51
|
Belzil C, Neumayer G, Vassilev AP, Yap KL, Konishi H, Rivest S, Sanada K, Ikura M, Nakatani Y, Nguyen MD. A Ca2+-dependent mechanism of neuronal survival mediated by the microtubule-associated protein p600. J Biol Chem 2013; 288:24452-64. [PMID: 23861403 DOI: 10.1074/jbc.m113.483107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In acute and chronic neurodegeneration, Ca(2+) mishandling and disruption of the cytoskeleton compromise neuronal integrity, yet abnormalities in the signaling roles of cytoskeletal proteins remain largely unexplored. We now report that the microtubule-associated protein p600 (also known as UBR4) promotes neuronal survival. Following depletion of p600, glutamate-induced Ca(2+) influx through NMDA receptors, but not AMPA receptors, initiates a degenerative process characterized by endoplasmic reticulum fragmentation and endoplasmic reticulum Ca(2+) release via inositol 1,4,5-trisphosphate receptors. Downstream of NMDA receptors, p600 associates with the calmodulin·calmodulin-dependent protein kinase IIα complex. A direct and atypical p600/calmodulin interaction is required for neuronal survival. Thus, p600 counteracts specific Ca(2+)-induced death pathways through regulation of Ca(2+) homeostasis and signaling.
Collapse
Affiliation(s)
- Camille Belzil
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Visualizing CaMKII and CaM activity: a paradigm of compartmentalized signaling. J Mol Med (Berl) 2013; 91:907-16. [PMID: 23775230 DOI: 10.1007/s00109-013-1060-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Calcium (Ca(2+)) has long been recognized as a crucial intracellular messenger attaining stimuli-specific cellular outcomes via localized signaling. Ca(2+)-binding proteins, such as calmodulin (CaM), and its target proteins are key to the segregation and refinement of these Ca(2+)-dependent signaling events. This review not only summarizes the recent technological advances enabling the study of subcellular Ca(2+)-CaM and Ca(2+)-CaM-dependent protein kinase (CaMKII) signaling events but also highlights the outstanding challenges in the field.
Collapse
|
53
|
Teets NM, Yi SX, Lee RE, Denlinger DL. Calcium signaling mediates cold sensing in insect tissues. Proc Natl Acad Sci U S A 2013; 110:9154-9. [PMID: 23671084 PMCID: PMC3670363 DOI: 10.1073/pnas.1306705110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to rapidly respond to changes in temperature is a critical adaptation for insects and other ectotherms living in thermally variable environments. In a process called rapid cold hardening (RCH), insects significantly enhance cold tolerance following brief (i.e., minutes to hours) exposure to nonlethal chilling. Although the ecological relevance of RCH is well-established, the underlying physiological mechanisms that trigger RCH are poorly understood. RCH can be elicited in isolated tissues ex vivo, suggesting cold-sensing and downstream hardening pathways are governed by brain-independent signaling mechanisms. We previously provided preliminary evidence that calcium is involved in RCH, and here we firmly establish that calcium signaling mediates cold sensing in insect tissues. In tracheal cells of the freeze-tolerant goldenrod gall fly, Eurosta solidaginis, chilling to 0 °C evoked a 40% increase in intracellular calcium concentration as determined by live-cell confocal imaging. Downstream of calcium entry, RCH conditions significantly increased the activity of calcium/calmodulin-dependent protein kinase II (CaMKII) while reducing phosphorylation of the inhibitory Thr306 residue. Pharmacological inhibitors of calcium entry, calmodulin activation, and CaMKII activity all prevented ex vivo RCH in midgut and salivary gland tissues, indicating that calcium signaling is required for RCH to occur. Similar results were obtained for a freeze-intolerant species, adults of the flesh fly, Sarcophaga bullata, suggesting that calcium-mediated cold sensing is a general feature of insects. Our results imply that insect tissues use calcium signaling to instantly detect decreases in temperature and trigger downstream cold-hardening mechanisms.
Collapse
Affiliation(s)
| | - Shu-Xia Yi
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - Richard E. Lee
- Department of Zoology, Miami University, Oxford, OH 45056; and
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, OH 43210
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
54
|
Phosphorylation and feedback regulation of metabotropic glutamate receptor 1 by calcium/calmodulin-dependent protein kinase II. J Neurosci 2013; 33:3402-12. [PMID: 23426668 DOI: 10.1523/jneurosci.3192-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The metabotropic glutamate receptor 1 (mGluR1) is a Gα(q)-protein-coupled receptor and is distributed in broad regions of the mammalian brain. As a key element in excitatory synaptic transmission, the receptor regulates a wide range of cellular and synaptic activities. In addition to regulating its targets, the receptor itself is believed to be actively regulated by intracellular signals, although underlying mechanisms are essentially unknown. Here we found that a synapse-enriched protein kinase, Ca²⁺/calmodulin-dependent protein kinase IIα (CaMKIIα), directly binds to the intracellular C terminus (CT) of mGluR1a. This binding is augmented by Ca²⁺ in vitro. The direct interaction promotes CaMKIIα to phosphorylate mGluR1a at a specific threonine site (T871). In rat striatal neurons, the mGluR1 agonist triggers the receptor-associated phosphoinositide signaling pathway to induce Ca²⁺-dependent recruitment of CaMKIIα to mGluR1a-CT. This enables the kinase to inhibit the response of the receptor to subsequent agonist exposure. Our data identify an agonist-induced and Ca²⁺-dependent protein-protein interaction between a synaptic kinase and mGluR1, which constitutes a feedback loop facilitating desensitization of mGluR1a.
Collapse
|
55
|
Liu W, Chang L, Song Y, Gao X, Ling W, Lu T, Zhang Y, Wu Y. Immunolocalization of CaMKII and NR2B in hippocampal subregions of rat during postnatal development. Acta Histochem 2013; 115:264-72. [PMID: 22906554 DOI: 10.1016/j.acthis.2012.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Although the expression of CaMKII and synaptic-associated proteins has been widely studied, the temporospatial distribution of CaMKII and NMDAR subunits in different hippocampal subregions during postnatal development still lacks detailed information. In this study, we used immunofluorescent staining to assess CaMKII and NR2B expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, and P56. The results showed that from P0 to P56, CaMKII expression increased gradually, while NR2B expression decreased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Although the expression of CaMKII was negatively correlated with NR2B in CA1 and DG, the coexpression of CaMKII with NR2B existed in CA1, CA3, and DG during postnatal development. Interestingly, after P21, CaMKII expression and the coexpression of CaMKII with NR2B became obvious in the Stratum lucidum of CA3. The specific temporospatial distribution pattern of CaMKII with NR2B might be related to the different physiological functions during postnatal development. Discovery of the alteration of the relationship between expression of CaMKII and NMDAR subunits may be helpful for understanding mechanisms and therapy of neurodegenerative diseases.
Collapse
|
56
|
Pereira S, Yu WQ, Frigolet ME, Beaudry JL, Shpilberg Y, Park E, Dirlea C, Nyomba BLG, Riddell MC, Fantus IG, Giacca A. Duration of rise in free fatty acids determines salicylate's effect on hepatic insulin sensitivity. J Endocrinol 2013; 217:31-43. [PMID: 23328071 PMCID: PMC3601809 DOI: 10.1530/joe-12-0214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have shown in rats that sodium salicylate (SS), which inhibits IkBa kinase B (IKKB), prevents hepatic and peripheral insulin resistance caused by short-term (7 h) i.v. administration of Intralipid and heparin (IH). We wished to further determine whether this beneficial effect of SS persisted after prolonged (48 h) IH infusion, which better mimics the chronic free fatty acid (FFA) elevation of obesity. Hence, we performed hyperinsulinemic euglycemic clamps with tritiated glucose methodology to determine hepatic and peripheral insulin sensitivity in rats infused with saline, IH, IH and SS, or SS alone. SS prevented peripheral insulin resistance (P<0.05) caused by prolonged plasma FFA elevation; however, it did not prevent hepatic insulin resistance. In skeletal muscle, protein levels of phospho-IkBa were augmented by prolonged IH administration and this was prevented by SS, suggesting that IH activates while SS prevents the activation of IKKB. Markers of IKKB activation, namely protein levels of phospho-IkBa and IkBa, indicated that IKKB is not activated in the liver after prolonged FFA elevation. Phosphorylation of serine 307 at insulin receptor substrate (IRS)-1, which is a marker of proximal insulin resistance, was not altered by IH administration in the liver, suggesting that this is not a site of hepatic insulin resistance in the prolonged lipid infusion model. Our results suggest that the role of IKKB in fat-induced insulin resistance is time and tissue dependent and that hepatic insulin resistance induced by prolonged lipid elevation is not due to an IRS-1 serine 307 kinase.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Disease Models, Animal
- Emulsions
- Fatty Acids, Nonesterified/blood
- Female
- Heparin
- I-kappa B Proteins/antagonists & inhibitors
- I-kappa B Proteins/metabolism
- Infusions, Intravenous
- Insulin Resistance
- Kinetics
- Liver/drug effects
- Liver/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- NF-KappaB Inhibitor alpha
- Obesity/blood
- Obesity/drug therapy
- Obesity/immunology
- Obesity/metabolism
- Phospholipids
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Random Allocation
- Rats
- Rats, Wistar
- Sodium Salicylate/administration & dosage
- Sodium Salicylate/therapeutic use
- Soybean Oil
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
| | - Wen Qin Yu
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
| | - María E Frigolet
- Department of Medicine, Mount Sinai HospitalToronto, OntarioCanada
- Toronto General Research Institute and Banting and Best Diabetes Centre, University Health NetworkToronto, OntarioCanada
| | - Jacqueline L Beaudry
- Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York UniversityToronto, OntarioCanada
| | - Yaniv Shpilberg
- Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York UniversityToronto, OntarioCanada
| | - Edward Park
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
| | - Cristina Dirlea
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
| | - B L Grégoire Nyomba
- Department of Internal Medicine, University of ManitobaWinnipeg, ManitobaCanada
| | - Michael C Riddell
- Muscle Health Research Center and Physical Activity and Chronic Disease Unit, Faculty of Health, School of Kinesiology and Health Science, York UniversityToronto, OntarioCanada
| | - I George Fantus
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
- Department of Medicine, Mount Sinai HospitalToronto, OntarioCanada
- Toronto General Research Institute and Banting and Best Diabetes Centre, University Health NetworkToronto, OntarioCanada
| | - Adria Giacca
- Department of Physiology, University of TorontoMedical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8Canada
- Correspondence should be addressed to A Giacca;
| |
Collapse
|
57
|
McCoy F, Darbandi R, Chen SI, Eckard L, Dodd K, Jones K, Baucum AJ, Gibbons JA, Lin SH, Colbran RJ, Nutt LK. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem 2013; 288:8838-48. [PMID: 23400775 PMCID: PMC3610959 DOI: 10.1074/jbc.m112.437186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/22/2013] [Indexed: 11/06/2022] Open
Abstract
The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways.
Collapse
Affiliation(s)
- Francis McCoy
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Rashid Darbandi
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Si-Ing Chen
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Laura Eckard
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Keela Dodd
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Kelly Jones
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Anthony J. Baucum
- the Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - Sue-Hwa Lin
- the Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Roger J. Colbran
- the Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute and Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Leta K. Nutt
- From the Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
58
|
Hoffman L, Farley MM, Waxham MN. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry 2013; 52:1198-207. [PMID: 23343535 DOI: 10.1021/bi3016586] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium-calmodulin-dependent protein kinase II (CaMKII) has been implicated in a wide variety of cellular processes, which include a critical regulatory role in actin cytoskeletal assembly. CaMKII is ubiquitous in cells, expressed as one of four isoforms termed α, β, γ, and δ. Characterization of the CaMKII-actin interaction has mainly focused on the β isoform, which has been shown to bundle actin filaments and sequester actin monomers in an activity-dependent manner. Much less is known about the interactions of other CaMKII isoforms with actin. In this work, isoform specific interactions of CaMKII with actin are described and reveal that the δ isoform of CaMKII bundles F-actin filaments like the β isoform while the γ isoform induces a novel layered structure in filaments. Using electron tomography, CaMKII holoenzymes are clearly identified in the complexes bridging the actin filaments, allowing direct visualization of the interactions between CaMKII isoforms and actin. In addition, we determined the isoform specificity of CaMKII-mediated inhibition of actin polymerization and discovered that all isoforms inhibit polymerization to varying degrees: β > γ ≈ δ > α (from most to least effective). Ca(2+)/CaM activation of all kinase isoforms produced a robust increase in actin polymerization that surpassed the rates of polymerization in the absence of kinase inhibition. These results indicate that diversity exists between the types of CaMKII-actin interactions mediated by the different isoforms and that the CaMKII isoform composition differentially impacts the formation and maintenance of the actin cytoskeleton.
Collapse
Affiliation(s)
- Laurel Hoffman
- The Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
59
|
Bavagnoli L, Maga G. Identification of host cell factors involved in influenza A virus infection. Future Virol 2013. [DOI: 10.2217/fvl.12.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As obligatory intracellular parasites, viruses need to take control of the metabolic pathways of the infected cells in order to complete their replication. Such an extraordinary ability must rely on specific, essential protein–protein interactions with key components of the cellular machinery. Besides providing valuable information about host–virus relationships, these studies can lead to the identification of novel pharmacological targets for an antiviral chemotherapeutic approach, based on the inhibition of host factors essential for viral replication. Here, we will review the most recent studies identifying host cell proteins involved in the influenza virus lifecycle.
Collapse
Affiliation(s)
- Laura Bavagnoli
- Institute of Molecular Genetics – IGM CNR, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics – IGM CNR, via Abbiategrasso 207, I-27100 Pavia, Italy.
| |
Collapse
|
60
|
Ahmadi S, Amiri S, Rafieenia F, Rostamzadeh J. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal. Basic Clin Neurosci 2013; 4:146-52. [PMID: 25337341 PMCID: PMC4202531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 01/22/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. METHODS In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days of morphine withdrawal. Control groups received saline for 7 consecutive days. For gene expression study, rats' brains were removed and the hippocampus was dissected in separate groups on days 1, 3, 7, 14, and 21 since discontinuation of of morphine injection. A semi-quantitative RT-PCR method was used to evaluate the gene expression profile. RESULTS Tolerance to morphine was verified by a significant decrease in morphine analgesia in a hotplate test on day 8 (one day after the final repeated morphine injections). Results showed that gene expression of CaMKIIα at mRNA level on day 1, 3, 7, 14 and 21 of morphine withdrawal was significantly altered as compared to the saline control group. Post hoc Tukey's test revealed a significantly enhanced CaMKIIα gene expression on day 14. DISCUSSION It can be concluded that CaMKIIα gene expression during repeated injections of morphine is increased and this increase continues up to 14 days of withdrawal then settles at a new set point. Therefore, the strong morphine reward-related memory in morphine abstinent animals may, at least partly be attributed to, the up-regulation of CaMKIIα in the hippocampus over 14 days of morphine withdrawal.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran,Corresponding Author: Shamseddin Ahmadi, PhD, Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran. Tel: (+98871)-6660075 /Fax: (+98871)-6622702. E-mail:
| | - Shahin Amiri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Rafieenia
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
61
|
Kim KS, Kim H, Park SK, Han PL. The dorsal striatum expressing adenylyl cyclase-5 controls behavioral sensitivity of the righting reflex to high-dose ethanol. Brain Res 2012; 1489:27-36. [PMID: 23063718 DOI: 10.1016/j.brainres.2012.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 11/16/2022]
Abstract
High-dose ethanol inflicts sedation and loss of righting reflex (LORR). Recently, it was reported that AC5 knockout (AC5(-/-)) mice consumed more ethanol and showed reduced sensitivity to high-dose ethanol compared to wild-type mice. As an extension of the previous study, in the present study we examined the signaling mechanism regulating altered behavioral sensitivity of LORR in AC5(-/-) mice. AC5(-/-) mice had enhanced phosphorylation of the NR2B subunit of NMDA receptors in the dorsal striatum and a partial reduction of MK801 (NMDA receptor antagonist)/ethanol-induced LORR. AC5(-/-) mice showed increased levels of phospho-CaMKIIα, phospho-CREB, and BDNF in the dorsal striatum. CaMKIIα(+/-) or BDNF(+/-) mice displayed enhanced LORR, a behavioral phenotype opposite to that displayed by AC5(-/-) mice. Consistently with these results, stereotaxic infusion of KN62 (CaMKII inhibitor), siRNA-CaMKIIα, or siRNA-BDNF, within the dorsal striatum was sufficient to prolong LORR. These results suggest that neural mechanism is important for regulating behavioral sensitivity of LORR and that the signaling pathway(s) interplayed by AC5, CaMKIIα and BDNF within the dorsal striatum is important for regulating the duration of ethanol-induced LORR.
Collapse
Affiliation(s)
- Kyoung-Shim Kim
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | |
Collapse
|
62
|
Lemieux M, Labrecque S, Tardif C, Labrie-Dion É, Lebel É, De Koninck P. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. ACTA ACUST UNITED AC 2012; 198:1055-73. [PMID: 22965911 PMCID: PMC3444784 DOI: 10.1083/jcb.201202058] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic plasticity correlates with the local dendritic translocation of CaMKII in a Ca2+- and microtubule-dependent manner. The processing of excitatory synaptic inputs involves compartmentalized dendritic Ca2+ oscillations. The downstream signaling evoked by these local Ca2+ transients and their impact on local synaptic development and remodeling are unknown. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is an important decoder of Ca2+ signals and mediator of synaptic plasticity. In addition to its known accumulation at spines, we observed with live imaging the dynamic recruitment of CaMKII to dendritic subdomains adjacent to activated synapses in cultured hippocampal neurons. This localized and transient enrichment of CaMKII to dendritic sites coincided spatially and temporally with dendritic Ca2+ transients. We show that it involved an interaction with microtubular elements, required activation of the kinase, and led to localized dendritic CaMKII autophosphorylation. This process was accompanied by the adjacent remodeling of spines and synaptic AMPA receptor insertion. Replacement of endogenous CaMKII with a mutant that cannot translocate within dendrites lessened this activity-dependent synaptic plasticity. Thus, CaMKII could decode compartmental dendritic Ca2+ transients to support remodeling of local synapses.
Collapse
Affiliation(s)
- Mado Lemieux
- Institut universitaire en santé mentale de Québec, Québec G1J 2G3, Canada
| | | | | | | | | | | |
Collapse
|
63
|
Curcumin is an inhibitor of calcium/calmodulin dependent protein kinase II. Bioorg Med Chem 2012; 20:6040-7. [PMID: 22989913 DOI: 10.1016/j.bmc.2012.08.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 01/09/2023]
Abstract
Calcium/calmodulin dependent protein kinase II (CaMKII) is involved in the mechanisms underlying higher order brain functions such as learning and memory. CaMKII participates in pathological glutamate signaling also, since it is activated by calcium influx through the N-methyl-d-aspartate type glutamate receptor (NMDAR). In our attempt to identify phytomodulators of CaMKII, we observed that curcumin, a constituent of turmeric and its analogs inhibit the Ca(2+)-dependent and independent kinase activities of CaMKII. We further report that a heterocyclic analog of curcumin I, (3,5-bis[β-(4-hydroxy-3-methoxyphenyl)ethenyl]pyrazole), named as pyrazole-curcumin, is a more potent inhibitor of CaMKII than curcumin. Microwave assisted, rapid synthesis of curcumin I and its heterocyclic analogues is also reported.
Collapse
|
64
|
She K, Rose JK, Craig AM. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B. Mol Cell Neurosci 2012; 51:68-78. [PMID: 22902837 DOI: 10.1016/j.mcn.2012.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 11/28/2022] Open
Abstract
The calcium-calmodulin activated kinase CaMKII mediates many forms of learning and memory. Activity-regulated translocation of CaMKII to synapses is important for its functions in synaptic plasticity. Here, we tested the role of the NMDA receptor subunit GluN2B in recruiting CaMKIIα to synapses with different paradigms: global bath stimulation of NMDA receptors, a chemical long term potentiation (cLTP) protocol that selectively activates synaptic NMDA receptors, or local stimulation of NMDA receptors at a contiguous set of ~10-30 synapses that triggers a propagating synaptic accumulation of CaMKII. Global or cLTP-induced synaptic accumulation of CaMKIIα occurred in wild-type but not sister GluN2B -/- cultured mouse hippocampal neurons. Expression of YFP-GluN2B, but not a similar level of YFP-GluN2A, rescued global and cLTP-induced CaMKIIα translocation. Using chimeric constructs, the pore-forming extracellular and membrane domains of GluN2A combined with the cytoplasmic tail of GluN2B were sufficient to rescue CaMKIIα translocation, whereas the reverse chimera was ineffective. Furthermore, the dual point mutation R1300Q,S1303D in GluN2B that blocks interaction of this high affinity site with CaMKII abolished rescue. Thus, CaMKII binding to GluN2B is required for global and cLTP-induced synaptic accumulation of CaMKIIα. However, surprisingly, locally induced propagating synaptic accumulation of CaMKIIα occurred normally in GluN2B -/- neurons, indistinguishably from wild-type. Thus, synaptic trapping of CaMKII during locally induced propagating translocation occurs by different mechanisms and molecular partners compared with global stimulation and cLTP paradigms. These findings underscore the complex regulatory properties and molecular interactions of CaMKIIα, a key player in synaptic plasticity.
Collapse
Affiliation(s)
- Kevin She
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | | | | |
Collapse
|
65
|
Lu Y, Kwan AH, Jeffries CM, Guss JM, Trewhella J. The motif of human cardiac myosin-binding protein C is required for its Ca2+-dependent interaction with calmodulin. J Biol Chem 2012; 287:31596-607. [PMID: 22801425 DOI: 10.1074/jbc.m112.383299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The N-terminal modules of cardiac myosin-binding protein C (cMyBP-C) play a regulatory role in mediating interactions between myosin and actin during heart muscle contraction. The so-called "motif," located between the second and third immunoglobulin modules of the cardiac isoform, is believed to modulate contractility via an "on-off" phosphorylation-dependent tether to myosin ΔS2. Here we report a novel Ca(2+)-dependent interaction between the motif and calmodulin (CaM) based on the results of a combined fluorescence, NMR, and light and x-ray scattering study. We show that constructs of cMyBP-C containing the motif bind to Ca(2+)/CaM with a moderate affinity (K(D) ∼10 μM), which is similar to the affinity previously determined for myosin ΔS2. However, unlike the interaction with myosin ΔS2, the Ca(2+)/CaM interaction is unaffected by substitution with a triphosphorylated motif mimic. Further, Ca(2+)/CaM interacts with the highly conserved residues (Glu(319)-Lys(341)) toward the C-terminal end of the motif. Consistent with the Ca(2+) dependence, the binding of CaM to the motif is mediated via the hydrophobic clefts within the N- and C-lobes that are known to become more exposed upon Ca(2+) binding. Overall, Ca(2+)/CaM engages with the motif in an extended clamp configuration as opposed to the collapsed binding mode often observed in other CaM-protein interactions. Our results suggest that CaM may act as a structural conduit that links cMyBP-C with Ca(2+) signaling pathways to help coordinate phosphorylation events and synchronize the multiple interactions between cMyBP-C, myosin, and actin during the heart muscle contraction.
Collapse
Affiliation(s)
- Yanling Lu
- School of Molecular Bioscience, Building G08, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
66
|
Coultrap SJ, Bayer KU. CaMKII regulation in information processing and storage. Trends Neurosci 2012; 35:607-18. [PMID: 22717267 DOI: 10.1016/j.tins.2012.05.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022]
Abstract
The Ca(2+)/Calmodulin(CaM)-dependent protein kinase II (CaMKII) is activated by Ca(2+)/CaM, but becomes partially autonomous (Ca(2+)-independent) upon autophosphorylation at T286. This hallmark feature of CaMKII regulation provides a form of molecular memory and is indeed important in long-term potentiation (LTP) of excitatory synapse strength and memory formation. However, emerging evidence supports a direct role in information processing, while storage of synaptic information may instead be mediated by regulated interaction of CaMKII with the NMDA receptor (NMDAR) complex. These and other CaMKII regulation mechanisms are discussed here in the context of the kinase structure and their impact on postsynaptic functions. Recent findings also implicate CaMKII in long-term depression (LTD), as well as functional roles at inhibitory synapses, lending renewed emphasis on better understanding the spatiotemporal control of CaMKII regulation.
Collapse
Affiliation(s)
- Steven J Coultrap
- Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
67
|
Zhou X, Zheng F, Moon C, Schlüter OM, Wang H. Bi-directional regulation of CaMKIIα phosphorylation at Thr286 by NMDA receptors in cultured cortical neurons. J Neurochem 2012; 122:295-307. [PMID: 22582824 DOI: 10.1111/j.1471-4159.2012.07787.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The N-methyl-D-aspartate (NMDA) receptor (NMDAR)-stimulated autophosphorylation of calmodulin-dependent kinase IIα at Thr286 may regulate many aspects of neuroplasticity. Here, we show that low NMDA concentration (20 μM) up-regulated Thr286 phosphorylation, and high concentration (100 μM) caused dephosphorylation. We next modulated the strength of NMDAR activation by manipulating NMDAR 2A subunit (NR2A) and NMDAR 2B subunit (NR2B), which represent the major NMDAR subtypes in forebrain regions. Pharmacological inhibition and molecular knockdown of NR2A or NR2B blocked 20 μM NMDA-induced phosphorylation. Conversely, over-expression of NR2A or NR2B enhanced phosphorylation by 20 μM NMDA. The 100 μM NMDA-induced dephosphorylation was suppressed by inhibition or knockdown of NR2A or NR2B, and enhanced by over-expression of NR2A or NR2B. Compared to NR2A, NR2B showed a higher impact on the NMDA-stimulated bi-directional regulation of Thr286 phosphorylation. We further found that activation of NR2A and NR2B by 100 μM NMDA-induced dephosphorylation through protein phosphatases (PP) that are inhibited by high concentration okadaic acid (1 μM), but not by PP2A and PP2B inhibitors. This novel function of NMDAR in dynamic regulation of calmodulin-dependent kinase IIα activity provides new evidence to support the current understanding that, depending on the degree of activation, NMDAR may lead to different and even opposing effects on intracellular signaling.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Physiology, Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | |
Collapse
|
68
|
Coultrap SJ, Barcomb K, Bayer KU. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity. PLoS One 2012; 7:e37176. [PMID: 22615928 PMCID: PMC3353915 DOI: 10.1371/journal.pone.0037176] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/17/2012] [Indexed: 01/13/2023] Open
Abstract
Background Autophosphorylation of the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) at T286 generates partially Ca2+/CaM-independent “autonomous” activity, which is thought to be required for long-term potentiation (LTP), a form of synaptic plasticity thought to underlie learning and memory. A requirement for T286 autophosphorylation also for efficient Ca2+/CaM-stimulated CaMKII activity has been described, but remains controversial. Methodology/Principal Findings In order to determine the contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity, the activity of CaMKII wild type and its phosphorylation-incompetent T286A mutant was compared. As the absolute activity can vary between individual kinase preparations, the activity was measured in six different extracts for each kinase (expressed in HEK-293 cells). Consistent with measurements on purified kinase (from a baculovirus/Sf9 cell expression system), CaMKII T286A showed a mildly but significantly reduced rate of Ca2+/CaM-stimulated phosphorylation for two different peptide substrates (to ∼75–84% of wild type). Additional slower CaMKII autophosphorylation at T305/306 inhibits stimulation by Ca2+/CaM, but occurs only minimally for CaMKII wild type during CaM-stimulated activity assays. Thus, we tested if the T286A mutant may show more extensive inhibitory autophosphorylation, which could explain its reduced stimulated activity. By contrast, inhibitory autophosphorylation was instead found to be even further reduced for the T286A mutant under our assay conditions. On a side note, the phospho-T305 antibody showed some basal background immuno-reactivity also with non-phosphorylated CaMKII, as indicated by T305/306A mutants. Conclusions/Significance These results indicate that Ca2+/CaM-stimulated CaMKII activity is mildly (∼1.2–1.3fold) further increased by additional T286 autophosphorylation, but that this autophosphorylation is not required for the major part of the stimulated activity. This indicates that the phenotype of CaMKII T286A mutant mice is indeed due to the lack of autonomous activity, as the T286A mutant showed no dramatic reduction in stimulated activity.
Collapse
Affiliation(s)
- Steven J. Coultrap
- Department of Pharmacology, University of Colorado Denver – School of Medicine, Aurora, Colorado, United States of America
| | - Kelsey Barcomb
- Department of Pharmacology, University of Colorado Denver – School of Medicine, Aurora, Colorado, United States of America
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Denver – School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
69
|
Kothmann WW, Trexler EB, Whitaker CM, Li W, Massey SC, O'Brien J. Nonsynaptic NMDA receptors mediate activity-dependent plasticity of gap junctional coupling in the AII amacrine cell network. J Neurosci 2012; 32:6747-59. [PMID: 22593045 PMCID: PMC3367513 DOI: 10.1523/jneurosci.5087-11.2012] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/28/2012] [Accepted: 03/19/2012] [Indexed: 11/21/2022] Open
Abstract
Many neurons are coupled by electrical synapses into networks that have emergent properties. In the retina, coupling in these networks is dynamically regulated by changes in background illumination, optimizing signal integration for the visual environment. However, the mechanisms that control this plasticity are poorly understood. We have investigated these mechanisms in the rabbit AII amacrine cell, a multifunctional retinal neuron that forms an electrically coupled network via connexin 36 (Cx36) gap junctions. We find that presynaptic activity of glutamatergic ON bipolar cells drives increased phosphorylation of Cx36, indicative of increased coupling in the AII network. The phosphorylation is dependent on activation of nonsynaptic NMDA receptors that colocalize with Cx36 on AII amacrine cells, and is mediated by CaMKII. This activity-dependent increase in Cx36 phosphorylation works in opposition to dopamine-driven reduction of phosphorylation, establishing a local dynamic regulatory mechanism, and accounting for the nonlinear control of AII coupling by background illumination.
Collapse
Affiliation(s)
- W Wade Kothmann
- Richard S. Ruiz Department of Ophthalmology and Visual Science, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
70
|
Jalan-Sakrikar N, Bartlett RK, Baucum AJ, Colbran RJ. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J Biol Chem 2012; 287:15275-83. [PMID: 22427672 PMCID: PMC3346149 DOI: 10.1074/jbc.m112.351817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Roger J. Colbran
- From the Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
71
|
Baucum AJ, Strack S, Colbran RJ. Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum. PLoS One 2012; 7:e31554. [PMID: 22348105 PMCID: PMC3278457 DOI: 10.1371/journal.pone.0031554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/11/2012] [Indexed: 12/02/2022] Open
Abstract
Mechanisms underlying age-dependent changes of dendritic spines on striatal medium spiny neurons are poorly understood. Spinophilin is an F-actin- and protein phosphatase 1 (PP1)-binding protein that targets PP1 to multiple downstream effectors to modulate dendritic spine morphology and function. We found that calcium/calmodulin-dependent protein kinase II (CaMKII) directly and indirectly associates with N- and C-terminal domains of spinophilin, but F-actin can displace CaMKII from the N-terminal domain. Spinophilin co-localizes PP1 with CaMKII on the F-actin cytoskeleton in heterologous cells, and spinophilin co-localizes with synaptic CaMKII in neuronal cultures. Thr286 autophosphorylation enhances the binding of CaMKII to spinophilin in vitro and in vivo. Although there is no change in total levels of Thr286 autophosphorylation, maturation from postnatal day 21 into adulthood robustly enhances the levels of CaMKII that co-immunoprecipitate with spinophilin from mouse striatal extracts. Moreover, N- and C-terminal domain fragments of spinophilin bind more CaMKII from adult vs. postnatal day 21 striatal lysates. Total levels of other proteins that interact with C-terminal domains of spinophilin decrease during maturation, perhaps reducing competition for CaMKII binding to the C-terminal domain. In contrast, total levels of α-internexin and binding of α-internexin to the spinophilin N-terminal domain increases with maturation, perhaps bridging an indirect interaction with CaMKII. Moreover, there is an increase in the levels of myosin Va, α-internexin, spinophilin, and PP1 in striatal CaMKII immune complexes isolated from adult and aged mice compared to those from postnatal day 21. These changes in spinophilin/CaMKII interactomes may contribute to changes in striatal dendritic spine density, morphology, and function during normal postnatal maturation and aging.
Collapse
Affiliation(s)
- Anthony J Baucum
- Department of Molecular Physiology and Biophysics, Vanderbilt-Kennedy Center, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
| | | | | |
Collapse
|
72
|
Calcium/calmodulin dependent kinase II contributes to persistent central neuropathic pain following spinal cord injury. Pain 2012; 153:710-721. [PMID: 22296735 DOI: 10.1016/j.pain.2011.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2011] [Accepted: 12/13/2011] [Indexed: 01/18/2023]
Abstract
Chronic central neuropathic pain after central nervous system injuries remains refractory to therapeutic interventions. A novel approach would be to target key intracellular signaling proteins that are known to contribute to continued activation by phosphorylation of kinases, transcription factors, and/or receptors that contribute to changes in membrane excitability. We demonstrate that one signaling kinase, calcium/calmodulin-dependent kinase II (CaMKII), is critical in maintaining aberrant dorsal horn neuron hyperexcitability in the neuropathic pain condition after spinal cord injury (SCI). After contusion SCI at spinal level T10, activated CaMKII (phosphorylated, pCaMKII) expression is significantly upregulated in the T7/8 spinal dorsal horn in neurons, but not glial cells, and in oligodendrocytes in the dorsal column in the same rats that displayed at-level mechanical allodynia. Furthermore, identified spinothalamic neurons demonstrated significant increases of pCaMKII after SCI compared to sham-treated control animals. However, neither astrocytes nor microglia showed pCaMKII expression in either sham-treated or SCI rats. To demonstrate causality, treatment of SCI rats with KN-93, which prevents CaMKII activation, significantly attenuated at-level mechanical allodynia and aberrant wide dynamic range neuronal activity evoked by brush, pressure, and pinch stimuli and a graded series of von Frey stimuli, respectively. Persistent CaMKII activation contributes to chronic central neuropathic pain by mechanisms that involve maintained hyperexcitability of wide dynamic range dorsal horn neurons. Furthermore, targeting key signaling proteins is a novel, useful therapeutic strategy for treating chronic central neuropathic pain.
Collapse
|
73
|
Ashpole NM, Song W, Brustovetsky T, Engleman EA, Brustovetsky N, Cummins TR, Hudmon A. Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calcium signaling and hyperexcitability. J Biol Chem 2012; 287:8495-506. [PMID: 22253441 DOI: 10.1074/jbc.m111.323915] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Stark Neuroscience Research Institute, Indiana University of School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
CaMKII binding to GluN2B is critical during memory consolidation. EMBO J 2012; 31:1203-16. [PMID: 22234183 DOI: 10.1038/emboj.2011.482] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/01/2011] [Indexed: 11/08/2022] Open
Abstract
Memory is essential for our normal daily lives and our sense of self. Ca(2+) influx through the NMDA-type glutamate receptor (NMDAR) and the ensuing activation of the Ca(2+) and calmodulin-dependent protein kinase (CaMKII) are required for memory formation and its physiological correlate, long-term potentiation (LTP). The Ca(2+) influx induces CaMKII binding to the NMDAR to strategically recruit CaMKII to synapses that are undergoing potentiation. We generated mice with two point mutations that impair CaMKII binding to the NMDAR GluN2B subunit. Ca(2+)-triggered postsynaptic accumulation is largely abrogated for CaMKII and destabilized for TARPs, which anchor AMPA-type glutamate receptors (AMPAR). LTP is reduced by 50% and phosphorylation of the AMPAR GluA1 subunit by CaMKII, which enhances AMPAR conductance, impaired. The mutant mice learn the Morris water maze (MWM) as well as WT but show deficiency in recall during the period of early memory consolidation. Accordingly, the activity-driven interaction of CaMKII with the NMDAR is important for recall of MWM memory as early as 24 h, but not 1-2 h, after training potentially due to impaired consolidation.
Collapse
|
75
|
|
76
|
Tan DX, Hardeland R, Manchester LC, Korkmaz A, Ma S, Rosales-Corral S, Reiter RJ. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:577-97. [PMID: 22016420 DOI: 10.1093/jxb/err256] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, The University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Skelding KA, Rostas JAP. The role of molecular regulation and targeting in regulating calcium/calmodulin stimulated protein kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:703-30. [PMID: 22453966 DOI: 10.1007/978-94-007-2888-2_31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium/calmodulin-stimulated protein kinases can be classified as one of two types - restricted or multifunctional. This family of kinases contains several structural similarities: all possess a calmodulin binding motif and an autoinhibitory region. In addition, all of the calcium/calmodulin-stimulated protein kinases examined in this chapter are regulated by phosphorylation, which either activates or inhibits their kinase activity. However, as the multifunctional calcium/calmodulin-stimulated protein kinases are ubiquitously expressed, yet regulate a broad range of cellular functions, additional levels of regulation that control these cell-specific functions must exist. These additional layers of control include gene expression, signaling pathways, and expression of binding proteins and molecular targeting. All of the multifunctional calcium/calmodulin-stimulated protein kinases examined in this chapter appear to be regulated by these additional layers of control, however, this does not appear to be the case for the restricted kinases.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Pharmacy and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
78
|
Liang R, Liu X, Wei L, Wang W, Zheng P, Yan X, Zhao Y, Liu L, Cao X. The modulation of the excitability of primary sensory neurons by Ca2+–CaM–CaMKII pathway. Neurol Sci 2011; 33:1083-93. [DOI: 10.1007/s10072-011-0907-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/14/2011] [Indexed: 01/19/2023]
|
79
|
Lin TY, Lu CW, Huang WJ, Wang SJ. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings. Synapse 2011; 66:232-9. [PMID: 22045627 DOI: 10.1002/syn.21505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/03/2011] [Indexed: 11/11/2022]
Abstract
Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan 220
| | | | | | | |
Collapse
|
80
|
Datta S, O'Malley MW, Patterson EH. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 2011; 31:17007-16. [PMID: 22114270 PMCID: PMC3229030 DOI: 10.1523/jneurosci.3981-11.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022] Open
Abstract
The pedunculopontine tegmentum nucleus (PPT) is critically involved in the regulation of wakefulness (W) and rapid eye movement (REM) sleep, but our understanding of the mechanisms of this regulation remains incomplete. The present study was designed to determine the role of PPT intracellular calcium/calmodulin kinase (CaMKII) signaling in the regulation of W and sleep. To achieve this aim, three different concentrations (0.5, 1.0, and 2.0 nmol) of the CaMKII activation inhibitor, KN-93, were microinjected bilaterally (100 nl/site) into the PPT of freely moving rats, and the effects on W, slow-wave sleep (SWS), REM sleep, and levels of phosphorylated CaMKII (pCaMKII) expression in the PPT were quantified. These effects, which were concentration-dependent and affected wake-sleep variables for 3 h, resulted in decreased W, due to reductions in the number and duration of W episodes; increased SWS and REM sleep, due to increases in episode duration; and decreased levels of pCaMKII expression in the PPT. Regression analyses revealed that PPT levels of pCaMKII were positively related with the total percentage of time spent in W (R(2) = 0.864; n = 28 rats; p < 0.001) and negatively related with the total percentage of time spent in sleep (R(2) = 0.863; p < 0.001). These data provide the first direct evidence that activation of intracellular CaMKII signaling in the PPT promotes W and suppresses sleep. These findings are relevant for designing a drug that could treat excessive sleepiness by promoting alertness.
Collapse
Affiliation(s)
- Subimal Datta
- Laboratory of Sleep and Cognitive Neuroscience, and Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | |
Collapse
|
81
|
βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses. J Neurosci 2011; 31:10141-8. [PMID: 21752990 DOI: 10.1523/jneurosci.5105-10.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The calcium/calmodulin-dependent kinase type II (CaMKII) holoenzyme of the forebrain predominantly consists of heteromeric complexes of the αCaMKII and βCaMKII isoforms. Yet, in contrast to αCaMKII, the role of βCaMKII in hippocampal synaptic plasticity and learning has not been investigated. Here, we compare two targeted Camk2b mouse mutants to study the role of βCaMKII in hippocampal function. Using a Camk2b(-/-) mutant, in which βCaMKII is absent, we show that both hippocampal-dependent learning and Schaffer collateral-CA1 long-term potentiation (LTP) are highly dependent upon the presence of βCaMKII. We further show that βCaMKII is required for proper targeting of αCaMKII to the synapse, indicating that βCaMKII regulates the distribution of αCaMKII between the synaptic pool and the adjacent dendritic shaft. In contrast, localization of αCaMKII, hippocampal synaptic plasticity and learning were unaffected in the Camk2b(A303R) mutant, in which the calcium/calmodulin-dependent activation of βCaMKII is prevented, while the F-actin binding and bundling property is preserved. This indicates that the calcium/calmodulin-dependent kinase activity of βCaMKII is fully dispensable for hippocampal learning, LTP, and targeting of αCaMKII, but implies a critical role for the F-actin binding and bundling properties of βCaMKII in synaptic function. Together, our data provide compelling support for a model of CaMKII function in which αCaMKII and βCaMKII act in concert, but with distinct functions, to regulate hippocampal synaptic plasticity and learning.
Collapse
|
82
|
Two candidates at the heart of dysfunction: The ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention—An in vivo perspective. Pharmacol Ther 2011; 131:204-20. [DOI: 10.1016/j.pharmthera.2011.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/19/2022]
|
83
|
O'Leary H, Liu WH, Rorabaugh JM, Coultrap SJ, Bayer KU. Nucleotides and phosphorylation bi-directionally modulate Ca2+/calmodulin-dependent protein kinase II (CaMKII) binding to the N-methyl-D-aspartate (NMDA) receptor subunit GluN2B. J Biol Chem 2011; 286:31272-81. [PMID: 21768120 DOI: 10.1074/jbc.m111.233668] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca(2+)/CaM but outlasts this initial Ca(2+)-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.
Collapse
Affiliation(s)
- Heather O'Leary
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
84
|
Calábria LK, da Cruz GCN, Nascimento R, Carvalho WJ, de Gouveia NM, Alves FV, Furtado FB, Ishikawa-Ankerhold HC, de Sousa MV, Goulart LR, Espindola FS. Overexpression of myosin-IIB in the brain of a rat model of streptozotocin-induced diabetes. J Neurol Sci 2011; 303:43-9. [PMID: 21306737 DOI: 10.1016/j.jns.2011.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 11/15/2022]
Abstract
The Ca(2+)/calmodulin complex interacts with and regulates various enzymes and target proteins known as calmodulin-binding proteins (CaMBPs). This group of proteins includes molecular motors such as myosins. In this study, we show that non-muscle myosin-IIB is overexpressed in the brains of diabetic rats. We isolated CaMBPs from the brains of non-diabetic rats and rats with streptozotocin-induced diabetes and purified them by immobilized-calmodulin affinity chromatography. The proteins were eluted with EGTA and urea, separated by SDS-PAGE, digested and submitted to peptide mass fingerprinting analysis. Thirteen intense bands were found in both types of brains, two were found exclusively in non-diabetic brains and four were found exclusively in diabetic brains. A large fraction of the eluted proteins contained putative IQ motifs or calmodulin-binding sites. The results of the myosin-IIB affinity chromatography elution, western blot and RT-PCR analyses suggest that myosin-IIB protein and mRNA are expressed at high levels in diabetic brains. This is the first study that has demonstrated differential expression of CaMBPs in diabetic and non-diabetic brain tissue through a comparative proteomic analysis, and it opens up a new approach to studying the relationship between the expression of myosins in the brain, hyperglycemia and intracellular calcium regulation.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Guo ML, Liu Z, Chu XP, Mao LM, Wang JQ. CaMKIIα, a modulator of M4 muscarinic acetylcholine receptors. Commun Integr Biol 2011; 3:465-7. [PMID: 21057642 DOI: 10.4161/cib.3.5.12476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 05/25/2010] [Indexed: 11/19/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are subject to the regulation by protein kinases. By controlling the phosphorylation-dephosphorylation balance, protein kinases actively modify GPCR expression and function. In a recent study, we have identified a novel phosphorylation-dependent regulation of Gαi/o-coupled muscarinic acetylcholine receptors. A synapse-enriched protein kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIα), binds directly and selectively to second intracellular loops of muscarinic M4 receptors (M4Rs). This Ca(2+)-sensitive binding enables CaMKIIα to phosphorylate M4Rs at a selective threonine residue. In rat striatal neurons which abundantly express M4Rs, rapid cytoplasmic Ca(2+) rises enhance the association of CaMKIIα with M4Rs and increase threonine phosphorylation of the receptor. This CaMKIIα-mediated phosphorylation results in a potentiation of M4R activity, which is critical for controlling cellular and behavioral responsivity to dopamine stimulation. In sum, our data identify a novel kinase-GPCR interaction. Through a Ca(2+)/activity-sensitive manner, CaMKIIα contributes to maintaining acetylcholine-dopamine homeostasis in the basal ganglia.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Basic Medical Science; School of Medicine; University of Missouri-Kansas City; Kansas City, MO USA
| | | | | | | | | |
Collapse
|
86
|
A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain. Nat Neurosci 2011; 14:973-83. [PMID: 21725312 PMCID: PMC3391735 DOI: 10.1038/nn.2857] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/28/2011] [Indexed: 01/13/2023]
Abstract
The protein kinase calcium/calmodulin-dependent kinase II (CaMKII) predominantly consists of the α and β isoforms in the brain. Although CaMKIIα functions have been elucidated, the unique catalytic functions of CaMKIIβ have remained unknown. Using knockdown analyses in primary neurons and in the rat cerebellar cortex in vivo, we report that CaMKIIβ operates at the centrosome in a CaMKIIα-independent manner to drive dendrite retraction and pruning. We also find that the targeting protein PCM1 localizes CaMKIIβ at the centrosome. Finally, we uncover the E3 ubiquitin ligase Cdc20-APC as a novel centrosomal substrate of CaMKIIβ. CaMKIIβ phosphorylates Cdc20 at Ser51, which induces Cdc20 dispersion from the centrosome, thereby inhibiting centrosomal Cdc20-APC activity and triggering the transition from growth to retraction of dendrites. Our findings define a novel isoform-specific function for CaMKIIβ that regulates ubiquitin signaling at the centrosome and thereby orchestrates dendrite patterning, with important implications for neuronal connectivity in the brain.
Collapse
|
87
|
Gustin RM, Shonesy BC, Robinson SL, Rentz TJ, Baucum AJ, Jalan-Sakrikar N, Winder DG, Stanwood GD, Colbran RJ. Loss of Thr286 phosphorylation disrupts synaptic CaMKIIα targeting, NMDAR activity and behavior in pre-adolescent mice. Mol Cell Neurosci 2011; 47:286-92. [PMID: 21627991 DOI: 10.1016/j.mcn.2011.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
In order to provide insight into in vivo roles of CaMKIIα autophosphorylation at Thr286 during postnatal development, behavioral, biochemical, and electrophysiological phenotypes of pre-adolescent Thr286 to Ala CaMKIIα knock-in (T286A-KI) and WT mice were examined. T286A-KI mice displayed cognitive deficits in a novel object recognition test and an anxiolytic phenotype in the elevated plus maze, suggesting disruption of normal developmental processes. At the molecular level, the ratio of total CaMKIIα to CaMKIIβ in hippocampal lysates was significantly decreased≈2-fold in T286A-KI mice, and levels of both isoforms in synaptic subcellular fractions were decreased by≈80%. Total levels of GluA1 AMPA-glutamate receptor subunits and phosphorylation of GluA1 at the CaMKII site (Ser831) in synaptic fractions were unaltered, as were the frequency and amplitude of AMPAR-mediated spontaneous excitatory postsynaptic currents at hippocampal CA3-CA1 synapses. Synaptic levels of NMDA-glutamate receptor GluN1, GluN2A and GluN2B subunits also were unaltered. However, the reduced ratio of CaMKII to NMDAR subunits in synaptic fractions was linked to increased synaptic NMDAR-mediated currents in T286A-KI mice, apparently due to increased functional contributions by GluN2B NMDARs (assessed by Ro 25-6981 sensitivity). Thus, disruption of CaMKII synaptic targeting caused by elimination of Thr286 autophosphorylation leads to synaptic and behavioral deficits during pre-adolescence.
Collapse
Affiliation(s)
- Richard M Gustin
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Jiao Y, Jalan-Sakrikar N, Robison AJ, Baucum AJ, Bass MA, Colbran RJ. Characterization of a central Ca2+/calmodulin-dependent protein kinase IIalpha/beta binding domain in densin that selectively modulates glutamate receptor subunit phosphorylation. J Biol Chem 2011; 286:24806-18. [PMID: 21610080 DOI: 10.1074/jbc.m110.216010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The densin C-terminal domain can target Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) in cells. Although the C-terminal domain selectively binds CaMKIIα in vitro, full-length densin associates with CaMKIIα or CaMKIIβ in brain extracts and in transfected HEK293 cells. This interaction requires a second central CaMKII binding site, the densin-IN domain, and an "open" activated CaMKII conformation caused by Ca(2+)/calmodulin binding, autophosphorylation at Thr-286/287, or mutation of Thr-286/287 to Asp. Mutations in the densin-IN domain (L815E) or in the CaMKIIα/β catalytic domain (I205/206K) disrupt the interaction. The amino acid sequence of the densin-IN domain is similar to the CaMKII inhibitor protein, CaMKIIN, and a CaMKIIN peptide competitively blocks CaMKII binding to densin. CaMKII is inhibited by both CaMKIIN and the densin-IN domain, but the inhibition by densin is substrate-selective. Phosphorylation of a model peptide substrate, syntide-2, or of Ser-831 in AMPA receptor GluA1 subunits is fully inhibited by densin. However, CaMKII phosphorylation of Ser-1303 in NMDA receptor GluN2B subunits is not effectively inhibited by densin in vitro or in intact cells. Thus, densin can target multiple CaMKII isoforms to differentially modulate phosphorylation of physiologically relevant downstream targets.
Collapse
Affiliation(s)
- Yuxia Jiao
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
89
|
Analysis of CaM-kinase signaling in cells. Cell Calcium 2011; 50:1-8. [PMID: 21529938 DOI: 10.1016/j.ceca.2011.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
A change in intracellular free calcium is a common signaling mechanism that modulates a wide array of physiological processes in most cells. Responses to increased intracellular Ca(2+) are often mediated by the ubiquitous protein calmodulin (CaM) that upon binding Ca(2+) can interact with and alter the functionality of numerous proteins including a family of protein kinases referred to as CaM-kinases (CaMKs). Of particular interest are multifunctional CaMKs, such as CaMKI, CaMKII, CaMKIV and CaMKK, that can phosphorylate multiple downstream targets. This review will outline several protocols we have used to identify which members and/or isoforms of this CaMK family mediate specific cellular responses with a focus on studies in neurons. Many previous studies have relied on a single approach such as pharmacological inhibitors or transfected dominant-negative kinase constructs. Since each of these protocols has its limitations, that will be discussed, we emphasize the necessity to use multiple, independent approaches in mapping out cellular signaling pathways.
Collapse
|
90
|
Hwang YP, Kim HG, Han EH, Choi JH, Park BH, Jung KH, Shin YC, Jeong HG. N-Acetylglucosamine suppress collagenases activation in ultraviolet B-irradiated human dermal fibroblasts: Involvement of calcium ions and mitogen-activated protein kinases. J Dermatol Sci 2011; 63:93-103. [PMID: 21600739 DOI: 10.1016/j.jdermsci.2011.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/31/2011] [Accepted: 04/11/2011] [Indexed: 01/10/2023]
Abstract
BACKGROUND N-Acetylglucosamine (GlcNAc) and its derivates have been utilized in dietary supplements and for therapeutic development due to their unique characteristics. GlcNAc is recognized primarily for its function as a precursor to hyaluronic acid, which plays a significant role in the structure and hydration of the extracellular matrix in skin, in both the epidermis and the dermis. OBJECTIVE We investigated the protective effects of GlcNAc on immortalized human skin fibroblasts (HS68) against UVB damage. We then explored the inhibitory effects of GlcNAc on UVB-induced collagenases and investigated the molecular mechanism underlying those effects. METHODS Those effects were assessed by semi-quantitative PCR, Western blotting and enzymatic activity assays. RESULTS GlcNAc increased the viability of, and inhibited ROS production in, HS68 cells exposed to UVB irradiation. Pre-treatment of HS68 cells with GlcNAc inhibited UVB-induced production of the collagenases MMP-1 and MMP-13. Western blot analysis further revealed that GlcNAc markedly suppressed the enhancement of collagen degradation in UVB-exposed HS68 cells. GlcNAc also suppressed UVB-induced activation of c-Jun, c-Fos and NF-κB and the phosphorylation of MAPKs and PI3K/Akt, upstream modulators of AP-1 and NF-κB. Moreover, GlcNAc decreased the UVB-induced influx of Ca(2+) into HS68 cells and the phosphorylation of Ca(2+)/calmodulin-dependent kinases (CaMKs). CONCLUSION The results indicate that GlcNAc inhibited UVB-induced collagenolytic MMP production by interfering with Ca(2+)-dependent Akt and MAPKs/AP-1 and NF-κB signaling. They may thus be potentially useful in the prevention and treatment of skin photoaging.
Collapse
Affiliation(s)
- Yong Pil Hwang
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Lucchesi W, Mizuno K, Giese KP. Novel insights into CaMKII function and regulation during memory formation. Brain Res Bull 2011; 85:2-8. [DOI: 10.1016/j.brainresbull.2010.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/15/2010] [Accepted: 10/29/2010] [Indexed: 01/17/2023]
|
92
|
LeBoeuf B, Guo X, García LR. The effects of transient starvation persist through direct interactions between CaMKII and ether-a-go-go K+ channels in C. elegans males. Neuroscience 2011; 175:1-17. [PMID: 21145946 PMCID: PMC3059131 DOI: 10.1016/j.neuroscience.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. EGL-2 and UNC-43 interactions, induced after food deprivation, maintain reduced excitability in muscles involved in sex. In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - L. René García
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|
93
|
Hwang YP, Oh KN, Yun HJ, Jeong HG. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J Dermatol Sci 2010; 61:23-31. [PMID: 21112745 DOI: 10.1016/j.jdermsci.2010.10.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/29/2010] [Accepted: 10/31/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation causes major changes in skin connective tissues as a result of the degradation of collagen, a major structural component of the extracellular matrix. This process is likely mediated by matrix metalloproteinases (MMPs). Such changes in collagenous skin tissues have been suggested to be causes of cutaneous aging and skin cancer. OBJECTIVE We investigated the protective effects of apigenin and luteolin on immortalized human keratinocytes (HaCaT) against UVA damage. We then explored the inhibitory effects of apigenin and luteolin on UVA-induced MMP-1 and investigated the molecular mechanism underlying those effects. METHODS HaCaT cells were treated with apigenin and luteolin for the indicated times followed by irradiation with UVA. Those effects were assessed by semi-quantitative PCR, Western blotting and enzymic activity assays. RESULTS These two compounds, at concentrations of 1-5μM, increased the viability of, and inhibited ROS production in HaCaT cells exposed to UVA irradiation. Pre-treatment of HaCaT cells with apigenin and luteolin also inhibited UVA-induced production of the collagenases MMP-1. They also suppressed UVA-induced expression of c-Jun and c-Fos and the phosphorylation of three MAP kinases, upstream modulators of AP-1. Furthermore, the same two flavonoids decreased the UVA-induced influx of Ca(2+) into HaCaT cells and the phosphorylation of Ca(2+)/calmodulin-dependent kinases (CaMKs). CONCLUSION The results indicate that apigenin and luteolin inhibited UVA-induced collagenolytic MMP-1 production by interfering with Ca(2+)-dependent MAPKs and AP-1 signaling. They may thus be potentially useful in the prevention and treatment of skin photoaging.
Collapse
Affiliation(s)
- Yong Pil Hwang
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
94
|
Graupner M, Brunel N. Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models. Front Comput Neurosci 2010; 4. [PMID: 20948584 PMCID: PMC2953414 DOI: 10.3389/fncom.2010.00136] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/25/2010] [Indexed: 01/02/2023] Open
Abstract
We review biophysical models of synaptic plasticity, with a focus on spike-timing dependent plasticity (STDP). The common property of the discussed models is that synaptic changes depend on the dynamics of the intracellular calcium concentration, which itself depends on pre- and postsynaptic activity. We start by discussing simple models in which plasticity changes are based directly on calcium amplitude and dynamics. We then consider models in which dynamic intracellular signaling cascades form the link between the calcium dynamics and the plasticity changes. Both mechanisms of induction of STDP (through the ability of pre/postsynaptic spikes to evoke changes in the state of the synapse) and of maintenance of the evoked changes (through bistability) are discussed.
Collapse
Affiliation(s)
- Michael Graupner
- Center for Neural Science, New York University New York City, NY, USA
| | | |
Collapse
|
95
|
Bodenstein C, Knoke B, Marhl M, Perc M, Schuster S. Using Jensen's inequality to explain the role of regular calcium oscillations in protein activation. Phys Biol 2010; 7:036009. [PMID: 20834115 DOI: 10.1088/1478-3975/7/3/036009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oscillations of cytosolic Ca(2 +) are very important for cellular signalling in excitable and non-excitable cells. The information of various extracellular stimuli is encoded into oscillating patterns of Ca(2 +) that subsequently lead to the activation of different Ca(2 +)-sensitive target proteins in the cell. The question remains, however, why this information is transmitted by means of an oscillating rather than a constant signal. Here we show that, in fact, Ca(2 +) oscillations can achieve a better activation of target proteins than a comparable constant signal with the same amount of Ca(2 +) used. For this we use Jensen's inequality that describes the relation between the function value of the average of a set of argument values and the average of the function values of the arguments from that set. We analyse the role of the cooperativity of the binding of Ca(2 +) and of zero-order ultrasensitivity, which are two properties that are often observed in experiments on the activation of Ca(2 +)-sensitive target proteins. Our results apply to arbitrary oscillation shapes and a very general decoding model, thus generalizing the observations of several previous studies. We compare our results with data from experimental studies investigating the activation of nuclear factor of activated T cells (NFAT) and Ras by oscillatory and constant signals. Although we are restricted to specific approximations due to the lack of detailed kinetic data, we find good qualitative agreement with our theoretical predictions.
Collapse
Affiliation(s)
- C Bodenstein
- Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
96
|
Francescatto L, Rothschild SC, Myers AL, Tombes RM. The activation of membrane targeted CaMK-II in the zebrafish Kupffer's vesicle is required for left-right asymmetry. Development 2010; 137:2753-62. [DOI: 10.1242/dev.049627] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intracellular calcium ion (Ca2+) elevation on the left side of the mouse embryonic node or zebrafish Kupffer's vesicle (KV) is the earliest asymmetric molecular event that is functionally linked to lateral organ placement in these species. In this study, Ca2+/CaM-dependent protein kinase (CaMK-II) is identified as a necessary target of this Ca2+ elevation in zebrafish embryos. CaMK-II is transiently activated in approximately four interconnected cells along the anterior left wall of the KV between the six- and 12-somite stages, which is coincident with known left-sided Ca2+ elevations. Within these cells, activated CaMK-II is observed at the surface and in clusters, which appear at the base of some KV cilia. Although seven genes encode catalytically active CaMK-II in early zebrafish embryos, one of these genes also encodes a truncated inactive variant (αKAP) that can hetero-oligomerize with and target active enzyme to membranes. αKAP, β2 CaMK-II and γ1 CaMK-II antisense morpholino oligonucleotides, as well as KV-targeted dominant negative CaMK-II, randomize organ laterality and southpaw (spaw) expression in lateral plate mesoderm (LPM). Left-sided CaMK-II activation was most dependent on an intact KV, the PKD2 Ca2+ channel and γ1 CaMK-II; however, αKAP, β2 CaMK-II and the RyR3 ryanodine receptor were also necessary for full CaMK-II activation. This is the first report to identify a direct Ca2+-sensitive target in left-right asymmetry and supports a model in which membrane targeted CaMK-II hetero-oligomers in nodal cells transduce the left-sided PKD2-dependent Ca2+ signals to the LPM.
Collapse
Affiliation(s)
- Ludmila Francescatto
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Sarah C. Rothschild
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Alexandra L. Myers
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| | - Robert M. Tombes
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, USA
| |
Collapse
|
97
|
CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. Proc Natl Acad Sci U S A 2010; 107:14437-42. [PMID: 20660727 DOI: 10.1073/pnas.1009268107] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CaMKII is an abundant synaptic protein strongly implicated in plasticity. Overexpression of autonomous (T286D) CaMKII in CA1 hippocampal cells enhances synaptic strength if T305/T306 sites are not phosphorylated, but decreases synaptic strength if they are phosphorylated. It has generally been thought that spine size and synaptic strength covary; however, the ability of CaMKII and its various phosphorylation states to control spine size has not been previously examined. Using a unique method that allows the effects of overexpressed protein to be monitored over time, we found that all autonomous forms of CaMKII increase spine size. Thus, for instance, the T286D/T305D/T306D form increases spine size but decreases synaptic strength. Further evidence for such dissociation is provided by experiments with the T286D form that has been made catalytically dead. This form fails to enhance synaptic strength but increases spine size, presumably by a structural process. Thus very different mechanisms govern how CaMKII affects spine structure and synaptic function.
Collapse
|
98
|
Blasco S, Verdejo B, Clares MP, Castillo CE, Algarra AG, Latorre J, Máñez MA, Basallote MG, Soriano C, García-España E. Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings. Inorg Chem 2010; 49:7016-27. [DOI: 10.1021/ic100609h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Salvador Blasco
- Departamento de Química, Inorgánica, Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna Apdo 22085, 46071, Valencia, Spain
| | - Begoña Verdejo
- Departamento de Química, Inorgánica, Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna Apdo 22085, 46071, Valencia, Spain
| | - M. Paz Clares
- Departamento de Química, Inorgánica, Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna Apdo 22085, 46071, Valencia, Spain
| | - Carmen E. Castillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Universidad de Cádiz, Apdo 40, Puerto Real, 11510 Cádiz, Spain
| | - Andrés G. Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Universidad de Cádiz, Apdo 40, Puerto Real, 11510 Cádiz, Spain
| | - Julio Latorre
- Departamento de Química Inorgánica, Universidad de Valencia, Instituto de Ciencia de Materiales, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| | - M. Angeles Máñez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Universidad de Cádiz, Apdo 40, Puerto Real, 11510 Cádiz, Spain
| | - Manuel G. Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias, Universidad de Cádiz, Apdo 40, Puerto Real, 11510 Cádiz, Spain
| | - Conxa Soriano
- Departamento de Química Orgánica, Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna Apdo 22085, 46071, Valencia, Spain
| | - Enrique García-España
- Departamento de Química, Inorgánica, Universidad de Valencia, Instituto de Ciencia Molecular, Edificio de Institutos de Paterna Apdo 22085, 46071, Valencia, Spain
| |
Collapse
|
99
|
Guo ML, Fibuch EE, Liu XY, Choe ES, Buch S, Mao LM, Wang JQ. CaMKIIalpha interacts with M4 muscarinic receptors to control receptor and psychomotor function. EMBO J 2010; 29:2070-81. [PMID: 20461055 DOI: 10.1038/emboj.2010.93] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 04/20/2010] [Indexed: 11/09/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the mammalian brain and are essential for neuronal functions. These receptors are believed to be actively regulated by intracellular signals, although the underlying mechanisms are largely unknown. In this study, we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) binds directly and selectively to one of five mAChR subtypes, M4 receptors (M4Rs), at their C-terminal regions of second intracellular loops. This binding relies on Ca(2+) activation of the kinase and leads to the phosphorylation of M4Rs at a specific threonine site (Thr145). Complementary in vivo studies in rat striatal neurons enriched with M4Rs confirm that rising Ca(2+) recruits CaMKIIalpha to M4Rs to potentiate receptor signalling, which controls behavioural sensitivity to dopamine stimulation in an activity-dependent manner. Our data identify a new model of protein-protein interactions. In a Ca(2+)-sensitive manner, CaMKIIalpha regulates M4R efficacy and controls the acetylcholine-dopamine balance in the basal ganglia and also the dynamics of movement.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Lin TY, Lu CW, Huang WJ, Wang SJ. Osthole or imperatorin-mediated facilitation of glutamate release is associated with a synaptic vesicle mobilization in rat hippocampal glutamatergic nerve endings. Synapse 2010; 64:390-6. [DOI: 10.1002/syn.20738] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|