51
|
Huang H, Zhou J, Cui Z, Wang B, Hu Y. Angiotensin II type 1 receptor-associated protein plays a role in regulating the local renin-angiotensin system in HSC-T6 cells. Mol Med Rep 2015; 12:3763-3768. [PMID: 26018598 DOI: 10.3892/mmr.2015.3849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 11/10/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to examine the expression of the angiotensin II type 1 receptor‑associated protein (ATRAP) in the rat hepatic stellate cell line HSC‑T6 and to determine its interactions with the local renin‑angiotensin system (RAS). To achieve this goal, the effect of stimulating HSC‑T6 cells with angiotensin II (AngII) and angiotensin‑(1‑7) [Ang‑(1‑7)], on the expression of ATRAP, the angiotensin II type I receptor (AT1R), the Mas receptor and the angiotensin converting enzyme 2 (ACE2) 2, 6, 12, 18, 24 and 36 h after stimulation was investigated. Changes in expression were quantified at the gene and protein level using RT‑qPCR and western blotting, respectively. A single dose of AngII (1 µmol/l) significantly increased the gene expression of ATRAP at 12 h, whereas ACE2 gene expression levels were significantly increased at 6 h and then returned to baseline at 12 h, prior to becoming significantly lower. A single dose of Ang‑(1‑7) at the same concentration as AngII induced ATRAP gene expression, which became statistically significant at the 6 h time‑point, reached a peak at 12 h and remained elevated throughout the experimental time‑course. In addition, ACE2 mRNA expression was significantly suppressed by Ang‑(1‑7) at 6 h, reaching its lowest expression level at 24 h. The expression of AT1R and the Mas receptor were unaffected by stimulation with AngII and Ang‑(1‑7). The western blotting results were generally consistent with the mRNA expression data. In conclusion, it was identified that ATRAP is endogenously expressed in HSC‑T6 cells and therefore, may be critical in regulating the local RAS in these cells.
Collapse
Affiliation(s)
- Haiyang Huang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhonglin Cui
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Biao Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yunwei Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
52
|
Mak KY, Chin R, Cunningham SC, Habib MR, Torresi J, Sharland AF, Alexander IE, Angus PW, Herath CB. ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice. Mol Ther 2015; 23:1434-43. [PMID: 25997428 DOI: 10.1038/mt.2015.92] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) which breaks down profibrotic peptide angiotensin II to antifibrotic peptide angiotensin-(1-7) is a potential therapeutic target in liver fibrosis. We therefore investigated the long-term therapeutic effect of recombinant ACE2 using a liver-specific adeno-associated viral genome 2 serotype 8 vector (rAAV2/8-ACE2) with a liver-specific promoter in three murine models of chronic liver disease, including carbon tetrachloride-induced toxic injury, bile duct ligation-induced cholestatic injury, and methionine- and choline-deficient diet-induced steatotic injury. A single injection of rAAV2/8-ACE2 was administered after liver disease has established. Hepatic fibrosis, gene and protein expression, and the mechanisms that rAAV2/8-ACE2 therapy associated reduction in liver fibrosis were analyzed. Compared with control group, rAAV2/8-ACE2 therapy produced rapid and sustained upregulation of hepatic ACE2, resulting in a profound reduction in fibrosis and profibrotic markers in all diseased models. These changes were accompanied by reduction in hepatic angiotensin II levels with concomitant increases in hepatic angiotensin-(1-7) levels, resulting in significant reductions of NADPH oxidase assembly, oxidative stress and ERK1/2 and p38 phosphorylation. Moreover, rAAV2/8-ACE2 therapy normalized increased intrahepatic vascular tone in fibrotic livers. We conclude that rAAV2/8-ACE2 is an effective liver-targeted, long-term therapy for liver fibrosis and its complications without producing unwanted systemic effects.
Collapse
Affiliation(s)
- Kai Y Mak
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Ruth Chin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Miriam R Habib
- Transplantation Research Group, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Joseph Torresi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Alexandra F Sharland
- Transplantation Research Group, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Chandana B Herath
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
53
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
54
|
Zambelli V, Bellani G, Borsa R, Pozzi F, Grassi A, Scanziani M, Castiglioni V, Masson S, Decio A, Laffey JG, Latini R, Pesenti A. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med Exp 2015. [PMID: 26215809 PMCID: PMC4512981 DOI: 10.1186/s40635-015-0044-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The renin-angiotensin system (RAS) plays a role in the pathogenesis of ARDS, Angiotensin II (Ang-II) contributing to the pathogenesis of inflammation and fibrogenesis. Angiotensin-(1-7) (Ang-(1-7)) may antagonize the effects of Ang-II. This study was aimed at evaluating the potential for Ang-(1-7) to reduce injury, inflammation and fibrosis in an experimental model of ARDS in the acute and late phases. Methods Male Sprague Dawley rats underwent an instillation of 0.1 M hydrochloric acid (HCl, 2.5 ml/kg) into the right bronchus. In an acute ARDS study, acid-injured rats were subjected to high stretch mechanical ventilation (18 ml/kg) for 5 h and randomized to receive an intravenous infusion of either vehicle (saline), Ang-(1-7) at low dose(0.27 μg/kg/h) (ALD), or high dose (60 μg/kg/h) (AHD) starting simultaneously with injury or 2 h afterwards. Arterial blood gas analysis and bronchoalveolar lavage (BAL) were performed to assess the injury. For the late ARDS study, after HCl instillation rats were randomized to either vehicle or high dose Ang-(1-7) (300 μg/kg/day) infused by mini osmotic pumps for two weeks, and lung hydroxyproline content measured. Results In the acute ARDS study, Ang-(1-7) led to a significant improvement in oxygenation (PaO2/FiO2 : vehicle 359 ± 86; ALD 436 ± 72; AHD 44 442 ± 56; ANOVA p = 0.007) and reduced white blood cells counts (vehicle 4,519 ± 2,234; ALD 2,496 ± 621; AHD 2,744 ± 119/mm3; ANOVA p = 0.004). Only treatment with high dose Ang-(1-7) reduced inflammatory cell numbers in BAL (vehicle 127 ± 34; AHD 96 ± 34/ μl; p = 0.033). Interestingly also delayed administration of Ang-(1-7) was effective in reducing injury. In later ARDS, Ang-(1-7) decreased hydroxyproline content (649 ± 202 and 1,117 ± 297 μg/lung; p < 0.05). Conclusions Angiotensin-(1-7), decreased the severity of acute lung injury and inflammation induced by combined acid aspiration and high stretch ventilation. Furthermore, continuous infusion of Ang-(1-7) reduced lung fibrosis 2 weeks following acid aspiration injury. These results call for further research on Ang-(1-7) as possible therapy for ARDS.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ye G, Qin Y, Lu X, Xu X, Xu S, Wu C, Wang X, Wang S, Pan D. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 459:18-23. [PMID: 25701390 DOI: 10.1016/j.bbrc.2015.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Angiogenesis is reported to play a pivotal role in the occurrence, development and metastasis of HCC. The renin-angiotensin system (RAS) is involved in the regulation of angiogenesis. Here, based on the analysis of HCC datasets from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), we found that there was a negative correlation between the mRNA levels of angiotensin converting enzyme 2 (ACE2) and CD34. To explore the association of RAS with the progression from fibrosis to cirrhosis to HCC, liver specimens and serum samples were collected from patients with hepatic fibrosis, cirrhosis and HCC. Relative hepatic mRNA levels of CD34 and ACE2 were determined by real-time PCR, and the serum concentrations of Angiotensin II (Ang II), Ang (1-7) and vascular endothelial growth factor (VEGF) were detected by ELISA. We found that ACE2 mRNA was gradually decreased, while CD34 mRNA was progressively increased with the increasing grade of disease severity. Concentrations of Ang II, Ang (1-7) and VEGF were higher in the sera of patients than in that of healthy volunteers. These proteins' concentrations were also progressively increased with the increasing grade of disease severity. Moreover, a positive correlation was found between VEGF and Ang II or Ang (1-7), while negative correlation was observed between mRNA levels of CD34 and ACE2. More importantly, patients with higher level of ACE2 expression had longer survival time than those with lower level of ACE2 expression. Taken together, our data suggests that the low expression of ACE2 may be a useful indicator of poor prognosis in HCC. The RAS may have a role in the progression of HCC.
Collapse
Affiliation(s)
- Guanxiong Ye
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Yong Qin
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China.
| | - Xianghong Lu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Xiangdong Xu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Shengqian Xu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Chengjun Wu
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Xinmei Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Shi Wang
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| | - Debiao Pan
- Department of Hepatobiliary Surgery, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, PR China
| |
Collapse
|
56
|
|
57
|
Moreira de Macêdo S, Guimarães TA, Feltenberger JD, Sousa Santos SH. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides 2014; 62:189-96. [PMID: 25453980 DOI: 10.1016/j.peptides.2014.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) is now recognized as an important modulator of body metabolic processes. The discovery of angiotensin-converting enzyme 2 (ACE2) has renewed interest in the potential therapeutic role of RAS modulation. Recent studies have pointed out the importance of the local balance between ACE/Ang-II/AT1 and ACE2/Ang-(1-7)/Mas arms to avoid liver metabolic diseases. Furthermore, non-alcoholic fatty liver disease is an increasing health problem that includes a spectrum of hepatic steatosis, steatohepatitis and fibrosis. Some new studies revealed that RAS imbalance appears to promote hepatic fibrogenesis; while the activation of ACE2/Ang-(1-7)/Mas counter-regulatory axis is able to prevent liver injuries. In this context, the aim of the present review is to discuss the importance of RAS in the development and prevention of liver disease. AT1 receptor activation by Ang II induces hepatic stellate cell contraction and proliferation, causes oxidative stress, endothelial dysfunction, cell growth and inflammation. In addition, both AT1 blocker administration and ACE inhibitors lead to a reduction in inflammation and improvement of hepatic fibrosis. Conversely, Ang-(1-7) infusion reduces fibrosis and proliferation mainly by suppression of hepatic stellate cell activation; Mas receptor antagonism aggravates liver fibrosis and severe liver steatosis. In conclusion, the use of ACE/Ang II/AT1 axis inhibitors associated with ACE2/Ang(1-7)/Mas axis activation is a promising new strategy serving as a novel therapeutic regimen to prevent and treat chronic liver diseases as well as acute liver injury.
Collapse
|
58
|
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2014; 169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT₁ receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases.
Collapse
Affiliation(s)
- A C Simões e Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
59
|
Rodrigues-Machado MG, Magalhães GS, Cardoso JA, Kangussu LM, Murari A, Caliari MV, Oliveira ML, Cara DC, Noviello MLM, Marques FD, Pereira JM, Lautner RQ, Santos RAS, Campagnole-Santos MJ. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol 2014; 170:835-46. [PMID: 23889691 DOI: 10.1111/bph.12318] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE AVE 0991 (AVE) is a non-peptide compound, mimic of the angiotensin (Ang)-(1-7) actions in many tissues and pathophysiological states. Here, we have investigated the effect of AVE on pulmonary remodelling in a murine model of ovalbumin (OVA)-induced chronic allergic lung inflammation. EXPERIMENTAL APPROACH We used BALB/c mice (6-8 weeks old) and induced chronic allergic lung inflammation by OVA sensitization (20 μg·mouse(-1) , i.p., four times, 14 days apart) and OVA challenge (1%, nebulised during 30 min, three times per·week, for 4 weeks). Control and AVE groups were given saline i.p and challenged with saline. AVE treatment (1 mg·kg(-1) ·per day, s.c.) or saline (100 μL·kg(-1) ·per day, s.c.) was given during the challenge period. Mice were anaesthetized 72 h after the last challenge and blood and lungs collected. In some animals, primary bronchi were isolated to test contractile responses. Cytokines were evaluated in bronchoalveolar lavage (BAL) and lung homogenates. KEY RESULTS Treatment with AVE of OVA sensitised and challenged mice attenuated the altered contractile response to carbachol in bronchial rings and reversed the increased airway wall and pulmonary vasculature thickness and right ventricular hypertrophy. Furthermore, AVE reduced IL-5 and increased IL-10 levels in the BAL, accompanied by decreased Ang II levels in lungs. CONCLUSIONS AND IMPLICATIONS AVE treatment prevented pulmonary remodelling, inflammation and right ventricular hypertrophy in OVA mice, suggesting that Ang-(1-7) receptor agonists are a new possibility for the treatment of pulmonary remodelling induced by chronic asthma.
Collapse
Affiliation(s)
- M G Rodrigues-Machado
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR), Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Zhang K, Meng X, Li D, Yang J, Kong J, Hao P, Guo T, Zhang M, Zhang Y, Zhang C. Angiotensin(1-7) attenuates the progression of streptozotocin-induced diabetic renal injury better than angiotensin receptor blockade. Kidney Int 2014; 87:359-69. [PMID: 25075768 PMCID: PMC4317508 DOI: 10.1038/ki.2014.274] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023]
Abstract
To explore the potential therapeutic effects of angiotensin(1–7) (Ang(1–7)), an endogenous ligand of the Mas receptor, on streptozotocin-induced diabetic nephropathy, male Wistar rats were randomly divided into two groups: a control group and a diabetic model group. After 12 weeks, the diabetic rats were divided into subgroups for 4-week treatments consisting of no-treatment group, small-, moderate-, and large-dose Ang(1–7) groups, a valsartan group, a large-dose Ang(1–7) plus valsartan group, and an A779 (antagonist of the Mas receptor) group, each with 15 rats. Ang(1–7) improved renal function, attenuated glomeruli sclerosis, oxidative stress, and cell proliferation, decreased the expression of collagen IV, TGF-β1, VEGF, NOX4, p47phox, PKCα, and PKCβ1, and the phosphorylation of Smad3. In the rat mesangial HBZY-1 cell line, Ang(1–7) decreased high-glucose-induced oxidative stress, the proliferation and expression of NOX4, p47phox, and TGF-β1, the phosphorylation of Smad3, collagen IV, and VEGF, and the membrane translocation of PKCα and PKCβ1. A779 blocked the effects of Ang(1–7) both in vivo and in vitro. The effects of large-dose Ang(1–7) alone and in combination with valsartan were superior to valsartan alone, but the combination had no significant synergistic effect compared with Ang(1–7) alone. Thus, Ang(1–7) ameliorated streptozotocin-induced diabetic renal injury. Large-dose treatment was superior to valsartan in reducing oxidative stress and inhibiting TGFβ1/Smad3- and VEGF-mediated pathways.
Collapse
Affiliation(s)
- Kai Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Dongmei Li
- Department of Otolaryngology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Kong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
61
|
Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy 2014; 16:1132-44. [PMID: 24642017 DOI: 10.1016/j.jcyt.2014.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/28/2013] [Accepted: 01/05/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Intravenous infusion of human amniotic epithelial cells (hAECs) has been shown to ameliorate hepatic fibrosis in murine models. Hepatic stellate cells (HSCs) are the principal collagen-secreting cells in the liver. The aim of this study was to investigate whether factors secreted by hAECs and present in hAEC-conditioned medium (CM) have anti-fibrotic effects on activated human HSCs. METHODS Human AECs were isolated from the placenta and cultured. Human hepatic stellate cells were exposed to hAEC CM to determine potential anti-fibrotic effects. RESULTS HSCs treated for 48 h with hAEC CM displayed a significant reduction in the expression of the myofibroblast markers α-smooth muscle actin and platelet-derived growth factor. Expression of the pro-fibrotic cytokine transforming growth factor-β1 (TGF-β1) and intracellular collagen were reduced by 45% and 46%, respectively. Human AEC CM induced HSC apoptosis in 11.8% of treated cells and reduced HSC proliferation. Soluble human leukocyte antigen-G1, a hAEC-derived factor, significantly decreased TGF-β1 and collagen production in activated HSCs, although the effect on collagen production was less than that of hAEC CM. The reduction in collagen and TGF-B1 could not be attributed to PGE2, relaxin, IL-10, TGF-B3, FasL or TRAIL. CONCLUSIONS Human AEC CM treatment suppresses markers of activation, proliferation and fibrosis in human HSCs as well as inducing apoptosis and reducing proliferation. Human AEC CM treatment may be effective in ameliorating liver fibrosis and warrants further study.
Collapse
|
62
|
Garg M, Burrell LM, Velkoska E, Griggs K, Angus PW, Gibson PR, Lubel JS. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: A pilot study. J Renin Angiotensin Aldosterone Syst 2014; 16:559-69. [PMID: 24505094 DOI: 10.1177/1470320314521086] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/15/2013] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The relationship between intestinal inflammation and circulating components of the renin-angiotensin system (RAS) is poorly understood. MATERIALS AND METHODS Demographic and clinical data were obtained from healthy controls and patients with inflammatory bowel disease (IBD). Plasma concentrations of the classical RAS components (angiotensin-converting enzyme (ACE) and angiotensin II (Ang II)) and alternative RAS components (ACE2 and angiotensin (1-7) (Ang (1-7))) were analysed by radioimmuno- and enzymatic assays. Systemic inflammation was assessed using serum C-reactive protein (CRP), white cell count, platelet count and albumin, and intestinal inflammation by faecal calprotectin. RESULTS Nineteen healthy controls (11 female; mean age 38 years, range 23-68), 19 patients with Crohn's disease (11 female; aged 45 years, range 23-76) and 15 patients with ulcerative colitis (6 female; aged 42 years, 26-64) were studied. Circulating classical RAS component levels were similar across the three groups, whereas ACE2 activity and Ang (1-7) concentrations were higher in patients with IBD compared to controls (ACE2: 21.5 vs 13.3 pmol/ml/min, p<0.05; Ang (1-7): 22.8 vs 14.1 pg/ml, p<0.001). Ang (1-7) correlated weakly with platelet and white cell counts, but not calprotectin or CRP, in patients with IBD. CONCLUSIONS Circulating components of the alternative RAS are increased in patients with IBD.
Collapse
Affiliation(s)
- Mayur Garg
- Department of Gastroenterology and Hepatology, Eastern Health, Australia Eastern Health Clinical School, Monash University, Australia
| | | | - Elena Velkoska
- Department of Medicine, The University of Melbourne, Australia
| | - Karen Griggs
- Department of Medicine, The University of Melbourne, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Australia Gastroenterology and Liver Transplant Unit, Austin Hospital, Australia
| | - Peter R Gibson
- Eastern Health Clinical School, Monash University, Australia Department of Gastroenterology, Department of Gastroenterology, The Alfred Hospital and Monash University, Australia
| | - John S Lubel
- Department of Gastroenterology and Hepatology, Eastern Health, Australia Eastern Health Clinical School, Monash University, Australia
| |
Collapse
|
63
|
Angiotensin (1–7) protects against stress-induced gastric lesions in rats. Biochem Pharmacol 2014; 87:467-76. [DOI: 10.1016/j.bcp.2013.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
64
|
Yeung LWY, Guruge KS, Taniyasu S, Yamashita N, Angus PW, Herath CB. Profiles of perfluoroalkyl substances in the liver and serum of patients with liver cancer and cirrhosis in Australia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 96:139-146. [PMID: 23849467 DOI: 10.1016/j.ecoenv.2013.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
The present cross-sectional study investigated 12 perfluoroalkyl substances (PFASs) in serum (n=79) and liver (n=66) samples from patients who had undergone liver transplantation for a range of conditions, such as hepatocellular carcinoma (HCC), cirrhosis due to chronic hepatitis C viral infection (HCV), both HCC and HCV, amyloidosis or acute liver failure. PFAS data from patients were compared to those in control serum (n=25) samples from liver donors with no known liver disease and to those in control liver (n=9) tissues collected during liver resection surgery. All samples showed detectable PFOS (serum: 0.621-126ng/mL; liver: 0.375-42.5ng/g wet wt) and PFOA (serum: 0.437-45.5ng/mL; liver: 0.101-2.25ng/g wet wt) concentrations. In general, in paired serum and liver samples, serum had higher PFOS, PFHxS, PFDA, PFNA, and PFOA concentrations than those in explanted livers from patients. These findings also suggest that pathological changes in diseased livers alter the distribution of PFASs between liver and serum. The results from control serum (2007-2008) suggested that PFOS, PFHxS, PFOA, and PFNA concentrations were lower than those previously reported from Australia for 2002-2003, and 2006-2007. The present study demonstrates, for the first time, the detection and comparison of a range of PFASs in the liver of patients with liver cancer and/or liver cirrhosis.
Collapse
Affiliation(s)
- Leo W Y Yeung
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Grace JA, Klein S, Herath CB, Granzow M, Schierwagen R, Masing N, Walther T, Sauerbruch T, Burrell LM, Angus PW, Trebicka J. Activation of the MAS receptor by angiotensin-(1-7) in the renin-angiotensin system mediates mesenteric vasodilatation in cirrhosis. Gastroenterology 2013; 145:874-884.e5. [PMID: 23796456 DOI: 10.1053/j.gastro.2013.06.036] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Splanchnic vascular hypocontractility with subsequent increased portal venous inflow leads to portal hypertension. Although the renin-angiotensin system contributes to fibrogenesis and increased hepatic resistance in patients with cirrhosis, little is known about its effects in the splanchnic vasculature, particularly those of the alternate system in which angiotensin (Ang) II is cleaved by the Ang-converting enzyme-2 (ACE2) to Ang-(1-7), which activates the G-protein-coupled Mas receptor (MasR). We investigated whether this system contributes to splanchnic vasodilatation and portal hypertension in cirrhosis. METHODS We measured levels of renin-angiotensin system messenger RNA and proteins in splanchnic vessels from patients and rats with cirrhosis. Production of Ang-(1-7) and splanchnic vascular reactivity to Ang-(1-7) was measured in perfused mesenteric vascular beds from rats after bile-duct ligation. Ang-(1-7) and MasR were blocked in rats with cirrhosis to examine splanchnic vascular hemodynamics and portal pressure response. RESULTS Levels of ACE2 and MasR were increased in splanchnic vessels from cirrhotic patients and rats compared with healthy controls. We also observed an ACE2-dependent increase in Ang-(1-7) production. Ang-(1-7) mediated splanchnic vascular hypocontractility in ex vivo splanchnic vessels from rats with cirrhosis (but not control rats) via MasR stimulation. Identical effects were observed in the splanchnic circulation in vivo. MasR blockade reduced portal pressure, indicating that activation of this receptor in splanchnic vasculature promotes portal inflow to contribute to development of portal hypertension. In addition, the splanchnic effects of MasR required nitric oxide. Interestingly, Ang-(1-7) also decreased hepatic resistance. CONCLUSIONS In the splanchnic vessels of patients and rats with cirrhosis, increased levels of ACE2 appear to increase production of Ang-(1-7), which leads to activation of MasR and splanchnic vasodilatation in rats. This mechanism could cause vascular hypocontractility in patients with cirrhosis, and might be a therapeutic target for portal hypertension.
Collapse
Affiliation(s)
- Josephine A Grace
- Department of Medicine, The University of Melbourne, Heidelberg Repatriation Hospital, Heidelberg, Melbourne, Victoria, Australia; Austin Health, Austin Hospital, Heidelberg, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Li S. Role of the renin-angiotensin system in liver fibrosis. Shijie Huaren Xiaohua Zazhi 2013; 21:2151-2157. [DOI: 10.11569/wcjd.v21.i22.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is characterized by progressive inflammation and deposition of extracellular matrix components. Several recent studies have demonstrated that the rennin-angiotensin system (RAS) plays a key role in hepatic fibrosis. In this review, we provide a comprehensive update of the role of the RAS in the pathogenesis of hepatic fibrosis. We will discuss the profibrotic mechanisms activated by the RAS. Studies that have utilized angiotensin receptor blockers and angiotensin-converting enzyme inhibitors to modulate the RAS to ameliorate hepatic fibrosis will also be discussed.
Collapse
|
67
|
Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H. Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury. J Surg Res 2013; 185:740-7. [PMID: 23890397 DOI: 10.1016/j.jss.2013.06.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/15/2013] [Accepted: 06/20/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pulmonary fibrosis occurs in approximately 60% of patients with acute respiratory distress syndrome and has been significantly correlated with a poor outcome. The overexpression of angiotensin (Ang) II can induce lung inflammation and fibrosis. This observation, coupled with the knowledge that Ang-(1-7) is considered to be an endogenous antagonist of Ang II, led us to hypothesize that Ang-(1-7) would prevent lung remodeling in patients with acute respiratory distress syndrome. MATERIALS AND METHODS The protocol involved five groups: (1) control, (2) lipopolysaccharide (LPS), (3) losartan as a positive control group, (4) Ang-(1-7), and (5) [D-Ala7]-Ang-(1-7) (A779), an antagonist of the Ang-(1-7) receptor. Acute lung injury was induced by an intratracheal injection of LPS 5 mg/kg in C57BL/6 mice. Losartan (10 mg/kg) was administered by gavage daily, starting from 1 d before LPS stimulation. Ang-(1-7) or A779 in saline (100 ng/kg/min) was infused subcutaneously 1 h before acute lung injury induction for 3 or 7 d. The lung tissues were harvested for analysis at day 3 or 7 after injection of LPS. RESULTS LPS stimulation resulted in significantly increased inflammation, edema, and lung collagen production. With Ang-(1-7) treatment, the lung fibrosis score and hydroxyproline level were significantly reduced, and the expression of transforming growth factor-β and Smad2/3 were decreased on days 3 and 7. Losartan attenuated lung fibrosis similarly to Ang-(1-7) after LPS exposure. In the A779 group, a tendency was seen to aggravate collagen deposition and lung remodeling. CONCLUSIONS These findings indicate an antiremodeling role for Ang-(1-7) in acute lung injury, similar to the blocker of Ang II receptor, that might be at least partially mediated through an Ang-(1-7) receptor.
Collapse
Affiliation(s)
- Qiuhua Chen
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
68
|
Abstract
It is well known that the RAS (renin-angiotensin system) plays a key role in the modulation of many functions in the body. AngII (angiotensin II) acting on AT1R (type 1 AngII receptor) has a central role in mediating most of the actions of the RAS. However, over the past 10 years, several studies have presented evidence for the existence of a new arm of the RAS, namely the ACE (angiotensin-converting enzyme) 2/Ang-(1-7) [angiotensin-(1-7)]/Mas axis. Ang-(1-7) can be produced from AngI or AngII via endo- or carboxy-peptidases respectively. ACE2 appears to play a central role in Ang-(1-7) formation. As described for AngII, Ang-(1-7) also has a broad range of effects in different organs and tissues which goes beyond its initially described cardiovascular and renal actions. Those effects are mediated by Mas and can counter-regulate most of the deleterious effects of AngII. The interaction Ang-(1-7)/Mas regulates different signalling pathways, such as PI3K (phosphoinositide 3-kinase)/AKT and ERK (extracellularsignal-regulated kinase) pathways and involves downstream effectors such as NO, FOXO1 (forkhead box O1) and COX-2 (cyclo-oxygenase-2). Through these mechanisms, Ang-(1-7) is able to improve pathological conditions including fibrosis and inflammation in organs such as lungs, liver and kidney. In addition, this heptapeptide has positive effects on metabolism, increasing the glucose uptake and lipolysis while decreasing insulin resistance and dyslipidaemia. Ang-(1-7) is also able to improve cerebroprotection against ischaemic stroke, besides its effects on learning and memory. The reproductive system can also be affected by Ang-(1-7) treatment, with enhanced ovulation, spermatogenesis and sexual steroids synthesis. Finally, Ang-(1-7) is considered a potential anti-cancer treatment since it is able to inhibit cell proliferation and angiogenesis. Thus the ACE2/Ang-(1-7)/Mas pathway seems to be involved in many physiological and pathophysiological processes in several systems and organs especially by opposing the detrimental effects of inappropriate overactivation of the ACE/AngII/AT1R axis.
Collapse
|
69
|
Herath CB, Mak K, Burrell LM, Angus PW. Angiotensin-(1-7) reduces the perfusion pressure response to angiotensin II and methoxamine via an endothelial nitric oxide-mediated pathway in cirrhotic rat liver. Am J Physiol Gastrointest Liver Physiol 2013; 304:G99-108. [PMID: 23086915 DOI: 10.1152/ajpgi.00163.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that, in cirrhosis, portal angiotensin-(1-7) [Ang-(1-7)] levels are increased and hepatic expression of angiotensin converting enzyme 2 (ACE2) and the Mas receptor are upregulated, but the effects of Ang-(1-7) on hepatic hemodynamics in cirrhosis have not been studied. This study investigated the effects of Ang-(1-7) on vasoconstrictor-induced perfusion pressure increases in cirrhotic rat livers. Ang II or the alpha 1 agonist methoxamine (MTX) were injected in the presence or absence of Ang-(1-7), and the perfusion pressure response was recorded. Denudation of vascular endothelial cells with sodium deoxycholate was used to investigate the contribution of endothelium to the effects of Ang-(1-7). Ang-(1-7) alone had no effect on perfusion pressure. However, it reduced the maximal vasoconstriction response and area under the pressure response curve to Ang II and MTX by >50% (P < 0.05). This effect of Ang-(1-7) was not blocked by Mas receptor inhibition with A779 or by Ang II type 1 and type 2 receptor and bradykinin B(2) receptor blockade and was not reproduced by the Mas receptor agonist AVE0991. D-Pro(7)-Ang-(1-7), a novel Ang-(1-7) receptor antagonist, completely abolished the vasodilatory effects of Ang-(1-7), as did inhibition of endothelial nitric oxide synthase (eNOS) with N(G)-nitro-L-arginine methyl-ester, guanylate cyclase blockade with ODQ and endothelium denudation. The functional inhibition by D-Pro(7)-Ang-(1-7) was accompanied by significant (P < 0.05) inhibition of eNOS phosphorylation. This study shows that Ang-(1-7) significantly inhibits intrahepatic vasoconstriction in response to key mediators of increased vascular and sinusoidal tone in cirrhosis via a receptor population present on the vascular endothelium that is sensitive to D-Pro(7)-Ang-(1-7) and causes activation of eNOS and guanylate cyclase-dependent NO signaling pathways.
Collapse
Affiliation(s)
- Chandana B Herath
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Victoria, Australia.
| | | | | | | |
Collapse
|
70
|
Abstract
AIM To evaluate the antifibrotic effect of telmisartan, an angiotensin II receptor blocker, in bile duct-ligated rats. METHODS Adult Sprague-Dawley rats were allocated to 3 groups: sham-operated rats, model rats underwent common bile duct ligation (BDL), and BDL rats treated with telmisartan (8 mg/kg, po, for 4 weeks). The animals were sacrificed on d 29, and liver histology was examined, the Knodell and Ishak scores were assigned, and the expression of angiotensin-converting enzyme (ACE) and ACE2 was evaluated with immunohistochemical staining. The mRNAs and proteins associated with liver fibrosis were evaluated using RTQ-PCR and Western blot, respectively. RESULTS The mean fibrosis score of BDL rats treated with telmisartan was significantly lower than that of the model rats (1.66±0.87 vs 2.13±0.35, P=0.015). However, there was no significant difference in inflammation between the two groups, both of which showed moderate inflammation. Histologically, treatment with telmisartan significantly ameliorated BDL-caused the hepatic fibrosis. Treatment with telmisartan significantly upregulated the mRNA levels of ACE2 and MAS, and decreased the mRNA levels of ACE, angiotensin II type 1 receptor (AT1-R), collagen type III, and transforming growth factor β1 (TGF-β1). Moreover, treatment with telmisartan significantly increased the expression levels of ACE2 and MAS proteins, and inhibited the expression levels of ACE and AT1-R protein. CONCLUSION Telmisartan attenuates liver fibrosis in bile duct-ligated rats via increasing ACE2 expression level.
Collapse
|
71
|
Ricci E, Vanosi G, Lindenmair A, Hennerbichler S, Peterbauer-Scherb A, Wolbank S, Cargnoni A, Signoroni PB, Campagnol M, Gabriel C, Redl H, Parolini O. Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank 2012; 14:475-88. [PMID: 22926336 DOI: 10.1007/s10561-012-9337-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 01/31/2023]
Abstract
The human amniotic membrane (hAM), thanks to its favorable properties, including anti-inflammatory, anti-fibrotic and pro-regenerative effects, is a well-known surgical material for many clinical applications, when used both freshly after isolation and after preservation. We have shown previously that hAM patching is a potential approach to counteract liver fibrosis. Indeed, when fresh hAM was used to cover the liver surface of rats with liver fibrosis induced by the bile duct ligation (BDL) procedure, the progression and severity of fibrosis were significantly reduced. Since cryopreservation enables safety and long-term storage of hAM but may influence its functional properties, here we compared the anti-fibrotic effects of fresh and cryopreserved hAM in rats with BDL-induced liver fibrosis. After BDL, the rat liver was covered with a piece of fresh or cryopreserved hAM, or left untreated. Six weeks later, the degree of liver fibrosis was assessed histologically using the Knodell and the METAVIR scoring systems. Digital image analysis was used to quantify the percentage of the areas of each liver section displaying ductular reaction, extracellular matrix (ECM) deposition, activated myofibroblasts and hepatic stellate cells (HSCs). Liver collagen content was also determined by spectrophotometric technique. The degree of liver fibrosis, ductular reaction, ECM deposition, and the number of activated myofibroblasts and HSCs were all significantly reduced in hAM-treated rats compared to control animals. Fresh and cryopreserved hAM produced the same anti-fibrotic effects. These findings indicate that cryopreservation maintains the anti-fibrotic properties of hAM when used as a patch to reduce the severity of liver fibrosis.
Collapse
Affiliation(s)
- Emanuele Ricci
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Via Bissolati 57, 25124, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Update on new aspects of the renin-angiotensin system in liver disease: clinical implications and new therapeutic options. Clin Sci (Lond) 2012; 123:225-39. [PMID: 22548407 DOI: 10.1042/cs20120030] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RAS (renin-angiotensin system) is now recognized as an important regulator of liver fibrosis and portal pressure. Liver injury stimulates the hepatic expression of components of the RAS, such as ACE (angiotensin-converting enzyme) and the AT(1) receptor [AngII (angiotensin II) type 1 receptor], which play an active role in promoting inflammation and deposition of extracellular matrix. In addition, the more recently recognized structural homologue of ACE, ACE2, is also up-regulated. ACE2 catalyses the conversion of AngII into Ang-(1-7) [angiotensin-(1-7)], and there is accumulating evidence that this 'alternative axis' of the RAS has anti-fibrotic, vasodilatory and anti-proliferative effects, thus counterbalancing the effects of AngII in the liver. The RAS is also emerging as an important contributor to the pathophysiology of portal hypertension in cirrhosis. Although the intrahepatic circulation in cirrhosis is hypercontractile in response to AngII, resulting in increased hepatic resistance, the splanchnic vasculature is hyporesponsive, promoting the development of the hyperdynamic circulation that characterizes portal hypertension. Both liver fibrosis and portal hypertension represent important therapeutic challenges for the clinician, and there is accumulating evidence that RAS blockade may be beneficial in these circumstances. The present review outlines new aspects of the RAS and explores its role in the pathogenesis and treatment of liver fibrosis and portal hypertension.
Collapse
|
73
|
AVE0991, a Nonpeptide Compound, Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation via Induction of Heme Oxygenase-1 and Downregulation of p-38 MAPK Phosphorylation. Int J Hypertens 2012; 2012:958298. [PMID: 22518299 PMCID: PMC3299313 DOI: 10.1155/2012/958298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 12/21/2022] Open
Abstract
The nonpeptide AVE0991 is an agonist of the angiotensin-(1–7) (Ang-(1–7)) Mas receptor and is expected to be a putative new drug for treatment of cardiovascular disease. However, the mechanisms involved in the antiproliferative effects of AVE0991 are not fully understood. We saw that the compound attenuated proliferation in an angiotensin II-induced rat vascular smooth muscle cells (VSMC) proliferation model. Moreover, treatment with AVE0991 (10−5 mol/L or 10−7 mol/L) significantly attenuated reactive oxygen species (ROS) production, phosphorylation of p38 MAPK, and dose-dependently (10−8 to 10−5 mol/L) inhibited Ang II-induced VSMC proliferation. Meanwhile, heme oxygenase-1 (HO-1) expression increased in the AVE0991 + Ang II group (10−5 mol/L or 10−6 mol/L). However, the beneficial effects of AVE0991 were completely abolished when the VSMC were pretreated with A-779 (10−6 mol/L). Furthermore, treatment with the HO-1 inhibitor ZnPPIX attenuated the inhibitory effect of AVE0991 on Ang II-induced p38MAPK phosphorylation. These results suggest that AVE0991 attenuates Ang II-induced VSMC proliferation in a dose-dependent fashion and that this effect is associated with the Mas/HO-1/p38 MAPK signaling pathway.
Collapse
|
74
|
Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther 2012; 35:414-28. [PMID: 22221317 PMCID: PMC7159631 DOI: 10.1111/j.1365-2036.2011.04971.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) is a homeostatic pathway widely known to regulate cardiovascular and renal physiology; however, little is known about its influence in gastrointestinal tissues. AIM To elicit the anatomical distribution and physiological significance of the components of the RAS in the gastrointestinal tract. METHODS An extensive online literature review including Pubmed and Medline. RESULTS There is evidence for RAS involvement in gastrointestinal physiology and pathophysiology, with all the components required for autonomous regulation identified throughout the gastrointestinal tract. The RAS is implicated in the regulation of glucose, amino acid, fluid and electrolyte absorption and secretion, motility, inflammation, blood flow and possibly malignant disease within the gastrointestinal tract. Animal studies investigating the effects of RAS blockade in a range of conditions including inflammatory bowel disease, functional gut disorders, gastrointestinal malignancy and even intestinal ischaemia have been encouraging to date. Given the ready availability of drugs that modify the RAS and their excellent safety profile, an opportunity exists for investigation of their possible therapeutic role in a variety of human gastrointestinal diseases. CONCLUSIONS The gastrointestinal renin-angiotensin system appears to be intricately involved in a number of physiological processes, and provides a possible target for novel investigative and therapeutic approaches.
Collapse
Affiliation(s)
- M. Garg
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - P. W. Angus
- Department of MedicineMelbourne UniversityVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia
| | - L. M. Burrell
- Department of MedicineMelbourne UniversityVic., Australia
| | - C. Herath
- Department of MedicineMelbourne UniversityVic., Australia
| | - P. R. Gibson
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - J. S. Lubel
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| |
Collapse
|
75
|
|
76
|
Angiotensin-(1-7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clin Sci (Lond) 2011; 120:335-45. [PMID: 21091432 PMCID: PMC3018845 DOI: 10.1042/cs20100280] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ACE (angiotensin-converting enzyme) 2 is expressed in the heart and kidney and metabolizes Ang (angiotensin) II to Ang-(1–7) a peptide that acts via the Ang-(1–7) or mas receptor. The aim of the present study was to assess the effect of Ang-(1–7) on blood pressure and cardiac remodelling in a rat model of renal mass ablation. Male SD (Sprague–Dawley) rats underwent STNx (subtotal nephrectomy) and were treated for 10 days with vehicle, the ACE inhibitor ramipril (oral 1 mg·kg−1 of body weight·day−1) or Ang-(1–7) (subcutaneous 24 μg·kg−1 of body weight·h−1) (all n = 15 per group). A control group (n = 10) of sham-operated rats were also studied. STNx rats were hypertensive (P<0.01) with renal impairment (P<0.001), cardiac hypertrophy (P<0.001) and fibrosis (P<0.05), and increased cardiac ACE (P<0.001) and ACE2 activity (P<0.05). Ramipril reduced blood pressure (P<0.01), improved cardiac hypertrophy (P<0.001) and inhibited cardiac ACE (P<0.001). By contrast, Ang-(1–7) infusion in STNx was associated with further increases in blood pressure (P<0.05), cardiac hypertrophy (P<0.05) and fibrosis (P<0.01). Ang-(1–7) infusion also increased cardiac ACE activity (P<0.001) and reduced cardiac ACE2 activity (P<0.05) compared with STNx-vehicle rats. Our results add to the increasing evidence that Ang-(1–7) may have deleterious cardiovascular effects in kidney failure and highlight the need for further in vivo studies of the ACE2/Ang-(1–7)/mas receptor axis in kidney disease.
Collapse
|
77
|
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:425-56. [PMID: 21073339 DOI: 10.1146/annurev-pathol-011110-130246] [Citation(s) in RCA: 1360] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver disease associated with obesity. Hepatic stellate cell activation represents a critical event in fibrosis because these cells become the primary source of extracellular matrix in liver upon injury. Use of cell-culture and animal models has expanded our understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease. As pathways of fibrogenesis are increasingly clarified, the key challenge will be translating new advances into the development of antifibrotic therapies for patients with chronic liver disease.
Collapse
|
78
|
Munshi MK, Uddin MN, Glaser SS. The role of the renin-angiotensin system in liver fibrosis. Exp Biol Med (Maywood) 2011; 236:557-66. [PMID: 21508249 DOI: 10.1258/ebm.2011.010375] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis, which is characterized by progressive inflammation and deposition of extracellular matrix components, is a common response to chronic liver disease. Hepatic fibrogenesis is a dynamic process that involves several liver cell types including hepatic stellate cells and Kupffer cells. In addition, recent evidence indicates that bile duct epithelial cells (i.e. cholangiocytes) also participate in the progression of biliary fibrosis that is observed during chronic cholestatic liver diseases, such as primary sclerosing cholangitis. To date, there are no effective treatments for hepatic fibrosis. Several recent studies have demonstrated that the renin-angiotensin system (RAS) plays a key role in hepatic fibrosis. Therapies targeting the RAS may represent a promising paradigm for the prevention and treatment of hepatic fibrosis in the setting of chronic liver disease. In this review, we provide a comprehensive update on the role of RAS in the pathogenesis of hepatic fibrosis in both animal models and human studies. We will discuss the profibrotic mechanisms activated by the RAS and the cell types involved. Studies that have utilized angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme (ACE) inhibitors to modulate the RAS in order to ameliorate hepatic fibrosis will also be discussed. Although the cumulative evidence supports the potential for the use of ARBs and ACE inhibitors as treatment for hepatic fibrosis, extensive studies of the effectiveness of RAS therapeutics are necessary in patients with chronic liver disease.
Collapse
Affiliation(s)
- M Kamruzzman Munshi
- Department of Medicine, Division of Gastroenterology, Scott & White Hospital and Texas A&M Health Science Center, College of Medicine, Temple, 76504, USA
| | | | | |
Collapse
|
79
|
Giani JF, Muñoz MC, Pons RA, Cao G, Toblli JE, Turyn D, Dominici FP. Angiotensin-(1–7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. Am J Physiol Renal Physiol 2011; 300:F272-82. [DOI: 10.1152/ajprenal.00278.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin (ANG)-(1–7) constitutes an important functional end-product of the renin-angiotensin-aldosterone system that acts to balance the physiological actions of ANG II. In the kidney, ANG-(1–7) exerts beneficial effects by inhibiting growth-promoting pathways and reducing proteinuria. We examined whether a 2-wk treatment with a daily dose of ANG-(1–7) (0.6 mg·kg−1·day−1) exerts renoprotective effects in salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP). Body weight, glycemia, triglyceridemia, cholesterolemia, as well as plasma levels of Na+ and K+ were determined both at the beginning and at the end of the treatment. Also, the weekly evolution of arterial blood pressure, proteinuria, and creatinine clearance was evaluated. Renal fibrosis was determined by Masson's trichrome staining. Interleukin (IL)-6, tumor necrosis factor (TNF)-α, and nuclear factor-κB (NF-κB) levels were determined by immunohistochemistry and confirmed by Western blotting analysis. The levels of glomerular nephrin were assessed by immunofluorescence. Chronic administration of ANG-(1–7) normalized arterial pressure, reduced glycemia and triglyceridemia, improved proteinuria, and ameliorated structural alterations in the kidney of SHRSP as shown by a restoration of glomerular nephrin levels as detected by immunofluorescence. These results were accompanied with a decrease in both the immunostaining and abundance of IL-6, TNF-α, and NF-κB. In this context, the current study provides strong evidence for a protective role of ANG-(1–7) in the kidney.
Collapse
Affiliation(s)
- Jorge F. Giani
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires; and
| | - Marina C. Muñoz
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires; and
| | - Romina A. Pons
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires; and
| | - Gabriel Cao
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Jorge E. Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Daniel Turyn
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires; and
| | - Fernando P. Dominici
- Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires; and
| |
Collapse
|
80
|
Zeng WT, Chen WY, Leng XY, Tang LL, Sun XT, Li CL, Dai G. Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991. Cardiovasc Ther 2010; 30:152-61. [PMID: 21167013 DOI: 10.1111/j.1755-5922.2010.00255.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS We evaluated effects of the nonpeptide angiotensin (ANG)-(1-7) analog AVE 0991 (AVE) on cardiac function and remodeling as well as transforming growth factor-beta1 (TGF-β1)/tumor necrosis factor-alpha (TNF-α) expression in myocardial infarction rat models. METHODS AND RESULTS Sprague-Dawley rats underwent either sham surgery or coronary ligation. They were divided into four groups: sham, control, AVE, and AVE+A-779 [[D-Ala(7) ]-ANG-(1-7), a selective antagonist for the ANG-(1-7)] group. After 4 weeks of treatment, the AVE group displayed a significant elevation in left ventricular fractional shorting (LVFS) (25.5 ± 7.3% vs. 18.4 ± 3.3%, P < 0.05) and left ventricular ejection fraction (LVEF) (44.8 ± 7.6% vs. 32.7 ± 6.5%, P < 0.05) when compared to the control group, but no effects on the left ventricular end-diastolic and end-systolic diameters (LVDd and LVDs, respectively) were observed. In addition, we found that the myocyte diameter (18 ± 2 μm vs. 22 ± 4 μm, P < 0.05), infarct size (42.6 ± 3.6% vs. 50.9 ± 4.4%, P < 0.001) and collagen volume fraction (CVF) (16.4 ± 2.2% vs. 25.3 ± 3.2%, P < 0.001) were significantly reduced in the AVE group when compared to the control group. There were no differences in LVFS, LVEF, myocyte diameter, and infarct size between the control and AVE+A-779 groups. AVE also markedly attenuated the increased mRNA expression of collagen I (P < 0.001) and collagen III (P < 0.001) and inhibited the overexpression of TGF-β1 (P < 0.05) and TNF-α (P < 0.05) compared to the control group. CONCLUSION AVE could improve cardiac function and attenuate ventricular remodeling in MI rat models. It may involve the inhibition of inflammatory factors TGF-β1/TNF-α overexpression and the action on the specific receptor Mas of ANG-(1-7).
Collapse
Affiliation(s)
- Wu-tao Zeng
- Cardiovascular Medical Department, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
81
|
Pei Z, Meng R, Li G, Yan G, Xu C, Zhuang Z, Ren J, Wu Z. Angiotensin-(1-7) ameliorates myocardial remodeling and interstitial fibrosis in spontaneous hypertension: role of MMPs/TIMPs. Toxicol Lett 2010; 199:173-81. [PMID: 20837116 DOI: 10.1016/j.toxlet.2010.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/31/2010] [Accepted: 08/31/2010] [Indexed: 01/27/2023]
Abstract
Angiotensin-(1-7) displays antihypertensive and antiproliferative properties although its effect on cardiac remodeling and hypertrophy in hypertension has not been fully elucidated. The present study was designed to examine the effect of chronic angiotensin-(1-7) treatment on myocardial remodeling, cardiac hypertrophy and underlying mechanisms in spontaneous hypertension. Adult male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were treated with or without angiotensin-(1-7) or the angiotensin-(1-7) antagonist A-779 for 24 weeks. Mean arterial pressure, left ventricular geometry, expression of the hypertrophic markers ANP and β-MHC, collagen contents (type I and III), collagenase (MMP-1), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of MMPs-1 (TIMP-1) were evaluated in WKY and SHR rats with or without treatment. Our data revealed that chronic angiotensin-(1-7) treatment significantly suppressed hypertension, left ventricular hypertrophy, expression of ANP and β-MHC as well as myocardial fibrosis in SHR rats, the effects of which were nullified by the angiotensin-(1-7) receptor antagonist A-779. In addition, angiotensin-(1-7) treatment significantly counteracted hypertension-induced changes in the mRNA expression of MMP-2 and TIMP-1 and collagenase activity, the effects of which were blunted by A-779. In vitro study revealed that angiotensin-(1-7) directly increased the activity of MMP-2 and MMP-9 while decreasing the content of TIMP-1 and TIMP-2. Taken together, our results revealed a protective effect of angiotensin-(1-7) against cardiac hypertrophy and collagen deposition, which may be related to concerted changes in MMPs and TIMPs levels. These data indicated the therapeutic potential of angiotensin-(1-7) in spontaneous hypertension-induced cardiac remodeling.
Collapse
Affiliation(s)
- Zhaohui Pei
- Department of Cardiology, The Third Hospital, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The concept of a circulating RAS is well established and known to play an endocrine role in the regulation of fluid homeostasis (see Section 4.1, Chapter 4). However, it is more appropriate to view the RAS in the contemporary notion as an “angiotensin-generating system”, which consists of angiotensinogen, angiotensin-generating enzymes, and angiotensins, as well as their receptors. Some RASs can be termed as “complete”, having renin and ACE involved in the biosynthesis of angiotensin II peptide, i.e. in a renin and/or ACE-dependent manner which is exemplified in the circulating RAS. On the other hand, some RAS can be termed as “partial”, having alternate enzymes to renin and ACE, such as chymase and ACE2 (see Section 4.3, Chapter 4) available for the generation of angiotensin II and other bioactive angiotensin peptides in the biosynthetic cascade, i.e. in a renin and/or ACE-independent manner. Complete vs. partial RASs can be exemplified in the so-called intrinsic angiotensin-generating system or local RAS; for example, a local and functional RAS with renin and ACE-dependent but a renin-independent pathway have been indentified in the pancreas and carotid body, respectively. In the past two decades, local RASs have gained increasing recognition especially with regards to their clinical importance. Distinct from the circulating RAS, these functional local RASs exist in such diverse tissues and organs as the pancreas, liver, intestine, heart, kidney, vasculature, carotid body, and adipose, as well as the nervous, reproductive, and digestive systems. Taken into previous findings from our laboratory and others together, Table 5.1 is a summary of some recently identified local RASs in various levels of tissues and organs.
Collapse
Affiliation(s)
- Po Sing Leung
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong, Shatin Hong Kong, China
| |
Collapse
|
83
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
84
|
Pereira RM, Santos RASD, Dias FLDC, Teixeira MM, Silva ACSE. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterol 2009; 15:2579-2586. [PMID: 19496186 PMCID: PMC2691487 DOI: 10.3748/wjg.15.2579] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 05/05/2009] [Accepted: 05/12/2009] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is considered a common response to many chronic hepatic injuries. It is a multifunctional process that involves several cell types, cytokines, chemokines and growth factors leading to a disruption of homeostatic mechanisms that maintain the liver ecosystem. In spite of many studies regarding the development of fibrosis, the understanding of the pathogenesis remains obscure. The hepatic tissue remodeling process is highly complex, resulting from the balance between collagen degradation and synthesis. Among the many mediators that take part in this process, the components of the Renin angiotensin system (RAS) have progressively assumed an important role. Angiotensin (Ang) II acts as a profibrotic mediator and Ang-(1-7), the newly recognized RAS component, appears to exert a counter-regulatory role in liver tissue. We briefly review the liver fibrosis process and current aspects of the RAS. This review also aims to discuss some experimental evidence regarding the participation of RAS mediators in the pathogenesis of liver fibrosis, focusing on the putative role of the ACE2-Ang-(1-7)-Mas receptor axis.
Collapse
|