhang
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Yongyun Zhou
- School of Chemistry and Environment, Yunnan Minzu University, Yuehua Street, Kunming, 650500, China
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| | - Baomin Fan
- School of Chemistry and Environment, Yunnan Minzu University, Yuehua Street, Kunming, 650500, China
- Institution Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University), State Ethnic Affairs Commission & Ministry of Education, Kunming, 650500, China
| |
Collapse
|
56
|
Affiliation(s)
- Guojiao Wu
- Department of ChemistryUniversity of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | - Jennifer Börger
- Department of ChemistryUniversity of Hamburg Martin Luther King Pl 6 20146 Hamburg Germany
| | | |
Collapse
|
57
|
Wu G, Börger J, Jacobi von Wangelin A. A Carbene-Extended ATRA Reaction. Angew Chem Int Ed Engl 2019; 58:17241-17245. [PMID: 31613415 PMCID: PMC6900008 DOI: 10.1002/anie.201909872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Indexed: 12/27/2022]
Abstract
Atom-transfer radical addition (ATRA) reactions have gained a strong foothold in organic synthesis by virtue of their operational simplicity, synthetic versatility, and perfect atom economy. A rich chemical space can be accessed through clever combinations of the simple starting materials. Many variations of this general motif have been reported. However, the vast majority involve the addition of an organic halide across a C=C double bond, resulting in the formation of 1,2-bifunctional products. This report introduces a significant expansion of this general reactivity concept to give 1,3-bifunctional adducts through the combination of 1,1-ATRA to a carbenoid and 1,2-ATRA to an alkyne. Both processes operate under mild conditions (RT, 5 h) with the same commercial catalyst (CoBr2 , dppbz).
Collapse
Affiliation(s)
- Guojiao Wu
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | - Jennifer Börger
- Department of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | |
Collapse
|
58
|
Shen Z, Wang S, Hao W, Yang S, Tu S, Jiang B. Switching between Copper‐Catalysis and Photocatalysis for Tunable Halofluoroalkylation and Hydrofluoroalkylation of 1,6‐Enynes toward 1‐Indenones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900559] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zheng‐Jia Shen
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Shi‐Chao Wang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Shi‐Zhao Yang
- Department of Quartermaster and FuelAir Force Logistic College Xuzhou 221000 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal University Xuzhou 221116 People's Republic of China
| |
Collapse
|
59
|
Domański S, Gatlik B, Chaładaj W. Pd-Catalyzed Boroperfluoroalkylation of Alkynes Opens a Route to One-Pot Reductive Carboperfluoroalkylation of Alkynes with Perfluoroalkyl and Aryl Iodides. Org Lett 2019; 21:5021-5025. [DOI: 10.1021/acs.orglett.9b01618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sylwester Domański
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Beata Gatlik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
60
|
Wang H, Zhang J, Shi J, Li F, Zhang S, Xu K. Organic Photoredox-Catalyzed Synthesis of δ-Fluoromethylated Alcohols and Amines via 1,5-Hydrogen-Transfer Radical Relay. Org Lett 2019; 21:5116-5120. [DOI: 10.1021/acs.orglett.9b01714] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huiqiao Wang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jinjin Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Jianxue Shi
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Fan Li
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Sheng Zhang
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Kun Xu
- Engineering Technology Research Center of Henan Province for Photo- and Electrochemical Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
61
|
Cheng F, Cao X, Li H, Liu T, Xie X, Huang D, Maharjan S, Bei HP, Gómez A, Li J, Zhan H, Shen H, Liu S, He J, Zhang YS. Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing. NANO LETTERS 2019; 19:3603-3611. [PMID: 31010289 PMCID: PMC6820351 DOI: 10.1021/acs.nanolett.9b00583] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to the combined advantages of cellulose and nanoscale (diameter 20-60 nm), bacterial cellulose possesses a series of attractive features including its natural origin, moderate biosynthesis process, good biocompatibility, and cost-effectiveness. Moreover, bacterial cellulose nanofibers can be conveniently processed into three-dimensional (3D) intertwined structures and form stable paper devices after simple drying. These advantages make it suitable as the material for construction of organ-on-a-chip devices using matrix-assisted sacrificial 3D printing. We successfully fabricated various microchannel structures embedded in the bulk bacterial cellulose hydrogels and retained their integrity after the drying process. Interestingly, these paper-based devices containing hollow microchannels could be rehydrated and populated with relevant cells to form vascularized tissue models. As a proof-of-concept demonstration, we seeded human umbilical vein endothelial cells (HUVECs) into the microchannels to obtain the vasculature and inoculated the MCF-7 cells onto the surrounding matrix of the paper device to build a 3D paper-based vascularized breast tumor model. The results showed that the microchannels were perfusable, and both HUVECs and MCF-7 cells exhibited favorable proliferation behaviors. This study may provide a new strategy for constructing simple and low-cost in vitro tissue models, which may find potential applications in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Feng Cheng
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xia Cao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Pharmaceutics and Tissue Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Hongbin Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Tingting Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Xin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Di Huang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ho Pan Bei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Ameyalli Gómez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Haoqun Zhan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Salisbury School, Salisbury, Connecticut 06068, United States
| | - Haokai Shen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Loomis Chaffee School, Windsor, Connecticut 06095, United States
| | - Sanwei Liu
- Micropower and Nanoengineering Lab, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
62
|
Han S, Liu S, Liu L, Ackermann L, Li J. Cobalt-Catalyzed Diastereoselective Difluoroalkylation/Giese Addition Domino Reactions. Org Lett 2019; 21:5387-5391. [DOI: 10.1021/acs.orglett.9b01400] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengnan Han
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Road 1800, 214122 Wuxi, Jiangsu, China
| | - Shaodong Liu
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Road 1800, 214122 Wuxi, Jiangsu, China
| | - Lei Liu
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Road 1800, 214122 Wuxi, Jiangsu, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Jie Li
- School of Pharmaceutical Sciences, Jiangnan University, Lihu Road 1800, 214122 Wuxi, Jiangsu, China
| |
Collapse
|
63
|
Cao J, Wang G, Gao L, Chen H, Liu X, Cheng X, Li S. Perfluoroalkylative pyridylation of alkenes via 4-cyanopyridine-boryl radicals. Chem Sci 2019; 10:2767-2772. [PMID: 30996995 PMCID: PMC6419949 DOI: 10.1039/c8sc05237a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/15/2019] [Indexed: 11/26/2022] Open
Abstract
A metal- and photo-free method for the perfluoroalkylative pyridylation of alkenes has been developed.
A metal-free and photo-free method for the perfluoroalkylative pyridylation of alkenes has been developed via a combination of computational and experimental studies. Density functional theory calculations and control experiments indicate that the homolysis of Rf–X (X = Br, I) bonds by the 4-cyanopyridine-boryl radicals in situ generated from 4-cyanopyridine and B2pin2 is the key step. Sequential addition of Rf radicals to alkenes and the selective cross-coupling of the resulting alkyl radicals and 4-cyanopyridine-boryl radicals gives alkene difunctionalization products with a quaternary carbon center. This method exhibits a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China . .,Shaanxi Key Laboratory of Chemical Reaction Engineering , School of Chemistry and Chemical Engineering , Yan'an University , Yan'an 716000 , P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Hui Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences , Jiangsu Key Laboratory of Advanced Organic Material , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education , Institute of Theoretical and Computational Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , 210093 , P. R. China .
| |
Collapse
|
64
|
Chen JF, Li C. Enol Ester Synthesis via Cobalt-Catalyzed Regio- and Stereoselective Addition of Carboxylic Acids to Alkynes. Org Lett 2018; 20:6719-6724. [DOI: 10.1021/acs.orglett.8b02824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
65
|
Yu W, Ouyang Y, Xu XH, Qing FL. Visible Light-Induced Methoxycarbonyldifluoromethylation of Trimethylsilyl Enol Ethers and Allyltrimethylsilanes with FSO2
CF2
CO2
Me. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei Yu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Yao Ouyang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecules Synthesis; Shanghai Institute of Organic Chemistry, Chinese Academy of Science; 345 Lingling Lu, Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; 2999 North Renmin Lu, Shanghai 201620 China
| |
Collapse
|
66
|
Palladium-Catalyzed anti-Selective Fluoroalkylboration of Internal and Terminal Alkynes. Org Lett 2018; 20:5631-5635. [DOI: 10.1021/acs.orglett.8b02336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
67
|
Affiliation(s)
- Sebastián Barata-Vallejo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Maria Victoria Cooke
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| | - Al Postigo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, Junín 954, CP 1113 Buenos Aires, Argentina
| |
Collapse
|