51
|
Damai M, Guzzardi N, Lewis V, Rao ZX, Sykes D, Patel B. Crafting mono- and novel bis-methylated pyrroloquinoxaline derivatives from a shared precursor and its application in the total synthesis of marinoquinoline A. RSC Adv 2023; 13:29561-29567. [PMID: 37822662 PMCID: PMC10562898 DOI: 10.1039/d3ra05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The synthesis of mono- and novel bis-methylated pyrrolo[1,2-a]quinoxalines through the addition of unstable methyl radicals to aryl isocyanides is described contingent upon the reaction conditions employed. The strategy has been effectively employed in the total synthesis of the natural product marinoquinoline A.
Collapse
Affiliation(s)
- Margarita Damai
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Norman Guzzardi
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Viliyana Lewis
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Zenobia X Rao
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Daniel Sykes
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| |
Collapse
|
52
|
Rivas M, Debnath S, Giri S, Noffel YM, Sun X, Gevorgyan V. One-Pot Formal Carboradiofluorination of Alkenes: A Toolkit for Positron Emission Tomography Imaging Probe Development. J Am Chem Soc 2023; 145:19265-19273. [PMID: 37625118 PMCID: PMC10760797 DOI: 10.1021/jacs.3c04548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
We report the first one-pot formal alkene carboradiofluorination reaction employing easily accessible alkenes as both prosthetic group precursors and coupling partners. The methodology features rapid sequential Markovnikov-selective iodofluorination and photoinduced Pd(0/I/II)-catalyzed alkyl Heck reaction as a mild and robust fluorine-18 (18F) radiochemical approach for positron emission tomography (PET) imaging probe development. A new class of prosthetic groups for PET imaging probe synthesis was isolated as iodofluorinated intermediates in moderate to excellent yields. The one-pot formal alkenylfluorination reaction was carried out to produce over 30 analogues of a wide range of bioactive molecules. Further application of the Pd(0/I/II) manifold in PET probe development was illustrated by the direct carbo(radio)fluorination of electron-rich alkenes. The methods were successfully translated to radiolabel a broad scope of medicinally relevant small molecules in generally good radiochemical conversion. The protocol was further optimized to accommodate no-carrier-added conditions with similar efficiency for future (pre)clinical translation. Moreover, the radiosynthesis of prosthetic groups was automated in a radiochemistry module to facilitate its practical use in multistep radiochemical reactions.
Collapse
Affiliation(s)
- Mónica Rivas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sashi Debnath
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Sachin Giri
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Yusuf M Noffel
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Xiankai Sun
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
53
|
Pinheiro PDSM, Franco LS, Fraga CAM. The Magic Methyl and Its Tricks in Drug Discovery and Development. Pharmaceuticals (Basel) 2023; 16:1157. [PMID: 37631072 PMCID: PMC10457765 DOI: 10.3390/ph16081157] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
One of the key scientific aspects of small-molecule drug discovery and development is the analysis of the relationship between its chemical structure and biological activity. Understanding the effects that lead to significant changes in biological activity is of paramount importance for the rational design and optimization of bioactive molecules. The "methylation effect", or the "magic methyl" effect, is a factor that stands out due to the number of examples that demonstrate profound changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been carried out rationally, but in others it has been the product of serendipitous observations. This paper summarizes recent examples that provide an overview of the current state of the art and contribute to a better understanding of the methylation effect in bioactive small-molecule drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena Murteira Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
| | - Lucas Silva Franco
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (P.d.S.M.P.); (L.S.F.)
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
54
|
Parammal A, Singh S, Kumar M, Xavier JS, Subramanian P. Robust Synthesis of Terpenoid Scaffolds under Mn(I)-Catalysis. J Org Chem 2023. [PMID: 37463248 DOI: 10.1021/acs.joc.3c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The 6/6/5-fused tricyclic scaffold is a central feature of structurally complex terpenoid natural products. A step-economical cascade transformation that leads to a complex molecular skeleton is regarded as a sustainable methodology. Therefore, we report the first Mn(I)-catalyzed C(sp2)-H chemoselective in situ dienylation and diastereoselective intramolecular Diels-Alder reaction using iso-pentadienyl carbonate to access 6/6/5-fused tricyclic scaffolds. To the best of our knowledge, there is no such report thus far to utilize iso-pentadienyl carbonate as a substrate in C-H activation catalysis. Extensive mechanistic studies, such as the isolation of catalytically active organo-manganese(I) complexes, 1,3-dienyl-intermediates, and isotopic labeling experiments have supported the proposed mechanism of this cascade reaction.
Collapse
Affiliation(s)
- Athira Parammal
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shubham Singh
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manoj Kumar
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Joe Sam Xavier
- Indian Institution of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | | |
Collapse
|
55
|
Li J, Wang Z, Zeng G, Zhang Z, Wan J, Fu M, Huang C. Cu(II)-Catalyzed Cascade of N-Phenyl- o-phenylenediamine with Benzaldehyde: One-Step Direct Construction of 2-(1-Phenyl-1 H-benzo[ d]imidazol-2-yl)phenols. J Org Chem 2023. [PMID: 37262308 DOI: 10.1021/acs.joc.3c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A practical protocol for the construction of hydroxylated 2-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenols (PBIs) from N-phenyl-o-phenylenediamine with benzaldehydes was developed. The cascade reaction was enabled by heating a mixture of the two substrates in the presence of air as an oxidant and anhydrous Cu(OAc)2 as a catalyst in dimethyl sulfoxide, and a diverse series of PBIs were synthesized in moderate to good yields (69-81%). Furthermore, the synthesis of the PBIs was enabled via a one-pot cascade reaction that proceeded through subsequent dehydration condensation, intramolecular cyclization, and aromatic C-H hydroxylation. This protocol can be used for the synthesis of hydroxylated PBI via a one-pot annulation C-H hydroxylation reaction rather than through a series of multistep reactions, which provides the possibility of further modification.
Collapse
Affiliation(s)
- Jingpeng Li
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhuoyu Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Guiyun Zeng
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Zhou Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Juan Wan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Meitian Fu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Chao Huang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
56
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
57
|
Montgomery AP, Joyce JM, Danon JJ, Kassiou M. An update on late-stage functionalization in today's drug discovery. Expert Opin Drug Discov 2023; 18:597-613. [PMID: 37114995 DOI: 10.1080/17460441.2023.2205635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Late-stage functionalization (LSF) allows for the introduction of new chemical groups toward the end of a synthetic sequence, which means new molecules can be rapidly accessed without laborious de novo chemical synthesis. Over the last decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, affording benefits such as efficient access to diverse libraries to explore structure-activity relationships and the improvement of physicochemical and pharmacokinetic properties. AREAS COVERED An overview of the key advancements in LSF methodology development from 2019 to 2022 and their applicability to drug discovery is provided. In addition, several examples from both academia and industry where LSF methodologies have been applied by medicinal chemists to their drug discovery programs are presented. EXPERT OPINION Utilization of LSF by medicinal chemists is on the rise, both in academia and in industry. The maturation of the LSF field to produce methodologies bearing increased regioselectivity, scope, and functional group tolerance is envisaged to narrow the gap between methodology development and medicinal chemistry research. The authors predict that the sheer versatility of these techniques in facilitating challenging chemical transformations of bioactive molecules will continue to increase the efficiency of the drug discovery process.
Collapse
Affiliation(s)
| | - Jack M Joyce
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| |
Collapse
|
58
|
Kathiravan S, Zhang T, Nicholls IA. Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Adv 2023; 13:11291-11295. [PMID: 37057266 PMCID: PMC10088075 DOI: 10.1039/d3ra02031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Here we present an iridium catalysed C2-selective methylation of indoles using methyltrifluoroborate as a source of methyl group. The iridium catalyst selectively discriminates the indole C2 and C4 C-H bonds by coordination with a pivaloyl directing group.
Collapse
Affiliation(s)
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University Kalmar SE-39182 Sweden
| |
Collapse
|
59
|
Chiodi D, Ishihara Y. "Magic Chloro": Profound Effects of the Chlorine Atom in Drug Discovery. J Med Chem 2023; 66:5305-5331. [PMID: 37014977 DOI: 10.1021/acs.jmedchem.2c02015] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chlorine is one of the most common atoms present in small-molecule drugs beyond carbon, hydrogen, nitrogen, and oxygen. There are currently more than 250 FDA-approved chlorine-containing drugs, yet the beneficial effect of the chloro substituent has not yet been reviewed. The seemingly simple substitution of a hydrogen atom (R = H) with a chlorine atom (R = Cl) can result in remarkable improvements in potency of up to 100,000-fold and can lead to profound effects on pharmacokinetic parameters including clearance, half-life, and drug exposure in vivo. Following the literature terminology of the "magic methyl effect" in drugs, the term "magic chloro effect" has been coined herein. Although reports of 500-fold or 1000-fold potency improvements are often serendipitous discoveries that can be considered "magical" rather than planned, hypotheses made to explain the magic chloro effect can lead to lessons that accelerate the cycle of drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, California 92121, United States
| |
Collapse
|
60
|
Song S, Cheng X, Cheng S, Lin YM, Gong L. Fe-Catalyzed Aliphatic C-H Methylation of Glycine Derivatives and Peptides. Chemistry 2023; 29:e202203404. [PMID: 36545842 DOI: 10.1002/chem.202203404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Direct and selective C-H methylation is a powerful tool with which to install methyl groups into organic molecules, and is particularly useful in pharmaceutical chemistry. However, practical methods for such modification of biologically interesting targets have been rarely developed. We here report an iron-catalyzed C(sp3 )-H methylation reaction of glycine derivatives, peptides and drug-like molecules in an alcohol in the presence of di-tert-butyl peroxide. A readily available iron catalyst plays multiple roles in the transformation, which accelerates oxidation of C-N bonds to C=N double bonds, activates imine intermediates as Lewis acids by bidentate chelation, and at the same time facilitates cleavage of the peroxide to generate methyl radicals. A variety of methylated N-aryl glycine derivatives and peptides were obtained in good yield and with excellent chemo- and site-selectivity. This reaction is scalable, easily managed, and can be completed within 1-2 h. It features an economic, bio-friendly catalyst, a green solvent and low toxic reagents, and will provide effective access to precise C-H modification of biomolecules and natural products.
Collapse
Affiliation(s)
- Silin Song
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shiyan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005, Xiamen, China
| |
Collapse
|
61
|
Dutta S, Sahoo AK. Three Component syn-1,2-Arylmethylation of Internal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300610. [PMID: 36701082 DOI: 10.1002/anie.202300610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
A Pd-catalyzed three-component syn-1,2-arylmethylation of internal alkynes (ynamides/yne-acetates/alkynes) is described. The readily available and bench stable coupling partners iodo-arenes, and methyl boronic acid are successfully used in this coupling strategy to access the methyl-containing tetra-substituted olefins; the scope is broad showing excellent functional-group tolerance. Notably, the transformation is regio- as well as stereoselective. The biologically relevant motifs (BRM) bearing iodo-arenes and ynamides are also used for the late-stage syn-1,2-arylmethylation of alkynes. Aryl-alkylation, aryl-trideuteriomethylation, alkynyl-methylation, and alkenyl-methylation of ynamides are also presented. The Me-substituted alkenes are further transformed into synthetically important β-amino-indenones and α-fluoro-α'-methyl ketones.
Collapse
Affiliation(s)
- Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
62
|
Wang FY, Li YX, Jiao L. Functionalized Cycloolefin Ligand as a Solution to Ortho-Constraint in the Catellani-Type Reaction. J Am Chem Soc 2023; 145:4871-4881. [PMID: 36795897 DOI: 10.1021/jacs.3c00329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The Catellani reaction, i.e., the Pd/norbornene (NBE) catalysis, has been evolved into a versatile approach to multisubstituted arenes via the ortho-functionalization/ipso-termination process of a haloarene. Despite significant advances over the past 25 years, this reaction still suffered from an intrinsic limitation in the substitution pattern of haloarene, referred to as "ortho-constraint". When an ortho substituent is absent, the substrate often fails to undergo an effective mono ortho-functionalization process, and either ortho-difunctionalization products or NBE-embedded byproducts predominate. To tackle this challenge, structurally modified NBEs (smNBEs) have been developed, which were proved effective for the mono ortho-aminative, -acylative, and -arylative Catellani reactions of ortho-unsubstituted haloarenes. However, this strategy is incompetent for solving the ortho-constraint in Catellani reactions with ortho-alkylation, and to date there lacks a general solution to this challenging but synthetically useful transformation. Recently, our group developed the Pd/olefin catalysis, in which an unstrained cycloolefin ligand served as a covalent catalytic module to enable the ortho-alkylative Catellani reaction without NBE. In this work, we show that this chemistry could afford a new solution to ortho-constraint in the Catellani reaction. A functionalized cycloolefin ligand bearing an amide group as the internal base was designed, which allowed for mono ortho-alkylative Catellani reaction of iodoarenes suffering from ortho-constraint before. Mechanistic study revealed that this ligand is capable of both accelerating the C-H activation and inhibiting side reactions, which accounts for its superior performance. The present work showcased the uniqueness of the Pd/olefin catalysis as well as the power of rational ligand design in metal catalysis.
Collapse
Affiliation(s)
- Feng-Yuan Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Xiu Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
63
|
Abstract
Methyl groups are well understood to play a critical role in pharmaceutical molecules, especially those bearing saturated heterocyclic cores. Accordingly, methods that install methyl groups onto complex molecules are highly coveted. Late-stage C-H functionalization is a particularly attractive approach, allowing chemists to bypass lengthy syntheses and facilitating the expedited synthesis of drug analogues. Herein, we disclose the direct introduction of methyl groups via C(sp3)-H functionalization of a broad array of saturated heterocycles, enabled by the merger of decatungstate photocatalysis and a unique nickel-mediated SH2 bond formation. To further demonstrate its synthetic utility as a tool for late-stage functionalization, this method was applied to a range of drug molecules en route to an array of methylated drug analogues.
Collapse
Affiliation(s)
- Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
64
|
You Z, Wang B, Zhao Z, Zhang Q, Song W, Zhang C, Long X, Xia Y. Metal-Free Carbon-Based Covalent Organic Frameworks with Heteroatom-Free Units Boost Efficient Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209129. [PMID: 36427268 DOI: 10.1002/adma.202209129] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Accurate identification of carbon-based metal-free electrocatalyst (CMFE) activity and enhancing their catalytic efficiency for O2 conversion is an urgent and challenging task. This study reports a promising strategy to simultaneously develop a series of covalent organic frameworks (COFs) with well-defined heterocyclic-free biphenyl or fluorenyl units. Unlike heteroatom doping, the developed method not only supplies methyl-induced molecular configuration to promote activity, but also provides a direct opportunity to identify heteroatom-free carbon active centers. The introduction of methyl groups (MGs) with reversible valence bonds into a pristine biphenyl-based COF results in an excellent performance with a half-wave potential of 0.74 V versus the reversible hydrogen electrode (RHE), which is among the highest values for CMFE-COFs as oxygen reduction reaction (ORR) electrocatalysts. Combined with in situ Raman spectra and theoretical calculations, the MG-bound skeleton (DAF-COF) is found to produce ortho activation, confirming the ortho carbon (site-5) adjacent to MGs as active centers. This may be attributed to the opening and binding of MGs, which effectively regulate the molecular configuration and charge redistribution, as well as improve charge transfer and reduce the energy barrier. This study provides insight into the design of highly efficient metal-free organic electrocatalysts via the regulation of valence bonds.
Collapse
Affiliation(s)
- Zhihu You
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Bingbing Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zijie Zhao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiankun Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weichen Song
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chuanhui Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
65
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
66
|
Chen G, Chang Z, Yuan P, Wang S, Yang Y, Liang X, Zhao D. Late-stage functionalization of 5-nitrofurans derivatives and their antibacterial activities. RSC Adv 2023; 13:3204-3209. [PMID: 36756397 PMCID: PMC9853512 DOI: 10.1039/d2ra07676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Structure modification of drugs is a reliable way to optimize lead compounds, among which the most striking and direct method is late-stage functionalization (LSF). Here, we employed the Cu-catalyzed C-H LSF to modify 5-nitrofuran drugs. A series of modifications have been carried out including hydroxylation, methylation, azidination, cyanation, arylation, etc. Antibacterial activities of all compounds in vitro were measured. The results showed that compound 1 and compound 18 were the most active among all compounds. Meanwhile, the cell cytotoxicity assays of potent compounds 1, 3, 4, 5 & 18 and the parent drug FZD were conducted.
Collapse
Affiliation(s)
- Geshuyi Chen
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Pei Yuan
- The First Clinical Medical College, Lanzhou University Lanzhou China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| | - Yongxiu Yang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China .,Lead Contact China
| | - Xiaolei Liang
- The First Clinical Medical College, Lanzhou University Lanzhou China .,The First Clinical Medical College, Lanzhou University. Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Lanzhou 730000 Gansu Province China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou China
| |
Collapse
|
67
|
Ma H, Pagare PP, Li M, Neel LT, Mendez RE, Gillespie JC, Stevens DL, Dewey WL, Selley DE, Zhang Y. Structural Alterations of the "Address" Moiety of NAN Leading to the Discovery of a Novel Opioid Receptor Modulator with Reduced hERG Toxicity. J Med Chem 2023; 66:577-595. [PMID: 36538027 PMCID: PMC10546487 DOI: 10.1021/acs.jmedchem.2c01499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The search for selective opioid ligands with desired pharmacological potency and improved safety profile has always been an area of interest. Our previous effort yielded a potent opioid modulator, NAN, a 6α-N-7'-indolyl-substituted naltrexamine derivative, which exhibited promising pharmacological activities both in vitro and in vivo. However, significant human ether-a-go-go-related gene (hERG) liability limited its further development. Therefore, a systematic structural modification on NAN was conducted in order to alleviate hERG toxicity while preserving pharmacological properties, which led to the discovery of 2'-methylindolyl derivative compound 21. Compared to NAN, compound 21 manifested overall improved pharmacological profiles. Follow-up hERG channel inhibition evaluation revealed a seven-fold decreased potency of compound 21 compared to NAN. Furthermore, several fundamental drug-like property evaluations suggested a reasonable ADME profile of 21. Collectively, compound 21 appeared to be a promising opioid modulator for further development as a novel therapeutic agent toward opioid use disorder treatments.
Collapse
Affiliation(s)
- Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Logan T Neel
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Rolando E Mendez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - James C Gillespie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - David L Stevens
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia23298-0059, United States
| |
Collapse
|
68
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
69
|
Qian B, Zhang L, Zhang G, Fu Y, Zhu X, Shen G. Thermodynamic Evaluation on Alkoxyamines of TEMPO Derivatives, Stable Alkoxyamines or Potential Radical Donors? ChemistrySelect 2022. [DOI: 10.1002/slct.202204144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bao‐Chen Qian
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Lu Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Gao‐Shuai Zhang
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Xiao‐Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry Department of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| |
Collapse
|
70
|
Hogg A, Wheatley M, Domingo-Legarda P, Carral-Menoyo A, Cottam N, Larrosa I. Ruthenium-Catalyzed Monoselective C-H Methylation and d 3-Methylation of Arenes. JACS AU 2022; 2:2529-2538. [PMID: 36465534 PMCID: PMC9709947 DOI: 10.1021/jacsau.2c00399] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 05/26/2023]
Abstract
Site-selective installation of C-Me bonds remains a powerful and sought-after tool to alter the chemical and pharmacological properties of a molecule. Direct C-H functionalization provides an attractive means of achieving this transformation. Such protocols, however, typically utilize harsh conditions and hazardous methylating agents with poor applicability toward late-stage functionalization. Furthermore, highly monoselective methylation protocols remain scarce. Herein, we report an efficient monoselective, directed ortho-methylation of arenes using N,N,N-trimethylanilinium salts as noncarcinogenic, bench-stable methylating agents. We extend this protocol to d 3-methylation in addition to the late-stage functionalization of pharmaceutically active compounds. Detailed kinetic studies indicate the rate-limiting in situ formation of MeI is integral to the observed reactivity.
Collapse
|
71
|
Amariei DA, Pozhydaieva N, David B, Schneider P, Classen T, Gohlke H, Weiergräber OH, Pietruszka J. Enzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Diana A. Amariei
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Nadiia Pozhydaieva
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Benoit David
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich 52426, Germany
- Institute for Pharmaceutical and Medicinal Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Oliver H. Weiergräber
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich 52426, Germany
- Institute of Bio- and Geosciences (IBG-1: Bioorganic Chemistry) & Bioeconomy Science Center (BioSC) Forschungszentrum Jülich, Jülich 52426, Germany
| |
Collapse
|
72
|
Yan M, Qian BC, Chen Y, Luo GZ, Shen GB. Theoretical Study for Evaluating and Discovering Organic Hydride Compounds as Potential Novel Methylation Reagents. ACS OMEGA 2022; 7:36579-36589. [PMID: 36278082 PMCID: PMC9583324 DOI: 10.1021/acsomega.2c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Methylation reaction is a fundamental chemical reaction that plays an important role in the modification of drug molecules, DNA, as well as proteins. This work focuses on seeking potential novel methylation reagents through a systematic investigation of the thermodynamics and reactivity of methyl-substituted organic hydride radical cations (XH•+s). In this work, 45 classical and important XH•+s were designed to investigate the relationship between their structure and reactivity, to find excellent or potential methylation reagents. The Gibbs free energy and activation free energy of XH•+ to release the methyl radical in MeCN at 298.15 and 355 K are calculated with the density functional theory (DFT) method to quantitatively measure the reactivity of XH•+ as a methylation reagent in this work. The relationships between structures and reactivities on XH•+s as methylation reagents are well examined. Since we have calculated the Gibbs free energy and activation free energy of trifluoromethyl-substituted organic hydride compound radical cations (X'H•+) releasing trifluoromethyl radicals in MeCN with the DFT method in our previous work, accordingly, the relationship of thermodynamics and reactivity between X'H•+ releasing trifluoromethyl radical and XH•+ releasing methyl radical is discussed in detail. Excitingly, 4 XH•+s (1H•+, 3H•+∼4H•+, and 44H•+) are found to be excellent methyl radical reagents, while 9 XH•+s (5H•+, 6H•+, 9H•+, 10H•+, 12H•+, 13H•+, 15H•+, 43H•+, and 45H•+) are found to be potential methyl radical reagents in chemical synthesis. The molecular library and reactivity database of novel methylation reagents could be established for synthetic chemists to query and use. Our work may offer a theoretical basis and reference experience for screening different substituted organic hydride compounds (YRHs) as alkylation reagents.
Collapse
Affiliation(s)
- Maocai Yan
- School
of Pharmacy, Jining Medical University, Rizhao, Shandong276800, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Yanpu Chen
- School
of Pharmacy, Jining Medical University, Rizhao, Shandong276800, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong272000, P. R. China
| |
Collapse
|
73
|
Templ J, Gjata E, Getzner F, Schnürch M. Monoselective N-Methylation of Amides, Indoles, and Related Structures Using Quaternary Ammonium Salts as Solid Methylating Agents. Org Lett 2022; 24:7315-7319. [PMID: 36190781 PMCID: PMC9578047 DOI: 10.1021/acs.orglett.2c02766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/30/2022]
Abstract
We herein report the use of phenyl trimethylammonium iodide (PhMe3NI) as a safe, nontoxic, and easy-to-handle reagent for an absolutely monoselective N-methylation of amides and related compounds as well as for the N-methylation of indoles. In addition, we expanded the method to N-ethylation using PhEt3NI. The ease of operational setup, high yields of ≤99%, high functional group tolerance, and especially the excellent monoselectivity for amides make this method attractive for late-stage methylation of bioactive compounds.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Edma Gjata
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Filippa Getzner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| |
Collapse
|
74
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic Reagents for Enzyme‐Catalyzed Methylation. Angew Chem Int Ed Engl 2022; 61:e202208746. [DOI: 10.1002/anie.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaojin Wen
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian Leisinger
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Viviane Leopold
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|
75
|
Oderinde MS, Jin S, Das J, Jorge C, Yip S, Ramirez A, Wu DR, Li Y, Kempson J, Meanwell NA, Mathur A, Dhar TGM. Photo-Initiated Nickel Catalysis (PiNiC): Unmasking Dimethylnickel with Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martins S. Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Soomin Jin
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Jayanta Das
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Christine Jorge
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Shiuhang Yip
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical & Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Dauh-Rurng Wu
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Ying Li
- Separation & Analysis Technology Team, Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - James Kempson
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Nicholas A. Meanwell
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - T. G. Murali Dhar
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
76
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
77
|
Zhang G, Guan C, Han L, Zhao Y, Ding C. A late-stage functionalization tool: sulfonyl fluoride mediated deoxymethylation of phenols. Org Biomol Chem 2022; 20:7640-7644. [PMID: 36124914 DOI: 10.1039/d2ob01523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The late-stage functionalization of drugs and natural products has been identified as a promising approach to accelerate the discovery of new bioactive compounds. Due to the presence of the "Magic Methyl Effect", the direct deoxymethylation of phenolic hydroxyl groups, which are widespread in natural molecules, is a challenging task. A mild and rapid strategy for direct phenol deoxymethylation under metal catalysis using SO2F2 is described in this paper, while good functional group tolerance and high chemoselectivity allow this strategy to be one of the powerful tools for LSF. The power of this new platform is showcased through gram-scale and orthogonal experiments.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Linjun Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou 310012, P. R. China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
78
|
Figula BC, Chen TA, Bertke JA, Warren TH. Copper-Catalyzed C(sp3)–H Methylation via Radical Relay. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bryan C. Figula
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Ting-An Chen
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Timothy H. Warren
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
79
|
Chandra Mallojjala S, Sarkar R, Karugu RW, Manna MS, Ray S, Mukherjee S, Hirschi JS. Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp 2)–H Alkylation Using Nitroalkanes as Alkylating Agents. J Am Chem Soc 2022; 144:17399-17406. [PMID: 36108139 DOI: 10.1021/jacs.2c02941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental 13C kinetic isotope effects (KIEs) and density functional theory (DFT) calculations are used to evaluate the mechanism and origin of enantioselectivity in the formal C(sp2)-H alkylative desymmetrization of cyclopentene-1,3-diones using nitroalkanes as the alkylating agent. An unusual combination of an inverse (∼0.980) and a normal (∼1.033) KIE is observed on the bond-forming carbon atoms of the cyclopentene-1,3-dione and nitroalkane, respectively. These data provide strong support for a mechanism involving reversible carbon-carbon bond formation followed by rate- and enantioselectivity-determining nitro group elimination. The theoretical free-energy profile and the predicted KIEs indicate that this elimination event occurs via an E1cB pathway. The origin of remote stereocontrol is evaluated by distortion-interaction and SAPT0 analyses of the E1cB transition states leading to both enantiomers.
Collapse
Affiliation(s)
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rachael W. Karugu
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Madhu Sudan Manna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
80
|
Zhang W, Lahm GP, Pahutski TF, Hughes KA. Applying a Bioisosteric Replacement Strategy in the Discovery and Optimization of Mesoionic Pyrido[1,2- a]pyrimidinone Insecticides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11056-11062. [PMID: 35394767 DOI: 10.1021/acs.jafc.2c00697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mesoionic pyrido[1,2-a]pyrimidinones are a unique class of heterocyclic compounds. Compounds from this class with a n-propyl group substituted at the 1 position of the mesoionic core were discovered with interesting insecticidal activity in our screen. In this overview, we showcase how a bioisosteric replacement strategy was applied during the discovery and optimization of this class of compounds. Through exploring various substituents at the 1 position, evaluating a variety of mesoionic bicyclic ring scaffolds, and examining substituents on the phenyl group at the 3 position of the mesoionic core as well as substituents on the mesoionic ring skeleton, many compounds were discovered with excellent hopper activity or potent activity against a wide range of Lepidoptera. Ultimately, dicloromezotiaz was identified for commercial development to control a broad spectrum of lepidopteran pests.
Collapse
Affiliation(s)
- Wenming Zhang
- Stine Research Center, FMC Ag Solutions, 1090 Elkton Road, Newark, Delaware 19711, United States
| | - George P Lahm
- Stine Research Center, FMC Ag Solutions, 1090 Elkton Road, Newark, Delaware 19711, United States
| | - Thomas F Pahutski
- Stine Research Center, FMC Ag Solutions, 1090 Elkton Road, Newark, Delaware 19711, United States
| | - Kenneth A Hughes
- Stine Research Center, FMC Ag Solutions, 1090 Elkton Road, Newark, Delaware 19711, United States
| |
Collapse
|
81
|
Di Mola A, Nicastro G, Serusi L, Filosa R, Waser M, Massa A. Scalable (Enantioselective) Syntheses of Novel 3-Methylated Analogs of Pazinaclone, (S)-PD172938 and Related Biologically Relevant Isoindolinones. Molecules 2022; 27:molecules27175647. [PMID: 36080411 PMCID: PMC9458024 DOI: 10.3390/molecules27175647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we report the application of an efficient and practical K2CO3 promoted cascade reaction of 2-acetylbenzonitrile in the synthesis of novel 3-methylated analogs of Pazinaclone and PD172938, belonging to isoindolinones heterocyclic class bearing a tetrasubstituted stereocenter. Organocatalytic asymmetric synthesis of the key intermediate and its transformation into highly enantioenriched 3-methylated analog of (S)-PD172938 was also developed. These achievements can be of particular interest also for medicinal chemistry, since the methyl group is a very useful structural modification in the rational design of new and more effective bioactive compounds.
Collapse
Affiliation(s)
- Antonia Di Mola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: (A.D.M.); (A.M.)
| | - Giorgia Nicastro
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Lorenzo Serusi
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologia, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Antonio Massa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: (A.D.M.); (A.M.)
| |
Collapse
|
82
|
Improved flotation separation of sulfide minerals by synthesized surfactant based on para-position methyl effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
83
|
Majhi J, Dhungana RK, Rentería-Gómez Á, Sharique M, Li L, Dong W, Gutierrez O, Molander GA. Metal-Free Photochemical Imino-Alkylation of Alkenes with Bifunctional Oxime Esters. J Am Chem Soc 2022; 144:15871-15878. [PMID: 35984388 PMCID: PMC10245625 DOI: 10.1021/jacs.2c07170] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concurrent installation of C-C and C-N bonds across alkene frameworks represents a powerful tool to prepare motifs that are ubiquitous in pharmaceuticals and bioactive compounds. To construct such prevalent bonds, most alkene difunctionalization methods demand the use of precious metals or activated alkenes. We report a metal-free, photochemically mediated imino-alkylation of electronically diverse alkenes to install both alkyl and iminyl groups in a highly efficient manner. The exceptionally mild reaction conditions, broad substrate scope, excellent functional group tolerance, and facile one-pot reaction protocol highlight the utility of this method to prepare privileged motifs from readily available alkene and acid feedstocks. One key and striking feature of this transformation is that an electrophilic trifluoromethyl radical is equally efficient with both electron-deficient and electron-rich alkenes. Additionally, dispersion-corrected density functional theory (DFT) and empirical investigations provide detailed mechanistic insight into this reaction.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Longbo Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Weizhe Dong
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
84
|
Wen X, Leisinger F, Leopold V, Seebeck FP. Synthetic reagents for enzyme‐catalyzed methylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojin Wen
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian Leisinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Viviane Leopold
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Florian P. Seebeck
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
85
|
Lao Y, Skiba MA, Chun SW, Narayan ARH, Smith JL. Structural Basis for Control of Methylation Extent in Polyketide Synthase Metal-Dependent C-Methyltransferases. ACS Chem Biol 2022; 17:2088-2098. [PMID: 35594521 PMCID: PMC9462956 DOI: 10.1021/acschembio.2c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Installation of methyl groups can significantly improve the binding of small-molecule drugs to protein targets; however, site-selective methylation often presents a significant synthetic challenge. Metal- and S-adenosyl-methionine (SAM)-dependent methyltransferases (MTs) in natural-product biosynthetic pathways are powerful enzymatic tools for selective or chemically challenging C-methylation reactions. Each of these MTs selectively catalyzes one or two methyl transfer reactions. Crystal structures and biochemical assays of the Mn2+-dependent monomethyltransferase from the saxitoxin biosynthetic pathway (SxtA MT) revealed the structural basis for control of methylation extent. The SxtA monomethyltransferase was converted to a dimethyltransferase by modification of the metal binding site, addition of an active site base, and an amino acid substitution to provide space in the substrate pocket for two methyl substituents. A reciprocal change converted a related dimethyltransferase into a monomethyltransferase, supporting our hypothesis that steric hindrance can prevent a second methylation event. A novel understanding of MTs will accelerate the development of MT-based catalysts and MT engineering for use in small-molecule synthesis.
Collapse
Affiliation(s)
- Yongtong Lao
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Meredith A Skiba
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephanie W Chun
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janet L Smith
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
86
|
Natte K, Naik G, Sarki N, Goyal V, Narani A. Recent Trends in Upgrading of CO2 as a C1 Reactant in N‐ and C‐Methylation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kishore Natte
- Indian Institute of Technology Hyderabad Chemistry Kandi--- Sangareddy INDIA
| | - Ganesh Naik
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | - Naina Sarki
- Indian Institute of Petroleum CSIR Chemistry INDIA
| | | | - Anand Narani
- Indian Institute of Petroleum CSIR Chemistry INDIA
| |
Collapse
|
87
|
Andrade‐Sampedro P, Matxain JM, Correa A. Ru‐Catalyzed C−H Hydroxylation of Tyrosine‐Containing Di‐ and Tripeptides toward the Assembly of L‐DOPA Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paula Andrade‐Sampedro
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
| | - Jon M. Matxain
- Donostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 20018 Donostia-San Sebastián Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia Saila Kimika Fakultatea Euskal Herriko Unibertsitatea (UPV/EHU) Paseo Manuel de Lardizabal 3 20018 Donostia-San Sebastián Spain
| | - Arkaitz Correa
- University of the Basque Country (UPV/EHU) Department of Organic Chemistry I Joxe Mari Korta R&D Center, Avda. Tolosa 72 20018 Donostia-San Sebastián Spain
| |
Collapse
|
88
|
Fessner ND, Badenhorst CPS, Bornscheuer UT. Enzyme Kits to Facilitate the Integration of Biocatalysis into Organic Chemistry – First Aid for Synthetic Chemists. ChemCatChem 2022. [DOI: 10.1002/cctc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nico D. Fessner
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Christoffel P. S. Badenhorst
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis Institute of Biochemistry University of Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
89
|
The quest for magic: recent advances in C(sp 3)–H methylation. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Frequently referred to as the “magic methyl” effect, the introduction of a methyl group into a biologically active molecule has the potential to drastically alter its physical and biological properties and significantly increase potency. This effect is most pronounced when the methyl group is added at the α-position of an aliphatic heterocycle or ortho to a large rotatable group on an aromatic ring. Although seminal developments in C–H activation strategies offered solutions to the latter, until recent years there had been no selective and functional-group-tolerant method for C(sp3)–H methylation at late stages of synthesis. For many years, the lack of a generally applicable methylation strategy necessitated arduous de novo synthesis approaches to access methylated drug candidates, and discouraged further investigation and understandings of the magic methyl effect. This review will provide a summary of the most recent advances that enabled non-directed late-stage C(sp3)–H methylation, including through hydride transfer, chemical or anodic oxidation, and photocatalytic hydrogen atom transfer.
Collapse
|
90
|
Yang QL, Liu Y, Liang L, Li ZH, Qu GR, Guo HM. Facilitating Rh-Catalyzed C-H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. J Org Chem 2022; 87:6161-6178. [PMID: 35438486 DOI: 10.1021/acs.joc.2c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical approach to promote the ortho-C-H alkylation of (hetero)arenes via rhodium catalysis under mild conditions is described. This approach features mild conditions with high levels of regio- and monoselectivity that tolerate a variety of aromatic and heteroaromatic groups and offers a widely applicable method for late-stage diversification of complex molecular architectures including tryptophan, estrone, diazepam, nucleosides, and nucleotides. Alkyl boronic acids and esters and alkyl trifluoroborates are demonstrated as suitable coupling partners. The isolation of key rhodium intermediates and mechanistic studies provided strong support for a rhodium(III/IV or V) regime.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhi-Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
91
|
Templ J, Schnürch M. Selective α-Methylation of Aryl Ketones Using Quaternary Ammonium Salts as Solid Methylating Agents. J Org Chem 2022; 87:4305-4315. [PMID: 35253422 PMCID: PMC8938946 DOI: 10.1021/acs.joc.1c03158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/28/2022]
Abstract
We describe the use of phenyl trimethylammonium iodide (PhMe3NI) as an alternative methylating agent for introducing a CH3 group in α-position to a carbonyl group. Compared to conventional methylating agents, quaternary ammonium salts have the advantages of being nonvolatile, noncancerogenic, and easy-to-handle solids. This regioselective method is characterized by ease of operational setup, use of anisole as green solvent, and yields up to 85%.
Collapse
Affiliation(s)
- Johanna Templ
- Institute of Applied Synthetic
Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| | - Michael Schnürch
- Institute of Applied Synthetic
Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Wien, Austria
| |
Collapse
|
92
|
Wurm K, Bartz FM, Schulig L, Bodtke A, Bednarski PJ, Link A. Modifications of the Triaminoaryl Metabophore of Flupirtine and Retigabine Aimed at Avoiding Quinone Diimine Formation. ACS OMEGA 2022; 7:7989-8012. [PMID: 35284765 PMCID: PMC8908504 DOI: 10.1021/acsomega.1c07103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 05/09/2023]
Abstract
The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.
Collapse
|
93
|
Empel C, Jana S, Langletz T, Koenigs RM. Rhodium-Catalyzed C-H Methylation and Alkylation Reactions by Carbene-Transfer Reactions. Chemistry 2022; 28:e202104321. [PMID: 35015327 PMCID: PMC9302633 DOI: 10.1002/chem.202104321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/18/2022]
Abstract
In this combined computational and experimental study, the C-H functionalization of 2-phenyl pyridine with diazoalkanes was investigated. Initial evaluation by computational methods allowed the evaluation of different metal catalysts and diazoalkanes and their compatibility in this C-H functionalization reaction. With these findings, suitable reaction conditions for the C-H methylation reactions were quickly identified by using highly reactive TMS diazomethane and C-H alkylation reactions with donor/acceptor diazoalkanes, which is applied to a broad scope on alkylation reactions of 2-aryl pyridines with TMS diazomethane and donor/acceptor diazoalkane (51 examples, up to 98 % yield).
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Sripati Jana
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Tim Langletz
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| | - Rene M. Koenigs
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 1D-52074AachenGermany
| |
Collapse
|
94
|
Čorić I, Dhankhar J. Introduction to Spatial Anion Control for Direct C–H Arylation. Synlett 2022. [DOI: 10.1055/s-0040-1719860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractC–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.1 C–H Activation and the CMD Mechanism2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates3 Nondirected C–H Arylation4 Spatial Anion Control for Direct C–H Arylation5 Coordination Chemistry with Spatial Anion Control6 Conclusion
Collapse
|
95
|
Novaes LFT, Ho JSK, Mao K, Liu K, Tanwar M, Neurock M, Villemure E, Terrett JA, Lin S. Exploring Electrochemical C(sp 3)-H Oxidation for the Late-Stage Methylation of Complex Molecules. J Am Chem Soc 2022; 144:1187-1197. [PMID: 35015533 DOI: 10.1021/jacs.1c09412] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The "magic methyl" effect, a dramatic boost in the potency of biologically active compounds from the incorporation of a single methyl group, provides a simple yet powerful strategy employed by medicinal chemists in the drug discovery process. Despite significant advances, methodologies that enable the selective C(sp3)-H methylation of structurally complex medicinal agents remain very limited. In this work, we disclose a modular, efficient, and selective strategy for the α-methylation of protected amines (i.e., amides, carbamates, and sulfonamides) by means of electrochemical oxidation. Mechanistic analysis guided our development of an improved electrochemical protocol on the basis of the classic Shono oxidation reaction, which features broad reaction scope, high functional group compatibility, and operational simplicity. Importantly, this reaction system is amenable to the late-stage functionalization of complex targets containing basic nitrogen groups that are prevalent in medicinally active agents. When combined with organozinc-mediated C-C bond formation, our protocol enabled the direct methylation of a myriad of amine derivatives including those that have previously been explored for the "magic methyl" effect. This synthesis strategy thus circumvents multistep de novo synthesis that is currently necessary to access such compounds and has the potential to accelerate drug discovery efforts.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Justin S K Ho
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Kaida Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mayank Tanwar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
96
|
Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG. Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. J Am Chem Soc 2022; 144:1045-1055. [PMID: 34985904 PMCID: PMC8810294 DOI: 10.1021/jacs.1c12203] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ni/photoredox catalysis has emerged as a powerful platform for C(sp2)-C(sp3) bond formation. While many of these methods typically employ aryl bromides as the C(sp2) coupling partner, a variety of aliphatic radical sources have been investigated. In principle, these reactions enable access to the same product scaffolds, but it can be hard to discern which method to employ because nonstandardized sets of aryl bromides are used in scope evaluation. Herein, we report a Ni/photoredox-catalyzed (deutero)methylation and alkylation of aryl halides where benzaldehyde di(alkyl) acetals serve as alcohol-derived radical sources. Reaction development, mechanistic studies, and late-stage derivatization of a biologically relevant aryl chloride, fenofibrate, are presented. Then, we describe the integration of data science techniques, including DFT featurization, dimensionality reduction, and hierarchical clustering, to delineate a diverse and succinct collection of aryl bromides that is representative of the chemical space of the substrate class. By superimposing scope examples from published Ni/photoredox methods on this same chemical space, we identify areas of sparse coverage and high versus low average yields, enabling comparisons between prior art and this new method. Additionally, we demonstrate that the systematically selected scope of aryl bromides can be used to quantify population-wide reactivity trends and reveal sources of possible functional group incompatibility with supervised machine learning.
Collapse
Affiliation(s)
- Stavros K. Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Shutian Jiang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrzej M. Żurański
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Shivaani S. Gandhi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | | | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
97
|
Kuciński K, Simon H, Ackermann L. Rhoda-Electrocatalyzed C-H Methylation and Paired Electrocatalyzed C-H Ethylation and Propylation. Chemistry 2022; 28:e202103837. [PMID: 34714563 PMCID: PMC9299020 DOI: 10.1002/chem.202103837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 12/18/2022]
Abstract
The use of electricity over traditional stoichiometric oxidants is a promising strategy for sustainable molecular assembly. Herein, we describe the rhoda-electrocatalyzed C-H activation/alkylation of several N-heteroarenes. This catalytic approach has been successfully applied to several arenes, including biologically relevant purines, diazepam, and amino acids. The versatile C-H alkylation featured water as a co-solvent and user-friendly trifluoroborates as alkylating agents. Finally, the rhoda-electrocatalysis with unsaturated organotrifluoroborates proceeded by paired electrolysis.
Collapse
Affiliation(s)
- Krzysztof Kuciński
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Hendrik Simon
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
98
|
Yang X, Wang G, Ye ZS. Palladium-catalyzed nucleomethylation of alkynes for synthesis of methylated heteroaromatic compounds. Chem Sci 2022; 13:10095-10102. [PMID: 36128232 PMCID: PMC9430495 DOI: 10.1039/d2sc03294e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Herein, we disclosed a novel and efficient palladium-catalyzed nucleomethylation of alkynes for the simultaneous construction of the heteroaromatic ring and methyl group. The 3-methylindoles, 3-methylbenzofurans and 4-methylisoquinolines were obtained in moderate to excellent yields. Notably, this methodology was employed as a key step for synthesis of a pregnane X receptor antagonist, zindoxifene, bazedoxifene and AFN-1252. The kinetic studies revealed that reductive elimination might be the rate-determining step. A novel palladium-catalyzed nucleomethylation of alkynes is developed, affording 3-methylindoles, 3-methylbenzofurans and 4-methylisoquinolines in moderate to excellent yields.![]()
Collapse
Affiliation(s)
- Xi Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
99
|
Petitpoisson L, Pichette A, Alsarraf J. Towards better syntheses of partially methylated carbohydrates? Org Chem Front 2022. [DOI: 10.1039/d2qo00893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give an overview of the reported synthetic strategies towards partially methylated glycosides and discuss how better protocols could stem from catalytic site-selective transformations of carbohydrates and cleaner methylation reagents.
Collapse
Affiliation(s)
- Lucas Petitpoisson
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - André Pichette
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| | - Jérôme Alsarraf
- Centre de recherche sur la boréalie (CREB), Laboratoire d'analyse et de séparation des essences végétales (LASEVE), Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi G7H 2B1, Québec, Canada
| |
Collapse
|
100
|
Liu X, Guo Z, Liu Y, Chen X, Li J, Zou D, Wu Y, Wu Y. Metal-Free Alkylation of Quinoxalinones with Aryl Alkyl ketones. Org Biomol Chem 2022; 20:1391-1395. [DOI: 10.1039/d1ob02260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first metal-free method for alkylation of quinoxalinones using cheap and stable aryl alkyl ketones as nucleophilic alkylation reagents is reported. This strategy greatly broadens the application channels of aryl...
Collapse
|