51
|
Williamson NR, Fineran PC, Leeper FJ, Salmond GPC. The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 2006; 4:887-99. [PMID: 17109029 DOI: 10.1038/nrmicro1531] [Citation(s) in RCA: 378] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The red-pigmented prodiginines are bioactive secondary metabolites produced by both Gram-negative and Gram-positive bacteria. Recently, these tripyrrole molecules have received renewed attention owing to reported immunosuppressive and anticancer properties. The enzymes involved in the biosynthetic pathways for the production of two of these molecules, prodigiosin and undecylprodigiosin, are now known. However, the biochemistry of some of the reactions is still poorly understood. The physiology and regulation of prodiginine production in Serratia and Streptomyces are now well understood, although the biological role of these pigments in the producer organisms remains unclear. However, research into the biology of pigment production will stimulate interest in the bioengineering of strains to synthesize useful prodiginine derivatives.
Collapse
Affiliation(s)
- Neil R Williamson
- Department of Biochemistry, Tennis Court Road, University of Cambridge, UK
| | | | | | | |
Collapse
|
52
|
Ghorbel S, Smirnov A, Chouayekh H, Sperandio B, Esnault C, Kormanec J, Virolle MJ. Regulation of ppk expression and in vivo function of Ppk in Streptomyces lividans TK24. J Bacteriol 2006; 188:6269-76. [PMID: 16923894 PMCID: PMC1595360 DOI: 10.1128/jb.00202-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ppk gene of Streptomyces lividans encodes an enzyme catalyzing, in vitro, the reversible polymerization of the gamma phosphate of ATP into polyphosphate and was previously shown to play a negative role in the control of antibiotic biosynthesis (H. Chouayekh and M. J. Virolle, Mol. Microbiol. 43:919-930, 2002). In the present work, some regulatory features of the expression of ppk were established and the polyphosphate content of S. lividans TK24 and the ppk mutant was determined. In Pi sufficiency, the expression of ppk was shown to be low but detectable. DNA gel shift experiments suggested that ppk expression might be controlled by a repressor using ATP as a corepressor. Under these conditions, short acid-soluble polyphosphates accumulated upon entry into the stationary phase in the wild-type strain but not in the ppk mutant strain. The expression of ppk under Pi-limiting conditions was shown to be much higher than that under Pi-sufficient conditions and was under positive control of the two-component system PhoR/PhoP. Under these conditions, the polyphosphate content of the cell was low and polyphosphates were reproducibly found to be longer and more abundant in the ppk mutant strain than in the wild-type strain, suggesting that Ppk might act as a nucleoside diphosphate kinase. In light of our results, a novel view of the role of this enzyme in the regulation of antibiotic biosynthesis in S. lividans TK24 is proposed.
Collapse
Affiliation(s)
- Sofiane Ghorbel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Ghorbel S, Kormanec J, Artus A, Virolle MJ. Transcriptional studies and regulatory interactions between the phoR-phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. J Bacteriol 2006; 188:677-86. [PMID: 16385057 PMCID: PMC1347273 DOI: 10.1128/jb.188.2.677-686.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoR/PhoP two-component system of Streptomyces lividans was previously shown to allow the growth of the bacteria at low Pi concentrations and to negatively control antibiotic production. The present study focuses on the transcriptional analysis of phoR and phoP, along with the phoU and mtpA genes that are transcribed divergently from the phoRP operon in S. lividans. The effect of phoR, phoP, phoU, and ppk mutations on transcription of these genes was examined under phosphate-replete and phosphate-limited conditions. We demonstrated that phoR and phoP were cotranscribed as a leaderless bicistronic transcript cleaved at discrete sites toward the 3' end of phoR. In addition, phoP could also be transcribed alone from a promoter located at the 3' end of phoR. The phoU and mtpA genes, predicted to encode metal binding proteins, were shown to be transcribed as monocistronic transcripts. The expression of phoR-phoP, phoP, and phoU was found to be induced under conditions of Pi limitation in S. lividans TK24. This induction, requiring both PhoR and PhoP, was significantly weaker in the phoU mutant but much stronger in the ppk mutant than in the parental strain. The expression of mtpA was also shown to be up-regulated when Pi was limiting but independently of PhoR/PhoP. The induction of mtpA expression was much stronger in the phoU mutant strain than in the other strains. This study revealed interesting regulatory interactions between the different genes and allowed us to propose putative roles for PhoU and MtpA in the adaptation to phosphate scarcity.
Collapse
Affiliation(s)
- Sofiane Ghorbel
- Laboratoire de "Métabolisme Energétique des Streptomyces," Institut de Génétique et Microbiologie, UMR CNRS 8621, Bātiment 400 de l'Université Paris 11, 91405 Orsay, France.
| | | | | | | |
Collapse
|
54
|
Díaz M, Esteban A, Fernández-Abalos JM, Santamaría RI. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. MICROBIOLOGY-SGM 2005; 151:2583-2592. [PMID: 16079337 DOI: 10.1099/mic.0.27983-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The secreted protein pattern of Streptomyces lividans depends on the carbon source present in the culture media. One protein that shows the most dramatic change is the high-affinity phosphate-binding protein PstS, which is strongly accumulated in the supernatant of liquid cultures containing high concentrations (>3 %) of certain sugars, such as fructose, galactose and mannose. The promoter region of this gene and that of its Streptomyces coelicolor homologue were used to drive the expression of a xylanase in S. lividans that was accumulated in the culture supernatant when grown in the presence of fructose. PstS accumulation was dramatically increased in a S. lividans polyphosphate kinase null mutant (Deltappk) and was impaired in a deletion mutant lacking phoP, the transcriptional regulator gene of the two-component phoR-phoP system that controls the Pho regulon. Deletion of the pstS genes in S. lividans and S. coelicolor impaired phosphate transport and accelerated differentiation and sporulation on solid media. Complementation with a single copy in a S. lividans pstS null mutant returned phosphate transport and sporulation to levels similar to those of the wild-type strain. The present work demonstrates that carbon and phosphate metabolism are linked in the regulation of genes and that this can trigger the genetic switch towards morphogenesis.
Collapse
Affiliation(s)
- Margarita Díaz
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ana Esteban
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - José Manuel Fernández-Abalos
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Ramón I Santamaría
- Instituto de Microbiología Bioquímica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
55
|
Huang J, Shi J, Molle V, Sohlberg B, Weaver D, Bibb MJ, Karoonuthaisiri N, Lih CJ, Kao CM, Buttner MJ, Cohen SN. Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 2005; 58:1276-87. [PMID: 16313616 DOI: 10.1111/j.1365-2958.2005.04879.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A complex programme of regulation governs gene expression during development of the morphologically and biochemically complex eubacterial genus Streptomyces. Earlier work has suggested a model in which 'higher level' pleiotropic regulators activate 'pathway-specific' regulators located within chromosomal gene clusters encoding biosynthesis of individual antibiotics. We used mutational analysis and adventitious overexpression of key Streptomyces coelicolor regulators to investigate functional interactions among them. We report here that cluster-situated regulators (CSRs) thought to be pathway-specific can also control other antibiotic biosynthetic gene clusters, and thus have pleiotropic actions. Surprisingly, we also find that CSRs exhibit growth-phase-dependent control over afsR2/afsS, a 'higher level' pleiotropic regulatory locus not located within any of the chromosomal gene clusters it targets, and further demonstrate that cross-regulation by CSRs is modulated globally and differentially during the S. coelicolor growth cycle by the RNaseIII homologue AbsB. Our results, which reveal a network of functional interactions among regulators that govern production of antibiotics and other secondary metabolites in S. coelicolor, suggest that revision of the currently prevalent view of higher-level versus pathway-specific regulation of secondary metabolism in Streptomyces species is warranted.
Collapse
Affiliation(s)
- Jianqiang Huang
- Department of Genetics, MC 5120, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Penn J, Li X, Whiting A, Latif M, Gibson T, Silva CJ, Brian P, Davies J, Miao V, Wrigley SK, Baltz RH. Heterologous production of daptomycin in Streptomyces lividans. J Ind Microbiol Biotechnol 2005; 33:121-8. [PMID: 16261359 DOI: 10.1007/s10295-005-0033-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 08/04/2005] [Indexed: 10/25/2022]
Abstract
Daptomycin and the A21978C antibiotic complex are lipopeptides produced by Streptomyces roseosporus and also in recombinant Streptomyces lividans TK23 and TK64 strains, when a 128 kbp region of cloned S. roseosporus DNA containing the daptomycin gene cluster is inserted site-specifically in the phiC31 attB site. A21978C fermentation yields were initially much lower in S. lividans than in S. roseosporus, and detection was complicated by the production of host metabolites. However A21978C production in S. lividans was improved by deletion of genes encoding the production of actinorhodin and by medium optimization to control the chemical form of the calcium dependent antibiotic (CDA). This latter compound has not previously been chemically characterized as a S. lividans product. Adding phosphate to a defined fermentation medium resulted in formation of only the phosphorylated forms of CDA, which were well separated from A21978C on chromatographic analysis. Adjusting the level of phosphate in the medium led to an improvement in A21978C yield from 20 to 55 mg/l.
Collapse
Affiliation(s)
- Julia Penn
- Cubist Pharmaceuticals (UK) Ltd, 545 Ipswich Road, Slough, Berkshire, SL14EP, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
While the biological functions of most of the secondary metabolites made by streptomycetes are not known, it is inconceivable that they do not play an adaptive ecological role. The biosynthesis of secondary metabolites under laboratory conditions usually occurs in a growth phase or developmentally controlled manner, but is also influenced by a wide variety of environmental and physiological signals, presumably reflecting the range of conditions that trigger their production in nature. The expression of secondary metabolic gene clusters is controlled by many different families of regulatory proteins, some of which are found only in actinomycetes, and is elicited by both extracellular and intracellular signalling molecules. The application of a variety of genetic and molecular approaches is now beginning to reveal fascinating insights into the complex regulatory cascades that govern this process.
Collapse
Affiliation(s)
- Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK.
| |
Collapse
|
58
|
Martín JF. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 2004; 186:5197-201. [PMID: 15292120 PMCID: PMC490900 DOI: 10.1128/jb.186.16.5197-5201.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Juan F Martín
- Area of Microbiology, University of León, 24006, Leon, Spain.
| |
Collapse
|
59
|
Sola-Landa A, Moura RS, Martín JF. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 2003; 100:6133-8. [PMID: 12730372 PMCID: PMC156338 DOI: 10.1073/pnas.0931429100] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of most secondary metabolites in different bacteria is strongly depressed by inorganic phosphate. The two-component phoR-phoP system of Streptomyces lividans has been cloned and characterized. PhoR showed all of the characteristics of the membrane-bound sensor proteins, whereas PhoP is a member of the DNA-binding OmpR family. Deletion mutants lacking phoP or phoR-phoP, were unable to grow in minimal medium at low phosphate concentration (10 microM). Growth was fully restored by complementation with the phoR-phoP genes. Both S. lividans DeltaphoP and DeltaphoR-phoP deletion mutants were unable to synthesize extracellular alkaline phosphatase (AP) as shown by immunodetection with anti-AP antibodies and by enzymatic analysis, suggesting that the PhoR-PhoP system is required for expression of the AP gene (phoA). Synthesis of AP was restored by complementation of the deletion mutants with phoR-phoP. The biosynthesis of two secondary metabolites, actinorhodin and undecylprodigiosin, was significantly increased in both solid and liquid medium in the DeltaphoP or DeltaphoR-phoP deletion mutants. Negative phosphate control of both secondary metabolites was restored by complementation with the phoR-phoP cluster. These results prove that expression of both phoA and genes implicated in the biosynthesis of secondary metabolites in S. lividans is regulated by a mechanism involving the two-component PhoR-PhoP system.
Collapse
Affiliation(s)
- A Sola-Landa
- Instituto de Biotecnologia de León (INBIOTEC), Parque Cientifico de León, Avenida del Real, n degrees 1, Spain
| | | | | |
Collapse
|