51
|
Abstract
Currently, there is a substantial research effort to develop near-infrared fluorescent polymethine cyanine dyes for biological imaging and sensing. In water, cyanine dyes with extended conjugation are known to cross over the "cyanine limit" and undergo a symmetry breaking Peierls transition that favors an unsymmetric distribution of π-electron density and produces a broad absorption profile and low fluorescence brightness. This study shows how supramolecular encapsulation of a newly designed series of cationic, cyanine dyes by cucurbit[7]uril (CB7) can be used to alter the π-electron distribution within the cyanine chromophore. For two sets of dyes, supramolecular location of the surrounding CB7 over the center of the dye favors a nonpolar ground state, with a symmetric π-electron distribution that produces a sharpened absorption band with enhanced fluorescence brightness. The opposite supramolecular effect (i.e., broadened absorption and partially quenched fluorescence) is observed with a third set of dyes because the surrounding CB7 is located at one end of the encapsulated cyanine chromophore. From the perspective of enhanced near-infrared bioimaging and sensing in water, the results show how that the principles of host/guest chemistry can be employed to mitigate the "cyanine limit" problem.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
52
|
Pérez-Márquez LA, Perretti MD, García-Rodríguez R, Lahoz F, Carrillo R. A Fluorescent Cage for Supramolecular Sensing of 3‐Nitrotyrosine in Human Blood Serum. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lidia Ana Pérez-Márquez
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Molecular Sciences SPAIN
| | - Marcelle Dayana Perretti
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Molecular Sciences SPAIN
| | | | - Fernando Lahoz
- Universidad de La Laguna Facultad de Física: Universidad de La Laguna Facultad de Fisica Departamento de Física SPAIN
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Ciencias Moleculares Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna SPAIN
| |
Collapse
|
53
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|
54
|
|
55
|
Hatai J, Altay Y, Sood A, Kiani A, Eleveld MJ, Motiei L, Margulies D, Otto S. An Optical Probe for Real-Time Monitoring of Self-Replicator Emergence and Distinguishing between Replicators. J Am Chem Soc 2022; 144:3074-3082. [PMID: 35139307 PMCID: PMC8874894 DOI: 10.1021/jacs.1c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Self-replicating systems play an important role in research on the synthesis and origin of life. Monitoring of these systems has mostly relied on techniques such as NMR or chromatography, which are limited in throughput and demanding when monitoring replication in real time. To circumvent these problems, we now developed a pattern-generating fluorescent molecular probe (an ID-probe) capable of discriminating replicators of different chemical composition and monitoring the process of replicator formation in real time, giving distinct signatures for starting materials, intermediates, and final products. Optical monitoring of replicators dramatically reduces the analysis time and sample quantities compared to most currently used methods and opens the door for future high-throughput experimentation in protocell environments.
Collapse
Affiliation(s)
- Joydev Hatai
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Yigit Altay
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ankush Sood
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Armin Kiani
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel J. Eleveld
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Leila Motiei
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - David Margulies
- Department
of Chemical and Structural Biology, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Sijbren Otto
- Centre
for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
56
|
Prabodh A, Sinn S, Biedermann F. Analyte sensing with unselectively binding synthetic receptors: virtues of time-resolved supramolecular assays. Chem Commun (Camb) 2022; 58:13947-13950. [DOI: 10.1039/d2cc04831k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Time-resolved supramolecular assays probe analyte-characteristic complexation and decomplexation rates. Consequently, even unselectively binding synthetic receptors can be used for analyte identification and quantification.
Collapse
Affiliation(s)
- Amrutha Prabodh
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stephan Sinn
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Frank Biedermann
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
57
|
Guan X, Meng F, Tan H, Wang X, Li J, Wei J, Ouyang J, Na N. Modular and hierarchical self-assembly of siRNAs into supramolecular nanomaterials for soft and homogeneous siRNA loading and precise and visualized intracellular delivery. Chem Sci 2022; 13:8657-8666. [PMID: 35974751 PMCID: PMC9337723 DOI: 10.1039/d2sc02488h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
siRNA therapeutics are challenged by homogeneous and efficient loading, maintenance of biological activities, and precise, dynamic and monitorable site-release. Herein, supramolecular nanomaterials of WP5⊃G–siRNA were constructed by modular and hierarchical self-assembly of siRNA with guest (3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione derivative, G) and host (pillar[5]arene, WP5) molecules in the same system. Demonstrated by experiments and theoretical calculations, WP5⊃G–siRNA was constructed via comprehensive weak interactions including electrostatic, hydrophobic–hydrophilic, host–guest and π–π interactions. Therefore, siRNAs were efficiently loaded, maintaining good stability, bioactivities and biocompatibilities. At pH 6.8, G was protonated to give weak acidic-responsive “turn-on” fluorescent signals, which realized the precise location of cancer sites. This triggered a subsequent delivery and a dynamic release of siRNA in cancer cells under acidic conditions for the entire collapse of WP5⊃G–siRNA by the protonation of both WP5 and G. By both in vitro and in vivo experiments, precise and visualized delivery to cancer sites was achieved to exhibit effective tumour inhibition. This provided an efficient and soft strategy of siRNA therapies and expanded the application of supramolecular nanomaterials in diagnosis and treatment. Supramolecular nanomaterials of WP5⊃G–siRNA were constructed by modular and hierarchical self-assembly of siRNA with guest and host molecules, initiating weak acidic-responsive, precise and visualized intracellular delivery for efficient therapies.![]()
Collapse
Affiliation(s)
- Xiaowen Guan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fanqi Meng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jingjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Juanjuan Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
58
|
Waki M, Inagaki S. Molecular recognition of catechol on crystal-like surface of periodic mesoporous organosilica containing pyridinylethynylpyridine. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new periodic mesoporous organosilica (PMO) containing pyridinylethynylpyridine (PEPy) was successfully synthesized under basic conditions in the presence of a cationic surfactant. The PEPy-PMO had a unique mesoporous structure with...
Collapse
|
59
|
Dharmarwardana M, Dempsey JM, Padilla-Coley S, Jarvis TS, Shi K, Atkinson KM, Smith BD. Supramolecular capture of highly polar amidosquaraine dye in water with nanomolar affinity and large turn-on fluorescence. Chem Commun (Camb) 2021; 57:13518-13521. [PMID: 34846389 PMCID: PMC8689413 DOI: 10.1039/d1cc05039g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A supramolecular dye-capture system comprising anionic amidosquaraine guest and macrocyclic tetralactam host exhibits nanomolar affinity and "turn on" visible fluorescence. Utility is demonstrated with a new fluorescent assay for liposome leakage induced by the biomedically important enzyme phospholipase A2.
Collapse
|
60
|
Cao S, Liu C, Zhou L, Zhang H, Zhao Y, Liu Z. Bioapplication of cyclodextrin-containing montmorillonite. J Mater Chem B 2021; 9:9241-9261. [PMID: 34698331 DOI: 10.1039/d1tb01719e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progresses in the integration of CDs and montmorillonite, as well as applications of CD-containing montmorillonite hybrid host systems are summarized in this review. Several efficient synthesis strategies, such as ion exchange, metal coordination, supramolecular strategies, polymerizations and organic synthesis methods, have been discussed during the preparation of CDs/montmorillonite hybrid composites. In particular, diverse instrumental techniques were highly recommended for characterizing the as-obtained hybrid systems, including their chemical composition and structures, crystallinity, surface/self-assembled morphologies, as well as other particular physiochemical properties, providing a direct guide for promoting the desired structures and exploring various applications. It should be noted that the introduction of functional groups, as well as the integration of CDs and montmorillonite granted the thus obtained CD-containing montmorillonite hybrid host systems a lot of unique features, providing great opportunities for expanding the practical applications to a series of biological and environmental areas, such as biosensors, sorption and decontamination of bio/environmental hazardous materials, biostudies about aqueous dispersity, stability and biocompatibility, drug loading and target delivery, controlled and sustained drug release, as well as antibacterial.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Zhaona Liu
- Medical School, Xi'an Peihua University, Xi'an 710125, Shaanxi, China.
| |
Collapse
|
61
|
Warmerdam Z, Kamba BE, Le MH, Schrader T, Isaacs L, Bayer P, Hof F. Binding Methylarginines and Methyllysines as Free Amino Acids: A Comparative Study of Multiple Host Classes*. Chembiochem 2021; 23:e202100502. [PMID: 34758178 PMCID: PMC9299052 DOI: 10.1002/cbic.202100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Indexed: 01/18/2023]
Abstract
Methylated free amino acids are an important class of targets for host‐guest chemistry that have recognition properties distinct from those of methylated peptides and proteins. We present comparative binding studies for three different host classes that are each studied with multiple methylated arginines and lysines to determine fundamental structure‐function relationships. The hosts studied are all anionic and include three calixarenes, two acyclic cucurbiturils, and two other cleft‐like hosts, a clip and a tweezer. We determined the binding association constants for a panel of methylated amino acids using indicator displacement assays. The acyclic cucurbiturils display stronger binding to the methylated amino acids, and some unique patterns of selectivity. The two other cleft‐like hosts follow two different trends, shallow host (clip) following similar trends to the calixarenes, and the other more closed host (tweezer) binding certain less‐methylated amino acids stronger than their methylated counterparts. Molecular modelling sheds some light on the different preferences of the various hosts. The results identify hosts with new selectivities and with affinities in a range that could be useful for biomedical applications. The overall selectivity patterns are explained by a common framework that considers the geometry, depth of binding pockets, and functional group participation across all host classes.
Collapse
Affiliation(s)
- Zoey Warmerdam
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| | - Bianca E Kamba
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - My-Hue Le
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Department of Chemistry, Universität Duisburg Essen, Universitätstrasse 7, 45117, Essen, Germany
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, College Park, USA
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Universität Duisburg Essen, Universitätstrasse 2, 45141, Essen, Germany
| | - Fraser Hof
- Department of Chemistry and the Centre for, Advanced Materials and Related Technology, University of Victoria, 3800 Finnerty Rd, V8W 3V6, Victoria, BC, Canada
| |
Collapse
|
62
|
Sun Q, Escobar L, de Jong J, Ballester P. Self-assembly of a water-soluble endohedrally functionalized coordination cage including polar guests. Chem Sci 2021; 12:13469-13476. [PMID: 34777766 PMCID: PMC8528040 DOI: 10.1039/d1sc03751j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
Coordination cages containing endohedrally functionalized aromatic cavities are scarce in the literature. Herein, we report the self-assembly of a tetra-cationic super aryl-extended calix[4]pyrrole tetra-pyridyl ligand into a water-soluble Pd(ii)-cage featuring two endohedral polar binding sites. They are defined by the four pyrrole NHs of the calix[4]pyrrole unit and the four inwardly directed α-protons of the coordinated pyridyl groups. The efficient assembly of the Pd(ii)-cage requires the inclusion of mono- and ditopic pyridyl N-oxide and aliphatic formamide guests. The monotopic guests only partially fill the cage's cavity and require the co-inclusion of a water molecule that is likely hydrogen-bonded to the endohedral α-pyridyl protons. The ditopic guests are able to completely fill the cage's cavity and complement both binding sites. We observed high conformational selectivity in the inclusion of the isomers of α,ω-bis-formamides. We briefly investigate the uptake and release mechanism/kinetics of selected polar guests by the Pd(ii)-cage using pair-wise competition experiments. A tetra-cationic calix[4]pyrrole tetra-pyridyl ligand self-assembles into a water-soluble Pd(ii)-cage featuring two endohedral polar binding sites. The Pd(ii)-cage encapsulates pyridyl N-oxide and aliphatic formamide guests in water.![]()
Collapse
Affiliation(s)
- Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,Universitat Rovira i Virgili (URV), Departament de Química Analítica i Química Orgánica c/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,Universitat Rovira i Virgili (URV), Departament de Química Analítica i Química Orgánica c/Marcel·lí Domingo 1 43007 Tarragona Spain
| | - Jorn de Jong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain .,ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
63
|
Forte G, Maglione MS, Tulli LG, Fantoni A, Dalla Cort A. A Newly Designed Water Soluble Uranyl-Salophen Complex for Anion Recognition. ChemistryOpen 2021; 10:848-851. [PMID: 34431243 PMCID: PMC8385332 DOI: 10.1002/open.202100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Indexed: 11/27/2022] Open
Abstract
A novel water-soluble uranyl-salophen (salophen=N,N'-disalicylidene-o-phenylenediaminate) complex was obtained. Solubility was achieved in aqueous methyl-β-cyclodextrin solutions, taking advantage of the host-guest interactions established with the adamantyl moieties present on the ligand skeleton. Such an approach facilitates the synthesis of the receptor and the purification processes and, in perspective, can be definitely applicable to other molecular scaffolds. UV/Vis titration experiments demonstrate that the capacity of the uranyl-salophen core to behave as a receptor for anions is retained in water and appears comparable with that previously reported for other water-soluble uranyl-salophen systems. Hence the presence of cyclodextrins does not interfere with molecular recognition processes.
Collapse
Affiliation(s)
- Gianpiero Forte
- Department of ChemistryUniversità La SapienzaPiazzale Aldo Moro 500185RomaItaly
| | - Maria S. Maglione
- Department of ChemistryUniversità La SapienzaPiazzale Aldo Moro 500185RomaItaly
| | - Ludovico G. Tulli
- Department of ChemistryUniversità La SapienzaPiazzale Aldo Moro 500185RomaItaly
| | - Alessia Fantoni
- Department of ChemistryUniversità La SapienzaPiazzale Aldo Moro 500185RomaItaly
| | | |
Collapse
|