51
|
Effect of Motor Imagery Training on Motor Learning in Children and Adolescents: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189467. [PMID: 34574389 PMCID: PMC8465066 DOI: 10.3390/ijerph18189467] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Background: There is an urgent need to systematically analyze the growing body of literature on the effect of motor imagery (MI) training in children and adolescents. Methods: Seven databases and clinicaltrials.gov were searched. Two reviewers independently screened references and full texts, and extracted data (studies’ methodology, MI elements, temporal parameters). Two studies were meta-analyzed providing the standard mean difference (SDM). Selected studies were evaluated with the risk of bias (RoB) and GRADE tools. Results: A total of 7238 references were retrieved. The sample size of the 22 included studies, published between 1995 and 2021, ranged from 18 to 136 participants, totaling 934 (nine to 18 years). Studies included healthy pupils, mentally retarded adolescents, children with motor coordination difficulties or with mild mental disabilities. The motor learning tasks focused on upper, lower and whole body movements. SMDs for the primary outcome of pooled studies varied between 0.83 to 1.87 (95% CI, I2, T2 varied 0.33–3.10; p = 0.001; 0–74%; 0–0.59). RoB varied between some concerns and high risk. GRADE rating was low. Conclusions: MI combined with physical practice (PP) might have a high potential for healthy and impaired children and adolescents. However, important reporting recommendations (PETTLEP, TIDieR, CONSORT) should be followed. The systematic review was registered with PROSPERO: CRD42021237361.
Collapse
|
52
|
Fountouki A, Kotrotsiou S, Paralikas T, Malliarou M, Konstanti Z, Tsioumanis G, Theofanidis D. Professional Mental Rehearsal: the Power of "Imagination" in Nursing Skills Training. Mater Sociomed 2021; 33:174-178. [PMID: 34759773 PMCID: PMC8563057 DOI: 10.5455/msm.2021.33.174-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mental rehearsal is a form of training used by nurse educators to enhance the performance of clinical skills. The use of imagination may facilitate cognitive and affective modification and subsequently may even reduce extraneous cognitive load. OBJECTIVE The aim of the study was to investigate the efficacy of mental rehearsal in cardiopulmonary resuscitation training of nursing students. METHODS This is a comparative study with a random sample of 52 Nurse-Assistant students who were randomly divided into two groups. A 10-minute educational video on CPR and defibrillation was shown to both groups with the experimental group having additional time to be coached on mental rehearsal. Student performance was subsequently timed and errors/overall performance recorded. Descriptive statistics and Mann-Whitney test was used for group comparisons analysis. RESULTS Students in the control group needed 8.5 minutes on average as compared to 6.2 minutes for the experimental group to complete cardiopulmonary resuscitation training. This equals to a difference of 2.5 minutes faster time for the experimental group (p<0.001). For overall mistakes the mental rehearsal group had 1.3 fewer mistakes on average (p=0.003). In terms of mistakes when executing cardiopulmonary resuscitation training there were 0.9 fewer mistakes in the experimental group (p=0.021). CONCLUSION The use of mental rehearsal might be the first step in improving the teaching of nursing skills. Differences in skill acquisition in favor of mental rehearsal are important, especially when this technique is used in the teaching of life-saving skills such as cardiopulmonary resuscitation and the use of defibrillate.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Konstanti
- Laboratory Teaching Staff, Nursing Department, University of Ioannina, Greece
| | | | | |
Collapse
|
53
|
Sharini H, Zolghadriha S, Riyahi Alam N, Jalalvandi M, Khabiri H, Arabalibeik H, Nadimi M. Assessment of Motor Cortex in Active, Passive and Imagery Wrist Movement Using Functional MRI. J Biomed Phys Eng 2021; 11:515-526. [PMID: 34458199 PMCID: PMC8385213 DOI: 10.31661/jbpe.v0i0.1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
Abstract
Background: Functional Magnetic resonance imaging (fMRI) measures the small fluctuation of blood flow happening during task-fMRI in brain regions. Objective: This research investigated these active, imagery and passive movements in volunteers design to permit a comparison of their capabilities in activating the brain areas. Material and Methods: In this applied research, the activity of the motor cortex during the right-wrist movement was evaluated in 10 normal volunteers under active, passive, and imagery conditions.
T2* weighted, three-dimensional functional images were acquired using a BOLD sensitive gradient-echo EPI (echo planar imaging) sequence with echo time (TE)
of 30 ms and repetition time (TR) of 2000 ms. The functional data, which included 248 volumes per subject and condition, were acquired using the blocked design paradigm.
The images were analyzed by the SPM12 toolbox, MATLAB software. Results: The findings determined a significant increase in signal intensity of the motor cortex while performing the test compared to the rest time (p< 0.05).
It was also observed that the active areas in hand representation of the motor cortex are different in terms of locations and the number of voxels in different wrist directions.
Moreover, the findings showed that the position of active centers in the brain is different in active, passive, and imagery conditions. Conclusion: Results confirm that primary motor cortex neurons play an essential role in the processing of complex information and are designed to control the direction of movement.
It seems that the findings of this study can be applied for rehabilitation studies.
Collapse
Affiliation(s)
- Hamid Sharini
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Shokufeh Zolghadriha
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nader Riyahi Alam
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, PERFORM Center, Preventive Medicine and Personal Health Care Center, Concordia University, Montreal, Quebec, Canada
- PhD, Medical Pharmaceutical Sciences Research Center (MPRC), the institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Jalalvandi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamid Khabiri
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Arabalibeik
- PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- PhD, Research Center for Science and Technology in Medicine (RCSTM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohadeseh Nadimi
- MSc, Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
54
|
Temporal Deployment of Attention by Mental Training: an fMRI Study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:669-683. [PMID: 32458391 DOI: 10.3758/s13415-020-00795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we employed a visuo-motor imagery task of alertness as a mental training to examine temporal processing of motor responses within healthy young adults. Participants were divided into two groups (group 1; n = 20 who performed the mental training before the real physical task and a control group who performed the physical task without mental training). We vary the time interval between the imperative stimulus and the preceding one (fore-period) in which temporal preparation and arousal increase briefly. Our behavioural results provide clear evidence that mental training reinforces both temporal preparation and arousal, by shortening reaction time (RT), especially for the shortest fore-periods (FP) within exogenous "FP 250 ms" (p = 0.008) and endogenous alertness "FP 650 ms" (p = 0.001). We investigated how the brain controls such small temporal changes. We focus our neural hypothesis on three brain regions: anterior insula, dorsolateral prefrontal cortex, and anterior cingulate cortex and three putative circuits: one top-down (from dorsolateral prefrontal cortex to anterior cingulate cortex) and two bottom-up (from anterior insula to dorsolateral prefrontal cortex and anterior cingulate cortex). In fMRI, effective connectivity is strengthened during exogenous alertness between anterior insula and dorsolateral prefrontal cortex (p = 0.001), between anterior insula and cingulate cortex (p = 0.01), and during endogenous alertness between dorsolateral prefrontal cortex and anterior cingulate cortex (p = 0.05). We suggest that attentional reinforcement induced by an intensive and short session of mental training induces a temporal deployment of attention and allow optimizing the time pressure by maintaining a high state of arousal and ameliorating temporal preparation.
Collapse
|
55
|
Neige C, Lebon F, Mercier C, Gaveau J, Papaxanthis C, Ruffino C. Pain, No Gain: Acute Pain Interrupts Motor Imagery Processes and Affects Mental Training-Induced Plasticity. Cereb Cortex 2021; 32:640-651. [PMID: 34313709 DOI: 10.1093/cercor/bhab246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Pain influences both motor behavior and neuroplastic adaptations induced by physical training. Motor imagery (MI) is a promising method to recover motor functions, for instance in clinical populations with limited endurance or concomitant pain. However, the influence of pain on the MI processes is not well established. This study investigated whether acute experimental pain could modulate corticospinal excitability assessed at rest and during MI (Exp. 1) and limit the use-dependent plasticity induced by MI practice (Exp. 2). Participants imagined thumb movements without pain or with painful electrical stimulations applied either on digit V or over the knee. We used transcranial magnetic stimulation to measure corticospinal excitability at rest and during MI (Exp. 1) and to evoke involuntary thumb movements before and after MI practice (Exp. 2). Regardless of its location, pain prevented the increase of corticospinal excitability that is classically observed during MI. In addition, pain blocked use-dependent plasticity following MI practice, as testified by a lack of significant posttraining deviations. These findings suggest that pain interferes with MI processes, preventing the corticospinal excitability facilitation needed to induce use-dependent plasticity. Pain should be carefully considered for rehabilitation programs using MI to restore motor function.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration, Department of Rehabilitation, Laval University, Québec, QC G1M 2S8, Canada
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21078 Dijon, France
| |
Collapse
|
56
|
Saimpont A, Malouin F, Durand A, Mercier C, di Rienzo F, Saruco E, Collet C, Guillot A, Jackson PL. The effects of body position and actual execution on motor imagery of locomotor tasks in people with a lower-limb amputation. Sci Rep 2021; 11:13788. [PMID: 34215827 PMCID: PMC8253815 DOI: 10.1038/s41598-021-93240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Motor imagery (MI) is usually facilitated when performed in a congruent body position to the imagined movement, as well as after actual execution (AE). A lower-limb amputation (LLA) results in important structural and functional changes in the sensorimotor system, which can alter MI. In this study, we investigated the effects of body position and AE on the temporal characteristics of MI in people with LLA. Ten participants with LLA (mean age = 59.6 ± 13.9 years, four females) and ten gender- and age-matched healthy control participants (mean age = 60.1 ± 15.4 years, four females) were included. They performed two locomotor-related tasks (a walking task and the Timed Up and Go task) while MI times were measured in different conditions (in congruent/incongruent positions and before/after AE). We showed that MI times were significantly shorter when participants imagined walking in a congruent-standing position compared to an incongruent-sitting position, and when performing MI after actual walking compared to before, in both groups. Shorter MI times in the congruent position and after AE suggest an improvement of MI’s temporal accuracy (i.e. the ability to match AE time during MI) in healthy individuals but not in the LLA group.
Collapse
Affiliation(s)
- Arnaud Saimpont
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, Univ Lyon, F-69622, Villeurbanne Cedex, France.
| | - Francine Malouin
- Department of Rehabilitation, Université Laval, Quebec City, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Quebec City, Canada
| | - Anne Durand
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de la Capitale-Nationale, Quebec City, Canada
| | - Catherine Mercier
- Department of Rehabilitation, Université Laval, Quebec City, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Quebec City, Canada
| | - Franck di Rienzo
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, Univ Lyon, F-69622, Villeurbanne Cedex, France
| | - Elodie Saruco
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, Univ Lyon, F-69622, Villeurbanne Cedex, France.,Department of Neurology, BG University Clinic Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Christian Collet
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, Univ Lyon, F-69622, Villeurbanne Cedex, France
| | - Aymeric Guillot
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA 7424, Université Claude Bernard Lyon 1, Univ Lyon, F-69622, Villeurbanne Cedex, France
| | - Philip L Jackson
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Quebec City, Canada.,CERVO Brain Research Center, Quebec City, Canada.,School of Psychology, Université Laval, Quebec City, Canada
| |
Collapse
|
57
|
Abstract
Occupational therapy, as a rehabilitative treatment is an essential part of multimodal therapy for complex regional pain syndrome (CRPS). The goals of the treatment and the methods vary greatly for this condition, because they are subject to the changing symptomatology. In some cases there are overlapping and synergistic treatment strategies with physiotherapy. For a positive treatment result it is important to implement occupational therapy early on and continuously during the course of the disease. This allows treatment methods, such as mental exercises or sensory exercises to improve the processing of pain-triggering perceptual stimuli at an early stage. Alongside the classical movement exercises and advice on aids, special treatment methods, such as mirror therapy, neurocognitive rehabilitation according to Perfetti or the graded exposure concept can also be beneficial for CRPS patients.
Collapse
|
58
|
Navaratnam D, Harm K, Fenton A, Bullock-Saxton J, Griffin A, Lehn A. Implicit motor imagery using laterality recognition in functional movement disorders. J Clin Neurosci 2021; 89:139-143. [PMID: 34119257 DOI: 10.1016/j.jocn.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Functional movement disorder (FMD) presents as disabling motor symptoms that cannot be explained by organic processes. Despite the lack of lesion or known central nervous system dysfunction, distortion in sensorimotor processing in movement generation and execution is often observed. A person's capacity to judge laterality of a body part requires processing of sensorimotor information. This prospective observational study compared reaction time (RT) and accuracy (ACC) of hand laterality recognition between 30 people diagnosed with FMD and 30 age-matched healthy control participants. The association of RT and ACC with severity of FMD as measured by the Simplified Functional Movement Disorders Rating Scale (SFMDRS) was also explored. RT was on average 0.6 s slower (95% CI 0.4 - 0.8 s, p < 0.001) in patients with FMD (mean 2.2 s, standard deviation (SD) 0.5) than controls (mean 1.7 s, SD 0.3). ACC was on average 8.9% lower (95% CI -15.7 - -2.2, p = 0.01) in patients with FMD (mean 79.6%, SD 16.6) than controls (mean 88.5%, SD 8.1). When adjusted for SFMDRS using robust regression, RT was 0.3 s slower (95% CI 0.01 - 0.5, p = 0.04) in cases than in controls, but ACC was no longer different between groups. There was a moderate negative correlation between RT and ACC in FMD patients (ρ -0.58, p < 0.001 but not in controls (ρ -0.26, p = 0.17). People with FMD had significantly slower RT and lower ACC compared to the control group. These results provide new insights into underlying sensorimotor processing deficits in those with FMD.
Collapse
Affiliation(s)
- Dharsha Navaratnam
- Active Rehabilitation Physiotherapy, Brisbane, Australia; Princess Alexandra Hospital, Brisbane, Australia.
| | - Karl Harm
- Active Rehabilitation Physiotherapy, Brisbane, Australia
| | - Alison Fenton
- Active Rehabilitation Physiotherapy, Brisbane, Australia
| | | | - Alison Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexander Lehn
- Princess Alexandra Hospital, Brisbane, Australia; University of Queensland, Brisbane, Australia; Mater Research, Brisbane, Australia
| |
Collapse
|
59
|
Yin XJ, Wang YJ, Ding XD, Shi TM. Effects of motor imagery training on lower limb motor function of patients with chronic stroke: A pilot single-blind randomized controlled trial. Int J Nurs Pract 2021; 28:e12933. [PMID: 33837986 DOI: 10.1111/ijn.12933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/13/2020] [Indexed: 11/29/2022]
Abstract
AIMS This pilot study aimed to evaluate the effects of motor imagery training on lower limb motor function of stroke patients. BACKGROUND Motor imagery training has played an important role in rehabilitation outcomes of stroke patients. METHODS In this pilot randomized controlled trial 32 stroke patients were randomly divided into experimental and control groups from January to June 2017. Patients in both groups received conventional neuro-rehabilitation five times a week in 3-h segments for 6 weeks. Patients in the experimental group underwent an additional 20 min of motor imagery training. Measures were evaluated by motor function of the lower extremity, activities of daily living and balance ability. RESULTS The outcomes significantly improved by motor imagery training were the Fugl-Meyer Assessment of the lower extremity, the Functional Independence Measure dealing with transfers and locomotion, and the Berg Balance Scale. CONCLUSION Motor imagery training could be used as a complement to physical rehabilitation of stroke patients. Our findings may be helpful to develop nursing strategies aimed at improving functional ability of stroke patients and thus enhancing their quality of life. SUMMARY STATEMENT What is already known about this topic? Lower extremity dyskinesia is among the most common complications that significantly limit the patient's activities of daily living. Motor imagery training, a safe and cost-efficient technique, may be used as a complement to physical rehabilitation of stroke patients. Evidence suggests that motor imagery training is effective in upper limb recovery after stroke. There is limited evidence of the effectiveness of motor imagery training on lower limb motor functions of patients with chronic stroke. What this paper adds? Motor imagery training can be incorporated into conventional therapy among individuals by rehabilitation specialist nurses with sufficient experience of motor imagery training, but substantial resources are needed. Six-week motor imagery training resulted in a significant improvement in the motor performance of lower limbs in patients with stroke. Further study is needed to modify and optimize the present programme and should be focused on enabling more stroke patients to benefit from motor imagery training. The implications of this paper: The addition of motor imagery training to the conventional neuro-rehabilitation can significantly promote the recovery of motor performance of lower limbs in stroke patients, thus reducing long-term disability and associated socio-economic burden. The findings of this pilot study may be helpful to develop nursing strategies aimed at improving functional ability and consequently the quality of life of stroke patients. Nurses can learn the motor imagery training as a technique for practising psychomotor nursing skills.
Collapse
Affiliation(s)
- Xiao-Jun Yin
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Jiao Wang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Di Ding
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Tian-Ming Shi
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
60
|
Gowda AS, Memon AN, Bidika E, Salib M, Rallabhandi B, Fayyaz H. Investigating the Viability of Motor Imagery as a Physical Rehabilitation Treatment for Patients With Stroke-Induced Motor Cortical Damage. Cureus 2021; 13:e14001. [PMID: 33884242 PMCID: PMC8054940 DOI: 10.7759/cureus.14001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although around 83% of individuals survive a stroke, they usually experience a significant loss in their motor execution (ME) capabilities due to their acquired cortical infarction. The loss of significant ME capabilities due to stroke damage was previously thought to be irreversible. Active movement therapies show considerable promise but depend on motor performance, excluding many otherwise eligible patients. Motor imagery (MI), a process that involves the use of mirror neurons to imagine motor activity, has emerged as a possible avenue to re-acquire some physical abilities lost to stroke damage. This paper examines previous studies to compare the strength of brain activation and connectivity in individuals who have brain lesions and those who do not as they all attempt ME and MI tasks. This paper reviews case studies investigating the direct effect of motor imagery in conjunction with physical therapy and the limitations of motor imagery based on the location of cortical damage and other variables, such as age. The findings analyzed in this review indicate that MI would serve as a beneficial addition to physical therapy and a viable option to stimulate motor evoked potentials (MEPs) in individuals not capable of pursuing physical therapy due to severe motor impairment. Regardless of the presence of brain lesions, motor imagery has consistently had a positive impact on motor rehabilitation either in boosting treatment or stimulating neuromuscular pathways. Therefore, we have concluded that MI is a viable supplemental treatment plan for motor recovery in most patients with motor cortical atrophy.
Collapse
Affiliation(s)
- Asavari S Gowda
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Areeba N Memon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Erjola Bidika
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Marina Salib
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bhavana Rallabhandi
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hafsa Fayyaz
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
61
|
Acquisition and consolidation processes following motor imagery practice. Sci Rep 2021; 11:2295. [PMID: 33504870 PMCID: PMC7840673 DOI: 10.1038/s41598-021-81994-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
It well-known that mental training improves skill performance. Here, we evaluated skill acquisition and consolidation after physical or motor imagery practice, by means of an arm pointing task requiring speed-accuracy trade-off. In the main experiment, we showed a significant enhancement of skill after both practices (72 training trials), with a better acquisition after physical practice. Interestingly, we found a positive impact of the passage of time (+ 6 h post training) on skill consolidation for the motor imagery training only, without any effect of sleep (+ 24 h post training) for none of the interventions. In a control experiment, we matched the gain in skill learning after physical training (new group) with that obtained after motor imagery training (main experiment) to evaluate skill consolidation after the same amount of learning. Skill performance in this control group deteriorated with the passage of time and sleep. In another control experiment, we increased the number of imagined trials (n = 100, new group) to compare the acquisition and consolidation processes of this group with that observed in the motor imagery group of the main experiment. We did not find significant differences between the two groups. These findings suggest that physical and motor imagery practice drive skill learning through different acquisition and consolidation processes.
Collapse
|
62
|
Pastora-Bernal JM, Estebanez-Pérez MJ, Lucena-Anton D, García-López FJ, Bort-Carballo A, Martín-Valero R. The Effectiveness and Recommendation of Motor Imagery Techniques for Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Systematic Review. J Clin Med 2021; 10:jcm10030428. [PMID: 33499316 PMCID: PMC7866187 DOI: 10.3390/jcm10030428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Motor imagery (MI) reported positive effects in some musculoskeletal rehabilitation processes. The main objective of this study was to analyze the effectiveness of MI interventions after anterior cruciate ligament (ACL) reconstruction. A systematic review was conducted from November 2018 to December 2019 in PubMed, Scopus, Web of Science, The Cochrane Library, and Physiotherapy Evidence Database (PEDro). The methodological quality, degree of recommendation, and levels of evidence were analyzed. A total of six studies were included. Selected studies showed unequal results (positive and negative) regarding pain, anxiety, fear of re-injury, function, and activities of daily living. Regarding the range of motion, anthropometric measurements, and quality of life, the results were not conclusive. Muscle activation, strength, knee laxity, time to remove external support, and neurobiological factors showed some favorable results. Nevertheless, the results were based on a limited number of studies, small sample sizes, and a moderate-weak degree of recommendation. In conclusion, our review showed a broader view of the current evidence, including a qualitative assessment to implement MI after ACL surgery. There was no clear evidence that MI added to physiotherapy was an effective intervention after ACL surgery, although some studies showed positive results in clinical outcomes. More adequately-powered long-term randomized controlled trials are necessary.
Collapse
Affiliation(s)
| | - María José Estebanez-Pérez
- Department of Physiotherapy, Faculty of Health Science, University of Malaga, 29071 Málaga, Spain; (M.J.E.-P.); (R.M.-V.)
| | - David Lucena-Anton
- Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Cadiz, 11009 Cadiz, Spain
- Correspondence:
| | | | | | - Rocío Martín-Valero
- Department of Physiotherapy, Faculty of Health Science, University of Malaga, 29071 Málaga, Spain; (M.J.E.-P.); (R.M.-V.)
| |
Collapse
|
63
|
Oh DS, Choi JD. Effects of Motor Imagery Training on Balance and Gait in Older Adults: A Randomized Controlled Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E650. [PMID: 33466699 PMCID: PMC7828767 DOI: 10.3390/ijerph18020650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/21/2023]
Abstract
The aim of this study was to demonstrate the effects of motor imagery training on balance and gait abilities in older adults and to investigate the possible application of the training as an effective intervention against fall prevention. Subjects (n = 34) aged 65 years and over who had experienced falls were randomly allocated to three groups: (1) motor imagery training group (MITG, n = 11), (2) task-oriented training group (TOTG, n = 11), and (3) control group (CG, n = 12). Each group performed an exercise three times a week for 6 weeks. The dependent variables included Path Length of center of pressure (COP)-based static balance, Berg Balance Scale (BBS) score, Timed Up and Go Test (TUG) score, which assesses a person's mobility based on changes in both static and dynamic balance, Falls Efficacy Scale (FES) score, which evaluates changes in fear of falls, and gait parameters (velocity, cadence, step length, stride length, and H-H base support) to evaluate gait. After the intervention, Path Length, BBS, TUG, velocity, cadence, step length, and stride length showed significant increases in MITG and TOTG compared to CG (p < 0.05). Post hoc test results showed a significantly greater increase in BBS, TUG, and FES in MITG compared with TOTG and CG (p < 0.05). Our results suggest that motor imagery training combined with functional training has positive effects on balance, gait, and fall efficacy for fall prevention in the elderly.
Collapse
Affiliation(s)
- Dong Sik Oh
- Department of Physical Therapy, Division of Health Science, Hanseo University, Seosan 31962, Korea
| | - Jong Duk Choi
- Department of Physical Therapy, College of Health and Medical Science, Daejeon University, Daejeon 34520, Korea;
| |
Collapse
|
64
|
Okawada M, Kaneko F, Shindo K, Yoneta M, Sakai K, Okuyama K, Akaboshi K, Liu M. Kinesthetic illusion induced by visual stimulation influences sensorimotor event-related desynchronization in stroke patients with severe upper-limb paralysis: A pilot study. Restor Neurol Neurosci 2021; 38:455-465. [PMID: 33325415 DOI: 10.3233/rnn-201030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repetition of motor imagery improves the motor function of patients with stroke. However, patients who develop severe upper-limb paralysis after chronic stroke often have an impaired ability to induce motor imagery. We have developed a method to passively induce kinesthetic perception using visual stimulation (kinesthetic illusion induced by visual stimulation [KINVIS]). OBJECTIVE This pilot study further investigated the effectiveness of KINVIS in improving the induction of kinesthetic motor imagery in patients with severe upper-limb paralysis after stroke. METHODS Twenty participants (11 with right hemiplegia and 9 with left hemiplegia; mean time from onset [±standard deviation], 67.0±57.2 months) with severe upper-limb paralysis who could not extend their paretic fingers were included in this study. The ability to induce motor imagery was evaluated using the event-related desynchronization (ERD) recorded during motor imagery before and after the application of KINVIS for 20 min. The alpha- and beta-band ERDs around the premotor, primary sensorimotor, and posterior parietal cortices of the affected and unaffected hemispheres were evaluated during kinesthetic motor imagery of finger extension and before and after the intervention. RESULTS Beta-band ERD recorded from the affected hemisphere around the sensorimotor area showed a significant increase after the intervention, while the other ERDs remained unchanged. CONCLUSIONS In patients with chronic stroke who were unable to extend their paretic fingers for a prolonged period of time, the application of KINVIS, which evokes kinesthetic perception, improved their ability to induce motor imagery. Our findings suggest that although KINVIS is a passive intervention, its short-term application can induce changes related to the motor output system.
Collapse
Affiliation(s)
- Megumi Okawada
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Keiichiro Shindo
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Masaki Yoneta
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Katsuya Sakai
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan
| | - Kohei Okuyama
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kazuto Akaboshi
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan.,Department of Rehabilitation, Shonan Keiiku Hospital, Endo, Fujisawa, Kanagawa, Japan.,Hokuto Social Medical Corporation, Kisen, Inada-cho, Obihiro, Hokkaido, Japan
| | - Meigen Liu
- Department of Rehabilitation of Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
65
|
Effectiveness of Motor Imagery on Motor Recovery in Patients with Multiple Sclerosis: Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020498. [PMID: 33435410 PMCID: PMC7827037 DOI: 10.3390/ijerph18020498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Abstract
The effects of motor imagery (MI) on functional recovery of patients with neurological pathologies, such as stroke, has been recently proven. The aim of this study is to evaluate the effectiveness of MI on motor recovery and quality of life (QOL) in patients with multiple sclerosis (pwMS). A search was carried out in the following scientific databases: PubMed, CINAHL, PEDro, Scopus, Cochrane and Web of Science, up to November 2020. The grey literature and reference lists of potentially relevant articles were also searched. The Checklist for Measuring Quality and The Cochrane collaboration’s tool were used to assess the methodological quality and risk of bias of the studies. Five studies were included in the systematic review. Findings showed that pwMS using MI had significant improvements in walking speed and distance, fatigue and QOL. In addition, several benefits were also found in dynamic balance and perceived walking ability. Although the evidence is limited, rehabilitation using MI with the application of musical and verbal guides (compared to non-intervention or other interventions), can produce benefits on gait, fatigue and QOL in pwMS with a low score in the Expanded Disability Status Scale.
Collapse
|
66
|
O’Brien J, Bracewell RM, Castillo JA. The effects of kinesthetic and visual motor imagery on interjoint coordination in the hemiplegic index finger: an experimental study using the index of temporal coordination. CADERNOS BRASILEIROS DE TERAPIA OCUPACIONAL 2021. [DOI: 10.1590/2526-8910.ctoao2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Upper limb hemiparesis is a common impairment following stroke and can affect interjoint coordination. Motor imagery training is one treatment strategy. However, motor imagery can use visual or kinesthetic modalities and there has been a lack of research comparing the effectiveness of these modalities when treating the upper limb. The aim of this study was to compare visual and kinesthetic motor imagery in improving interjoint coordination in the hemiparetic index finger. Fifteen stroke survivors with upper limb hemiparesis were allocated to groups using kinesthetic or visual motor imagery, or a control group using guided relaxation. Reaching and grasping movements of the upper limb were captured using optoelectronic motion capture. Interjoint coordination of the hemiparetic index finger was analysed using the index of temporal coordination. No significant differences were found for interjoint coordination following treatment in either condition. Future work should focus on comparing kinesthetic and visual motor imagery in the rehabilitation of more proximal upper limb joints.
Collapse
|
67
|
Jacquet T, Lepers R, Poulin-Charronnat B, Bard P, Pfister P, Pageaux B. Mental fatigue induced by prolonged motor imagery increases perception of effort and the activity of motor areas. Neuropsychologia 2020; 150:107701. [PMID: 33276035 DOI: 10.1016/j.neuropsychologia.2020.107701] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/04/2020] [Accepted: 11/29/2020] [Indexed: 01/26/2023]
Abstract
Recent literature suggests that when prolonged, motor imagery (MI) induces mental fatigue and negatively impacts subsequent physical exercise. The aim of this study was to confirm this possibility with neurophysiological and self-reported measures. Thirteen participants performed 200 imagined isometric knee extension contractions (Prolonged MI condition) or watched a documentary (Control condition), and then performed 150 actual isometric knee extensions. Electroencephalography was continuously recorded to obtain motor-related cortical potential amplitude at Cz electrode (MRCP, index of motor area activity) for each imagined and actual contraction. Electromyography of the vastus lateralis muscle as well as the perceived effort required to perform prolonged MI, watch the documentary, and perform the actual contractions were measured. During prolonged MI, mental fatigue level, the effort required to imagine the contractions and MRCP amplitude increased over time. The increase in the effort required to imagine the contractions was significantly correlated with the MRCP amplitude. During the physical exercise, a significant condition × time interaction revealed a greater increase over time in perceived effort in the prolonged MI condition compared to the control condition, as well as a specific alteration in EMG RMS of the vastus lateralis muscle. These alterations observed in the presence of mental fatigue during actual contractions, combined with those observed during prolonged MI, suggest that prolonged MI may impair the motor command required to perform imagined or actual contractions. While the observed effect of mental fatigue on MRCP amplitude was clear during MI, future studies should tailor the physical exercise to minimize the exercise-induced decrease in force production capacity and control for its confounding effects on MRCP amplitude in the presence of mental fatigue.
Collapse
Affiliation(s)
- Thomas Jacquet
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Dijon, 21000, France.
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences Du Sport, Dijon, F-21000, France
| | | | - Patrick Bard
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Dijon, 21000, France
| | - Philippe Pfister
- LEAD - CNRS UMR5022, Université Bourgogne Franche-Comté, Dijon, 21000, France
| | - Benjamin Pageaux
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences Du Sport, Dijon, F-21000, France; Ecole de Kinésiologie et des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Centre de Recherche de L'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| |
Collapse
|
68
|
Liepert J, Stürner J, Büsching I, Sehle A, Schoenfeld MA. Effects of a single mental chronometry training session in subacute stroke patients - a randomized controlled trial. BMC Sports Sci Med Rehabil 2020; 12:66. [PMID: 33101692 PMCID: PMC7579870 DOI: 10.1186/s13102-020-00212-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022]
Abstract
Background Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor execution, or changes of motor excitability. Methods Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30 min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training. Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent period were measured in the affected and the non-affected hand. Results Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the hand identification training. Motor execution of the BBT was significantly improved after mental chronometry training but not after hand identification task training. Patients with severe sensory deficits performed significantly inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results were not different between pre and post training but showed significant differences between affected and unaffected side. Conclusion Even a single training session can modulate MC abilities and BBT motor execution in a task-specific way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods should explore if the observed changes can further be expanded. Trial registration DRKS, DRKS00020355, registered March 9th, 2020, retrospectively registered
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Jana Stürner
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | | | - Aida Sehle
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Mircea A Schoenfeld
- Department of Neurorehabilitation, Kliniken Schmieder, Heidelberg, Germany.,Department of Experimental Neurology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
69
|
Liang WD, Xu Y, Schmidt J, Zhang LX, Ruddy KL. Upregulating excitability of corticospinal pathways in stroke patients using TMS neurofeedback; A pilot study. Neuroimage Clin 2020; 28:102465. [PMID: 33395961 PMCID: PMC7585154 DOI: 10.1016/j.nicl.2020.102465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023]
Abstract
Upper limb weakness following a stroke affects 80% of survivors and is a key factor in preventing their return to independence. State-of-the art approaches to rehabilitation often require that the patient can generate some activity in the paretic limb, which is not possible for many patients in the early period following stroke. Approaches that enable more patients to engage with upper limb therapy earlier are urgently needed. Motor imagery has shown promise as a potential means to maintain activity in the brain's motor network, when the patient is incapable of generating functional movement. However, as imagery is a hidden mental process, it is impossible for individuals to gauge what impact this is having upon their neural activity. Here we used a novel brain-computer interface (BCI) approach allowing patients to gain an insight into the effect of motor imagery on their brain-muscle pathways, in real-time. Seven patients 2-26 weeks post stroke were provided with neurofeedback (NF) of their corticospinal excitability measured by the size of motor evoked potentials (MEP) in response to transcranial magnetic stimulation (TMS). The aim was to train patients to use motor imagery to increase the size of MEPs, using the BCI with a computer game displaying neurofeedback. Patients training finger muscles learned to elevate MEP amplitudes above their resting baseline values for the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. By day 3 for ADM and day 4 for FDI, MEP amplitudes were sustained above baseline in all three NF blocks. Here we have described the first clinical implementation of TMS NF in a population of sub-acute stroke patients. The results show that in the context of severe upper limb paralysis, patients are capable of using neurofeedback to elevate corticospinal excitability in the affected muscles. This may provide a new training modality for early intervention following stroke.
Collapse
Affiliation(s)
- W D Liang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Y Xu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - J Schmidt
- Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland
| | - L X Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - K L Ruddy
- Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland.
| |
Collapse
|
70
|
Cayol Z, Nazir TA. Why Language Processing Recruits Modality Specific Brain Regions: It Is Not About Understanding Words, but About Modelling Situations. J Cogn 2020; 3:35. [PMID: 33043245 PMCID: PMC7528693 DOI: 10.5334/joc.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/07/2020] [Indexed: 02/02/2023] Open
Abstract
Whether language comprehension requires the participation of brain structures that evolved for perception and action has been a subject of intense debate. While brain-imaging evidence for the involvement of such modality-specific regions has grown, the fact that lesions to these structures do not necessarily erase word knowledge has invited the conclusion that language-induced activity in these structures might not be essential for word recognition. Why language processing recruits these structures remains unanswered, however. Here, we examine the original findings from a slightly different perspective. We first consider the 'original' function of structures in modality-specific brain regions that are recruited by language activity. We propose that these structures help elaborate 'internal forward models' in motor control (c.f. emulators). Emulators are brain systems that capture the relationship between an action and its sensory consequences. During language processing emulators could thus allow accessing associative memories. We further postulate the existence of a linguistic system that exploits, in a rule-based manner, emulators and other nonlinguistic brain systems, to gain complementary (and redundant) information during language processing. Emulators are therefore just one of several sources of information. We emphasize that whether a given word-form triggers activity in modality-specific brain regions depends on the linguistic context and not on the word-form as such. The role of modality-specific systems in language processing is thus not to help understanding words but to model the verbally depicted situation by supplying memorized context information. We present a model derived from these assumptions and provide predictions and perspectives for future research.
Collapse
Affiliation(s)
- Zoé Cayol
- Univ. Lyon, CNRS, UMR 5304 – Institut des Sciences Cognitives – Marc Jeannerod, Bron, FR
| | - Tatjana A. Nazir
- Univ. Lyon, CNRS, UMR 5304 – Institut des Sciences Cognitives – Marc Jeannerod, Bron, FR
- Univ. Lille, CNRS, UMR 9193 – SCALab – Sciences Cognitives et Sciences Affectives, Lille, FR
| |
Collapse
|
71
|
Kanthack TFD, Guillot A, Clémençon M, Debarnot U, Di Rienzo F. Effect of Physical Fatigue Elicited by Continuous and Intermittent Exercise on Motor Imagery Ability. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2020; 91:525-538. [PMID: 32023175 DOI: 10.1080/02701367.2019.1691709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Purpose: The ability to perform motor imagery (MI) might be impaired by the physical fatigue elicited during training. Interestingly, there is also theoretical support for a more limited influence of fatigue in the existing literature. Method: We evaluated MI ability before and after two exercise protocols: (i) a continuous exercise of 20 min performed on a cycle ergometer at 80% of the secondary ventilatory threshold (Continuous exercise), and (ii) an intermittent exercise of 20 min involving sprints at maximal intensity performed with regular intervals (Intermittent exercise). MI ability evaluations were performed using validated behavioral (mental chronometry) and psychometric (subjective reports) methods. MI ability evaluations included mental rehearsal of a motor sequence which involved the main effectors of the exercise protocols (walking), and mental rehearsal of a motor task which did not involve the main somatic effectors of the exercise protocols (pointing movements with the upper limbs). Results: Mental chronometry showed that MI ability was degraded only after Intermittent exercise, while self-report measures of MI vividness revealed that MI ability was primarily impaired during MI of the walking task. Conclusions: Present results suggest that Intermittent exercise engaging anaerobic processes of energy expenditure, but not Continuous exercise engaging aerobic processes of energy expenditure, impaired MI ability. Findings are discussed in relation to the internal models theory of motor simulation, specifically changes in current state of the motor system under the fatigued state-affecting motor predictions. Present findings may contribute to successful applications of MI training in sports and rehabilitation.
Collapse
Affiliation(s)
| | - Aymeric Guillot
- Université de Lyon, Université Claude Bernard Lyon 1
- Institut Universitaire de France
| | - Michel Clémençon
- Université de Lyon, Université Claude Bernard Lyon 1
- Normandie Université, Université de Rouen
| | | | | |
Collapse
|
72
|
Soler B, Ramari C, Valet M, Dalgas U, Feys P. Clinical assessment, management, and rehabilitation of walking impairment in MS: an expert review. Expert Rev Neurother 2020; 20:875-886. [PMID: 32729742 DOI: 10.1080/14737175.2020.1801425] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION One of the most common and life-altering consequences of Multiple Sclerosis (MS) is walking impairment. The distance, speed, and Gait pattern functions are components of the International Classification of Functioning, Disability, and Health (ICF) and are also predictors of dependency in terms of daily living activities in patients with MS (pwMS). AREAS COVERED This article provides an overview of walking impairment in pwMS, with focus on the assessment of gait and the rehabilitation approaches. EXPERT OPINION The authors recommend that pwMS undergo gait assessment integrating the ICF perspective using validated clinical outcome measures that cover spatiotemporal gait parameters. Moreover, assessment of walking speed with short walking capacity tests such as the timed 25-foot walk (T25FW) or the 10-m walk test (10 MWT) and tests for walking distance with middle distance tests such as the 2-min walk test (2MWT) and the 6-min walk test (6MWT). This review further highlights strategies that may restore walking function including pharmacological symptomatic treatment and non-pharmacological rehabilitation approaches such as exercise and task-specific training providing an appraisal of mobility targeted therapies to be considered when planning multidisciplinary comprehensive-care of pwMS. Finally, new and novel strategies such as motor imagery and rhythmic auditory stimulation have been developed to improve walking speed and distance in pwMS.
Collapse
Affiliation(s)
- Bernardita Soler
- Neurology Service, Hospital Doctor Sótero Del Río , Santiago, Chile.,Neurology Department, Pontificia Universidad Católica De Chile , Santiago, Chile
| | - Cintia Ramari
- Faculty of Physical Education, University of Brasília , Brasília, Brazil
| | - Maxime Valet
- Cliniques universitaires Saint-Luc, Service de Médecine Physique et Réadaptation , Brussels, Belgium.,Université catholique de Louvain, Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuromusculoskeletal lab (NMSK) , Brussels, Belgium
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University , Aarhus, Denmark
| | - Peter Feys
- REVAL, Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University , Hasselt, Belgium
| |
Collapse
|
73
|
Imagining handwriting movements in a usual or unusual position: effect of posture congruency on visual and kinesthetic motor imagery. PSYCHOLOGICAL RESEARCH 2020; 85:2237-2247. [PMID: 32743730 DOI: 10.1007/s00426-020-01399-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Motor imagery has been used in training programs to improve the performance of motor skills. Handwriting movement may benefit from motor imagery training. To optimize the efficacy of this kind of training, it is important to identify the factors that facilitate the motor imagery process for handwriting movements. Several studies have shown that motor imagery is more easily achieved when there is maximum compatibility between the actual posture and the imagined movement. We, therefore, examined the effect of posture congruency on visual and kinesthetic motor imagery for handwriting movements. Adult participants had to write and imagine writing a sentence by focusing on the evocation of either the kinesthetic or visual consequences of the motion. Half the participants performed the motor imagery task in a congruent posture (sitting with a hand ready for writing), and half in an incongruent one (standing with arms crossed behind the back and fingers spread wide). The temporal similarity between actual and imagined movement times and the vividness of the motor imagery were evaluated. Results revealed that temporal similarity was stronger in the congruent posture condition than in the incongruent one. Furthermore, in the incongruent posture condition, participants reported greater difficulty forming a precise kinesthetic motor image of themselves writing than a visual image, whereas no difference was observed in the congruent posture condition. Taken together, our results show that postural information is taken into account during the mental simulation of handwriting movements. The implications of these findings for guiding the design of motor imagery training are discussed.
Collapse
|
74
|
Bagarinao E, Yoshida A, Terabe K, Kato S, Nakai T. Improving Real-Time Brain State Classification of Motor Imagery Tasks During Neurofeedback Training. Front Neurosci 2020; 14:623. [PMID: 32670011 PMCID: PMC7326956 DOI: 10.3389/fnins.2020.00623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the effect of the dynamic changes in brain activation during neurofeedback training in the classification of the different brain states associated with the target tasks. We hypothesized that ongoing activation patterns could change during neurofeedback session due to learning effects and, in the process, could affect the performance of brain state classifiers trained using data obtained prior to the session. Using a motor imagery paradigm, we then examined the application of an incremental training approach where classifiers were continuously updated in order to account for these activation changes. Our results confirmed our hypothesis that neurofeedback training could be associated with dynamic changes in brain activation characterized by an initially more widespread brain activation followed by a more focused and localized activation pattern. By continuously updating the trained classifiers after each feedback run, significant improvement in accurately classifying the different brain states associated with the target motor imagery tasks was achieved. These findings suggest the importance of taking into account brain activation changes during neurofeedback in order to provide more reliable and accurate feedback information to the participants, which is critical for an effective neurofeedback application.
Collapse
Affiliation(s)
| | - Akihiro Yoshida
- Neuroimaging and Informatics Group, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kazunori Terabe
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shohei Kato
- Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Toshiharu Nakai
- Neuroimaging and Informatics Group, National Center for Geriatrics and Gerontology, Obu, Japan.,Department of Radiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
75
|
Mehler DMA, Williams AN, Whittaker JR, Krause F, Lührs M, Kunas S, Wise RG, Shetty HGM, Turner DL, Linden DEJ. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Front Hum Neurosci 2020; 14:226. [PMID: 32760259 PMCID: PMC7373077 DOI: 10.3389/fnhum.2020.00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke of the middle cerebral artery (MCA), a major brain vessel that supplies the primary motor and premotor cortex, is one of the most common causes for severe upper limb impairment. Currently available motor rehabilitation training largely lacks satisfying efficacy with over 70% of stroke survivors showing residual upper limb dysfunction. Motor imagery-based functional magnetic resonance imaging neurofeedback (fMRI-NF) has been suggested as a potential therapeutic technique to improve motor impairment in stroke survivors. In this preregistered proof-of-concept study (https://osf.io/y69jc/), we translated graded fMRI-NF training, a new paradigm that we have previously studied in healthy participants, to first-time MCA stroke survivors with residual mild to severe impairment of upper limb motor function. Neurofeedback was provided from the supplementary motor area (SMA) targeting two different neurofeedback target levels (low and high). We hypothesized that MCA stroke survivors will show (1) sustained SMA-region of interest (ROI) activation and (2) a difference in SMA-ROI activation between low and high neurofeedback conditions during graded fMRI-NF training. At the group level, we found only anecdotal evidence for these preregistered hypotheses. At the individual level, we found anecdotal to moderate evidence for the absence of the hypothesized graded effect for most subjects. These null findings are relevant for future attempts to employ fMRI-NF training in stroke survivors. The study introduces a Bayesian sequential sampling plan, which incorporates prior knowledge, yielding higher sensitivity. The sampling plan was preregistered together with a priori hypotheses and all planned analysis before data collection to address potential publication/researcher biases. Unforeseen difficulties in the translation of our paradigm to a clinical setting required some deviations from the preregistered protocol. We explicitly detail these changes, discuss the accompanied additional challenges that can arise in clinical neurofeedback studies, and formulate recommendations for how these can be addressed. Taken together, this work provides new insights about the feasibility of motor imagery-based graded fMRI-NF training in MCA stroke survivors and serves as a first example for comprehensive study preregistration of an (fMRI) neurofeedback experiment.
Collapse
Affiliation(s)
- David M. A. Mehler
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Angharad N. Williams
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
- Max Planck Adaptive Memory Research Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph R. Whittaker
- School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Florian Krause
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michael Lührs
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
- Research Department, Brain Innovation B.V., Maastricht, Netherlands
| | - Stefanie Kunas
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Richard G. Wise
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, D'Annunzio University of Chieti–Pescara, Chieti, Italy
| | | | - Duncan L. Turner
- School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - David E. J. Linden
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, United Kingdom
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
76
|
Barclay RE, Stevenson TJ, Poluha W, Semenko B, Schubert J. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst Rev 2020; 5:CD005950. [PMID: 32449959 PMCID: PMC7387111 DOI: 10.1002/14651858.cd005950.pub5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Stroke is caused by the interruption of blood flow to the brain (ischemic stroke) or the rupture of blood vessels within the brain (hemorrhagic stroke) and may lead to changes in perception, cognition, mood, speech, health-related quality of life, and function, such as difficulty walking and using the arm. Activity limitations (decreased function) of the upper extremity are a common finding for individuals living with stroke. Mental practice (MP) is a training method that uses cognitive rehearsal of activities to improve performance of those activities. OBJECTIVES To determine whether MP improves outcomes of upper extremity rehabilitation for individuals living with the effects of stroke. In particular, we sought to (1) determine the effects of MP on upper extremity activity, upper extremity impairment, activities of daily living, health-related quality of life, economic costs, and adverse effects; and (2) explore whether effects differed according to (a) the time post stroke at which MP was delivered, (b) the dose of MP provided, or (c) the type of comparison performed. SEARCH METHODS We last searched the Cochrane Stroke Group Trials Register on September 17, 2019. On September 3, 2019, we searched the Cochrane Central Register of Controlled Trials (the Cochrane Library), MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus, Web of Science, the Physiotherapy Evidence Database (PEDro), and REHABDATA. On October 2, 2019, we searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform. We reviewed the reference lists of included studies. SELECTION CRITERIA We included randomized controlled trials (RCTs) of adult participants with stroke who had deficits in upper extremity function (called upper extremity activity). DATA COLLECTION AND ANALYSIS Two review authors screened titles and abstracts of the citations produced by the literature search and excluded obviously irrelevant studies. We obtained the full text of all remaining studies, and both review authors then independently selected trials for inclusion. We combined studies when the review produced a minimum of two trials employing a particular intervention strategy and a common outcome. We considered the primary outcome to be the ability of the arm to be used for appropriate tasks, called upper extremity activity. Secondary outcomes included upper extremity impairment (such as quality of movement, range of motion, tone, presence of synergistic movement), activities of daily living (ADLs), health-related quality of life (HRQL), economic costs, and adverse events. We assessed risk of bias in the included studies and applied GRADE to assess the certainty of the evidence. We completed subgroup analyses for time since stroke, dosage of MP, type of comparison, and type of arm activity outcome measure. MAIN RESULTS We included 25 studies involving 676 participants from nine countries. For the comparison of MP in addition to other treatment versus the other treatment, MP in combination with other treatment appears more effective in improving upper extremity activity than the other treatment without MP (standardized mean difference [SMD] 0.66, 95% confidence interval [CI] 0.39 to 0.94; I² = 39%; 15 studies; 397 participants); the GRADE certainty of evidence score was moderate based on risk of bias for the upper extremity activity outcome. For upper extremity impairment, results were as follows: SMD 0.59, 95% CI 0.30 to 0.87; I² = 43%; 15 studies; 397 participants, with a GRADE score of moderate, based on risk of bias. For ADLs, results were as follows: SMD 0.08, 95% CI -0.24 to 0.39; I² = 0%; 4 studies; 157 participants; the GRADE score was low due to risk of bias and small sample size. For the comparison of MP versus conventional treatment, the only outcome with available data to combine (3 studies; 50 participants) was upper extremity impairment (SMD 0.34, 95% CI -0.33 to 1.00; I² = 21%); GRADE for the impairment outcome in this comparison was low due to risk of bias and small sample size. Subgroup analyses of time post stroke, dosage of MP, or comparison type for the MP in combination with other rehabilitation treatment versus the other treatment comparison showed no differences. The secondary outcome of health-related quality of life was reported in only one study, and no study noted the outcomes of economic costs and adverse events. AUTHORS' CONCLUSIONS Moderate-certainty evidence shows that MP in addition to other treatment versus the other treatment appears to be beneficial in improving upper extremity activity. Moderate-certainty evidence also shows that MP in addition to other treatment versus the other treatment appears to be beneficial in improving upper extremity impairment after stroke. Low-certainty evidence suggests that ADLs may not be improved with MP in addition to other treatment versus the other treatment. Low-certainty evidence also suggests that MP versus conventional treatment may not improve upper extremity impairment. Further study is required to evaluate effects of MP on time post stroke, the volume of MP required to affect outcomes, and whether improvement is maintained over the long term.
Collapse
Affiliation(s)
- Ruth E Barclay
- Department of Physical Therapy, College of Rehabilitation Science, University of Manitoba, Winnipeg, Canada
| | - Ted J Stevenson
- Rehabilitation Services, St Boniface General Hospital, Winnipeg, Canada
| | - William Poluha
- Sciences and Technology Library, University of Manitoba, Winnipeg, Canada
| | - Brenda Semenko
- Occupational Therapy Department, Health Sciences Centre, Winnipeg, Canada
| | - Julie Schubert
- Steelcity Physiotherapy & Wellness Centre, Selkirk, Canada
| |
Collapse
|
77
|
Effect of Adding Motor Imagery to Task Specific Training on Facilitation of Sit to Stand in Hemiparetic Patients. ARCHIVES OF NEUROSCIENCE 2020. [DOI: 10.5812/ans.102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Motor imagery training is a cognitive process in which an internal representation of a movement is activated in working memory. The movement is mentally rehearsed, without any physical activity. Task-specific training emphasizes the repetitive practice of skilled movement to enhance functional abilities in hemiparesis. Objectives: To investigate whether task specific training preceded by motor imagery or task specific training alone was more effective for facilitating sit to stand in patients with stroke. Methods: Thirty male patients with stroke were selected from the Cairo University Outpatient Clinic; the median age of participants was 54.5 ± 3.51 years and they were divided equally into two groups. Patients in study group A (n = 15) received motor imagery training for 15 minutes followed by task specific training for 45 minutes, as well as a selected physical therapy program 3 times per week for 6 weeks. The control group B (n = 15) received task specific training for 45 minutes, as well as a selected physical therapy program 3 times per week for 6 weeks. The Fugl-Meyer section of the lower extremity (FMA-LE), Timed up and go test (TUG), and Biodex Balance system were assessed before and after treatment. Results: The results were highly significant for all variables including FMA-LE, TUG and Biodex Balance system in favor of the study group, post treatment. (P = 0.0004, P = 0.0001 and P = 0.0001, respectively). Conclusions: Motor imagery training results in greater improvement in sit to stand ability when used in conjunction with task specific training, rather than task specific training alone.
Collapse
|
78
|
Foysal KMR, Baker SN. Induction of plasticity in the human motor system by motor imagery and transcranial magnetic stimulation. J Physiol 2020; 598:2385-2396. [PMID: 32266976 DOI: 10.1113/jp279794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Delivering transcranial magnetic brain stimulation over the motor cortex during motor imagination leads to enhanced motor output, which is selective for the muscles primarily involved in the imagined movement. This novel protocol may be useful to enhance function after damage to the motor system, such as after stroke. ABSTRACT Several paired stimulation paradigms are known to induce plasticity in the motor cortex, reflected by changes in the motor evoked potential (MEP) following the paired stimulation. Motor imagery (MI) is capable of activating the motor system and affecting cortical excitability. We hypothesized that it might be possible to use MI in conjunction with transcranial magnetic stimulation (TMS) to induce plasticity in the human motor system. TMS was delivered to the motor cortex of healthy human subjects, and baseline MEPs recorded from forearm flexor, forearm extensor and intrinsic hand muscles. Subjects were then asked to imagine either wrist flexion or extension movements during TMS delivery (n = 90 trials). Immediately after this intervention, MEP measurement was repeated. Control protocols tested the impact of imagination or TMS alone. Flexion imagination with TMS increased MEPs in flexors and an intrinsic hand muscle. Extensor imagination with TMS increased MEPs in extensor muscles only. The control paradigms did not produce significant changes. We conclude that delivering TMS during MI is capable of inducing plastic changes in the motor system. This new protocol may find utility to enhance functional rehabilitation after brain injury.
Collapse
Affiliation(s)
- K M Riashad Foysal
- Institute of Neurosciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart N Baker
- Institute of Neurosciences, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
79
|
Abstract
OBJECTIVE This study explored mental rotation (MR) performance in patients with myotonic dystrophy 1 (DM1), an inherited neuromuscular disorder dominated by muscular symptoms, including muscle weakness and myotonia. The aim of the study was twofold: to gain new insights into the neurocognitive mechanisms of MR and to better clarify the cognitive profile of DM1 patients. To address these aims, we used MR tasks involving kinds of stimuli that varied for the extent to which they emphasized motor simulation and activation of body representations (body parts) versus visuospatial imagery (abstract objects). We hypothesized that, if peripheral sensorimotor feedback system plays a pivotal role in modulating MR performance, then DM1 patients would exhibit more difficulties in mentally rotating hand stimuli than abstract objects. METHOD Twenty-four DM1 patients and twenty-four age- and education-matched control subjects were enrolled in the study and were required to perform two computerized MR tasks involving pictures of hands and abstract objects. RESULTS The analysis of accuracy showed that patients had impaired MR performance when the angular disparities between the stimuli were higher. Notably, as compared to controls, patients showed slower responses when the stimuli were hands, whereas no significant differences when stimuli were objects. CONCLUSION The findings are coherent with the embodied cognition view, indicating a tight relation between body- and motor-related processes and MR. They suggest that peripheral, muscular, abnormalities in DM1 lead to alterations in manipulation of motor representations, which in turn affect MR, especially when body parts are to mentally rotate.
Collapse
|
80
|
Power L, Neyedli HF, Boe SG, Bardouille T. Efficacy of low-cost wireless neurofeedback to modulate brain activity during motor imagery. Biomed Phys Eng Express 2020; 6:035024. [DOI: 10.1088/2057-1976/ab872c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
81
|
Souto DO, Cruz TKF, Fontes PLB, Batista RC, Haase VG. Motor Imagery Development in Children: Changes in Speed and Accuracy With Increasing Age. Front Pediatr 2020; 8:100. [PMID: 32232021 PMCID: PMC7082325 DOI: 10.3389/fped.2020.00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Although motor imagery has been pointed as a promising strategy for the rehabilitation of children with neurological disorders, information on their development throughout childhood and adolescence is still scarce. For instance, it is still unclear at what age they reach a development comparable to the motor imagery performance observed in adults. Herein we used a mental rotation task to assess motor imagery in 164 typically developing children and adolescents, which were divided into four age groups (6-7, 8-9, 10-11, and 12-13 years) and 30 adults. The effects of biomechanical constraints, accuracy, and reaction time of the mental rotation task were considered. ANOVA showed that all groups had the effect of biomechanical restrictions of the mental rotation task. We found a group effect for accuracy [F (4, 180) = 17,560; p < 0.00; η2 = 3.79] and reaction time [F (4, 180) = 17.5; p < 0.001, η2 = 0.615], with the results of children groups 6-7 and 8-9 years being significantly lower than the other groups (p < 0.05). In all the analyses, there were no differences regarding accuracy and reaction time among the participants of the age groups 10-11 and 12-13 years and adults (p > 0.05). Concluding, children aged 6-7 years were able to perform motor imagery, motor imagery ability improved as the participants' ages increased, and children aged 10 and over-performed similarly to adults.
Collapse
Affiliation(s)
- Deisiane Oliveira Souto
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Developmental Neuropsychology Laboratory, Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thalita Karla Flores Cruz
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Developmental Neuropsychology Laboratory, Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Lemos Bueno Fontes
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Rodrigo Caetano Batista
- Developmental Neuropsychology Laboratory, Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vitor Geraldi Haase
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Developmental Neuropsychology Laboratory, Department of Psychology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology on Behavior, CNPq, Belo Horizonte, Brazil
| |
Collapse
|
82
|
Souto DO, Cruz TKF, Coutinho K, Julio-Costa A, Fontes PLB, Haase VG. Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy. NeuroRehabilitation 2020; 46:53-63. [DOI: 10.3233/nre-192931] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Deisiane Oliveira Souto
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thalita Karla Flores Cruz
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kênia Coutinho
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Annelise Julio-Costa
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Vitor Geraldi Haase
- Graduate Program in Neurosciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychology, Developmental Neuropsychology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology on Behavior, CNPq, Brazil
| |
Collapse
|
83
|
Daeglau M, Zich C, Emkes R, Welzel J, Debener S, Kranczioch C. Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization. Front Psychol 2020; 11:57. [PMID: 32116896 PMCID: PMC7012900 DOI: 10.3389/fpsyg.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/09/2020] [Indexed: 01/27/2023] Open
Abstract
For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI.
Collapse
Affiliation(s)
- Mareike Daeglau
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Catharina Zich
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Reiner Emkes
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Julius Welzel
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Debener
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4All, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neuropsychology Laboratory, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Neurocognition and Functional Neurorehabilitation Group, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
84
|
Saha S, Baumert M. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review. Front Comput Neurosci 2020; 13:87. [PMID: 32038208 PMCID: PMC6985367 DOI: 10.3389/fncom.2019.00087] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 12/05/2022] Open
Abstract
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
85
|
Ruffino C, Gaveau J, Papaxanthis C, Lebon F. An acute session of motor imagery training induces use-dependent plasticity. Sci Rep 2019; 9:20002. [PMID: 31882851 PMCID: PMC6934610 DOI: 10.1038/s41598-019-56628-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022] Open
Abstract
Motor imagery, defined as the mental representation of an action without movement-related sensory inputs, is a well-known intervention to improve motor performance. In the current study, we tested whether use-dependent plasticity, a mechanism underlying motor learning, could be induced by an acute session of motor imagery. By means of transcranial magnetic stimulation (TMS) over the left primary motor cortex, we evoked isolated thumb movements in the right hand and assessed corticospinal excitability in the flexor and extensor pollicis brevis muscles. We measured the mean TMS-induced movement direction before and after an acute session of motor imagery practice. In a first experiment, participants of the imagery group were instructed to repeatedly imagine their thumb moving in a direction deviated by 90° from the pre-test movement. This group, but not the control group, deviated the post-training TMS-induced movements toward the training target direction (+44° ± 62° and -1° ± 23°, respectively). Interestingly, the deviation magnitude was driven by the corticospinal excitability increase in the agonist muscle. In a second experiment, we found that post-training TMS-induced movements were proportionally deviated toward the trained direction and returned to baseline 30 minutes after the motor imagery training. These findings suggest that motor imagery induces use-dependent plasticity and, this neural process is accompanied by corticospinal excitability increase in the agonist muscle.
Collapse
Affiliation(s)
- Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| |
Collapse
|
86
|
Long-term disuse of the hand affects motor imagery ability in patients with complete brachial plexus palsy. Neuroreport 2019; 30:452-456. [PMID: 30855560 DOI: 10.1097/wnr.0000000000001229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to examine motor imagery ability in patients with peripheral nerve disorder using the hand mental rotation task. Five patients with left total avulsion brachial plexus palsy (BPP) and 16 healthy age-matched adults participated in this study. The mean±SD time from the injury was 103.6±49.7 months. Participants performed a hand mental rotation task as the motor imagery task; outcome measures included the reaction time from cognizing hand stimuli to the judgment of hand laterality (right or left) and the error rate. Patients also completed the Hand 20 questionnaire to assess the use of their affected limb. Log-transformed reaction times of the affected limb in patients with BPP were significantly higher than those of the unaffected limb and the left-sided limb of the healthy participants. Log-transformed reaction times of the unaffected limb in patients were significantly higher than those of the right-sided limb in healthy participants. Log-transformed error rate did not differ between patients and healthy participants. According to the results of the Hand 20 questionnaire, patients with BPP hardly used their affected limb because of severe sensory-motor dysfunction. Motor imagery ability of the affected and unaffected limbs in patients with complete BPP may be decreased owing to long-term disuse. These findings suggest that long-term disuse in those with severe peripheral nerve disorders could affect motor imagery ability of both the affected and unaffected limbs.
Collapse
|
87
|
The Effect of Occupation-Based Bilateral Upper Extremity Training in a Medical Setting for Stroke Patients: A Single-Blinded, Pilot Randomized Controlled Trial. J Stroke Cerebrovasc Dis 2019; 28:104335. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.104335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022] Open
|
88
|
Nicholson V, Watts N, Chani Y, Keogh JW. Motor imagery training improves balance and mobility outcomes in older adults: a systematic review. J Physiother 2019; 65:200-207. [PMID: 31521556 DOI: 10.1016/j.jphys.2019.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
QUESTION Does motor imagery training improve measures of balance, mobility and falls in older adults without a neurological condition? DESIGN Systematic review and meta-analysis of randomised controlled trials. PARTICIPANTS Adults aged at least 60 years and without a neurological condition. INTERVENTION Three or more sessions of motor imagery training. OUTCOME MEASURES The primary outcomes were balance measures (such as single leg stance and Berg Balance scale) and mobility measures (such as gait speed and the Timed Up and Go test). Falls were a secondary outcome measure. Risk of bias was evaluated using the PEDro Scale, and overall quality of evidence was assessed using the Grades of Research, Assessment, Development and Evaluation (GRADE) approach. RESULTS Twelve trials including 356 participants were included in the systematic review and 10 trials (316 participants) were included in the meta-analyses. All trials included either apparently healthy participants or older adults after orthopaedic surgery. There was evidence that motor imagery training can significantly improve balance (SMD 1.03, 95% CI 0.25 to 1.82), gait speed (MD 0.13 m/s, 95% CI 0.04 to 0.22) and Timed Up and Go (MD 1.64 seconds, 95% CI 0.79 to 2.49) in older adults; however, the quality of evidence was very low to low. No data regarding falls were identified. CONCLUSION Motor imagery training improves balance and mobility in older adults who do not have a neurological condition. These results suggest that motor imagery training could be an adjunct to standard physiotherapy care in older adults, although it is unclear whether or not the effects are clinically worthwhile. TRIAL REGISTRATION PROSPERO CRD42017069954.
Collapse
Affiliation(s)
- Vaughan Nicholson
- School of Allied Health, Australian Catholic University, Brisbane, Australia.
| | - Naomi Watts
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Yannick Chani
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Justin Wl Keogh
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia; Human Potential Centre, AUT University, Auckland, New Zealand; Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
89
|
Mental imagery training for treatment of central neuropathic pain: a narrative review. Acta Neurol Belg 2019; 119:175-186. [PMID: 30989503 DOI: 10.1007/s13760-019-01139-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022]
Abstract
Mental imagery is a quasi-perceptual experience in the absence of external stimuli. This concept has intrigued psychologists, sportspersons, neurologists and other scientists for over a decade now. Imagery has been used in rehabilitation and the results have been promising. Researchers refer to this as healing the body through the mind. However, the challenge is lack of standardized protocols, homogeneity and consistency in application of mental imagery in different populations. The purpose of this review is to discuss and understand the role of mental imagery in the treatment of central neuropathic pain (CNP). Treatment options of CNP are inadequate and their benefits are short lived. We conducted an extensive search on various databases using combinations of different keywords and reviewed the available literature in this area. We were able to finalize twelve studies where mental imagery was used for treating CNP in spinal cord injury (SCI), stroke and multiple sclerosis. However, the methodology and techniques of mental imagery training used in these studies were non-homogeneous and inconsistent. This review provides a guiding framework to further explore the different techniques of mental imagery and their roles in treating CNP.
Collapse
|
90
|
Kanokwan S, Pramkamol W, Wipatcharee K, Warissara W, Siwarit R, Sompiya S, Onuma B, Mitra S. Age-related differences in brain activity during physical and imagined sit-to-stand in healthy young and older adults. J Phys Ther Sci 2019; 31:440-448. [PMID: 31164782 PMCID: PMC6511512 DOI: 10.1589/jpts.31.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/19/2019] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate whether healthy young and older
people differ in self-reported movement time and brain activity pattern as indicated by
electroencephalography during physical and imagined sit-to-stand movements. [Participants
and Methods] Twenty healthy young (aged 20–29 years) and 19 older (aged 60–69)
participants performed physical and imagined sit-to-stand movements while their
self-reported movement times and electroencephalography were recorded. [Results] No
age-related differences were found in self-reported movement time for physical or imagined
sit-to-stand. In the frontal and temporal regions, electroencephalography showed a beta
wave (14–17 Hz) for all conditions in both young and older adults. In the parietal and
occipital regions, during physical sit-to-stand trials, both groups showed a beta wave in
both regions. During imagined sit-to-stand trials, however, young participants showed a
high alpha wave (10.6–13 Hz) in the parietal and a low alpha wave (8–10.5 Hz) in the
occipital region, whereas older participants showed all three (alpha and beta) waves in
the parietal and occipital regions. [Conclusion] Although no age-related differences were
found in the ability to generate motor imagery, brain activity pattern as indicated by
electroencephalography was dissimilar between young and older participants during motor
imagery.
Collapse
Affiliation(s)
- Srisupornkornkool Kanokwan
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Wongcheen Pramkamol
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Klongkhayan Wipatcharee
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | - Warnjing Warissara
- Department of Physical Therapy, Faculty of Allied Health Sciences, Naresuan University: Phitsanulok 65000, Thailand
| | | | - Somthavil Sompiya
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Boonyarom Onuma
- Department of Rehabilitation and Movement Sciences, Faculty of Sports Science, Kasetsart University, Thailand
| | - Suvobrata Mitra
- Division of Psychology, Nottingham Trent University, United Kingdom
| |
Collapse
|
91
|
Imagery strategy affects spinal motor neuron excitability: using kinesthetic and somatosensory imagery. Neuroreport 2019; 30:463-467. [PMID: 30807531 DOI: 10.1097/wnr.0000000000001218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Motor imagery is the mental rehearsal of a movement within working memory. Reduction of spinal motor neuron excitability has been demonstrated after stroke, and motor imagery may increase spinal motor neuron excitability in patients with a motor deficit. However, spinal motor neuron excitability varies depending on the imagery strategy used. In this study, we examined spinal motor neuron excitability during kinesthetic, somatosensory, and combined imagery. Healthy adult volunteers (n=14) were recruited for F-wave recording. The F-wave was measured during relaxation to determine baseline levels, followed by measurement during the three imagery trials performed in a random order. In the somatosensory imagery (SI) trial, participants imagined tactile and pressure perception of the thumb finger pulp during holding a pinch meter. In the kinesthetic imagery (KI) trial, participants imagined muscle contraction during isometric thenar muscle activity at 50% maximal voluntary contraction. In the combined KI and SI trial, participants performed the KI and SI simultaneously. After F-wave recording, participants evaluated the difficulty of each imagery trial using a five-point Likert scale. Persistence during SI and KI was significantly higher than that at rest. The F/M amplitude ratio during KI was significantly higher than that at rest. The five-point Likert scale score of the combined KI and SI was significantly lower than that of KI. KI may increase spinal motor neuron excitability over that of SI. Thus, it is important to consider the sensory modality chosen for imagery during rehabilitation.
Collapse
|
92
|
Gandola M, Zapparoli L, Saetta G, De Santis A, Zerbi A, Banfi G, Sansone V, Bruno M, Paulesu E. Thumbs up: Imagined hand movements counteract the adverse effects of post-surgical hand immobilization. Clinical, behavioral, and fMRI longitudinal observations. NEUROIMAGE-CLINICAL 2019; 23:101838. [PMID: 31071593 PMCID: PMC6506638 DOI: 10.1016/j.nicl.2019.101838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
Abstract
Motor imagery (M.I.) training has been widely used to enhance motor behavior. To characterize the neural foundations of its rehabilitative effects in a pathological population we studied twenty-two patients with rhizarthrosis, a chronic degenerative articular disease in which thumb-to-fingers opposition becomes difficult due to increasing pain while the brain is typically intact. Before and after surgery, patients underwent behavioral tests to measure pain and motor performance and fMRI measurements of brain motor activity. After surgery, the affected hand was immobilized, and patients were enrolled in a M.I. training. The sample was split in those who had a high compliance with the program of scheduled exercises (T+, average compliance: 84%) and those with low compliance (T−, average compliance: 20%; cut-off point: 55%). We found that more intense M.I. training counteracts the adverse effects of immobilization reducing pain and expediting motor recovery. fMRI data from the post-surgery session showed that T+ patients had decreased brain activation in the premotor cortex and the supplementary motor area (SMA); meanwhile, for the same movements, the T− patients exhibited a reversed pattern. Furthermore, in the post-surgery fMRI session, pain intensity was correlated with activity in the ipsilateral precentral gyrus and, notably, in the insular cortex, a node of the pain matrix. These findings indicate that the motor simulations of M.I. have a facilitative effect on recovery by cortical plasticity mechanisms and optimization of motor control, thereby establishing the rationale for incorporating the systematic use of M.I. into standard rehabilitation for the management of post-immobilization syndromes characteristic of hand surgery. Motor imagery training counteracts the effects of post-surgical hand immobilization. It also reduces pain and expedites motor recovery after immobilization. These effects were accompanied by significant fMRI signs of brain plasticity. The clinical-fMRI evidence advocates for the use of motor imagery in rehabilitation.
Collapse
Affiliation(s)
- Martina Gandola
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | | | - Gianluca Saetta
- Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Valerio Sansone
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; University of Milano-Statale, Milan, Italy
| | | | - Eraldo Paulesu
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Psychology and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
93
|
The use of motor imagery training to retain the performance improvement following physical practice in the elderly. Exp Brain Res 2019; 237:1375-1382. [PMID: 30877341 DOI: 10.1007/s00221-019-05514-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/09/2019] [Indexed: 01/01/2023]
Abstract
With physiological aging, appears a deterioration of the ability to retain motor skills newly acquired. In this study, we tested the beneficial role of motor imagery training to compensate this deterioration. We tested four groups: young control group (n = 10), elderly control group (n = 10), young mental-training group (n = 13) and elderly mental-training group (n = 13). In pre- and post-tests, the participants performed three trials on a dexterity manual task (the Nine Hole Peg Test), commonly used in clinic. We recorded the movement duration as a factor of performance. Each trial, including 36 arm movements, consisted in manipulating sticks as fast as possible. The control groups watched a non-emotional documentary for 30 min and the mental-training groups imagined the task (50 trials). First, we observed a speed improvement during the pre-test session for all groups. Immediately after viewing the movie (post-test 1), the young control group showed a preservation of motor performance in comparison to the performance measured before the break (pret-test 3), while the young mental-training group improved performance after motor imagery practice. For the elderly, the control group showed a deterioration of motor performance at post-test 1, attesting a deterioration of the ability to retain motor skills with aging. Interestingly, the elderly mental-training group showed a preservation of motor performance between the pre-test 3 and the post-test 1. The present findings demonstrate the beneficial role of mental training with motor imagery to retain the performance improvement following physical practice in the elderly. This method could be an alternative to prevent the deterioration of motor skills.
Collapse
|
94
|
González J, Ortega J, Damas M, Martín-Smith P, Gan JQ. A new multi-objective wrapper method for feature selection – Accuracy and stability analysis for BCI. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
95
|
Brandwayn N, Restrepo D, Marcela Martinez-Martinez A, Acevedo-Triana C. Effect of fine and gross motor training or motor imagery, delivered via novel or routine modes, on cognitive function. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 27:450-467. [PMID: 30806078 DOI: 10.1080/23279095.2019.1566133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is extensive literature linking motor activity to cognitive effects at various stages in life, promoting both development and the reduction of aging associated pathologies. It is unclear whether the benefits of this activity on the cognitive level are associated with brain functions that are necessary for their performance or recurrence of activity or type of activity itself. The aim of this study was to evaluate whether the type of motor activity (fine, gross, and motor imagery) in two modes (novel and routine) can affect cognitive functions such as attention, executive functions, and praxis in college students. A 2 × 3 factorial design with repeated measures was used without a control group and pre- and post-training evaluation. Fifty-three young people (14 men and 39 women) participated, with mean age of 18.94 years (SD = 1.61 years) and were divided into six groups. Each of the groups performed relevant training 20 minutes per day for five days depending on the group. Measures were taken pre and post-training for attention tests, attention span, working memory, visual constructive skills, procedural memory, and motor skills. The results show a "learning effect" from the exposure to the tests in measurements after training. It was also found that between groups, there is a difference in some of the variables of procedural memory (number of errors) and working memory. More extensive training could better reflect the effects of the training, and longitudinal evaluation could show the rate of change of functions. The main clinical implication could be the evaluation of training programs for recovery and motor training in cerebral plasticity having effect on the cognitive aspects.
Collapse
|
96
|
Takahashi Y, Kawakami M, Yamaguchi T, Idogawa Y, Tanabe S, Kondo K, Liu M. Effects of Leg Motor Imagery Combined With Electrical Stimulation on Plasticity of Corticospinal Excitability and Spinal Reciprocal Inhibition. Front Neurosci 2019; 13:149. [PMID: 30846928 PMCID: PMC6393385 DOI: 10.3389/fnins.2019.00149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Motor imagery (MI) combined with electrical stimulation (ES) enhances upper-limb corticospinal excitability. However, its after-effects on both lower limb corticospinal excitability and spinal reciprocal inhibition remain unknown. We aimed to investigate the effects of MI combined with peripheral nerve ES (MI + ES) on the plasticity of lower limb corticospinal excitability and spinal reciprocal inhibition. Seventeen healthy individuals performed the following three tasks on different days, in a random order: (1) MI alone; (2) ES alone; and (3) MI + ES. The MI task consisted of repetitive right ankle dorsiflexion for 20 min. ES was percutaneously applied to the common peroneal nerve at a frequency of 100 Hz and intensity of 120% of the sensory threshold of the tibialis anterior (TA) muscle. We examined changes in motor-evoked potential (MEP) of the TA (task-related muscle) and soleus muscle (SOL; task-unrelated muscle). We also examined disynaptic reciprocal inhibition before, immediately after, and 10, 20, and 30 min after the task. MI + ES significantly increased TA MEPs immediately and 10 min after the task compared with baseline, but did not change the task-unrelated muscle (SOL) MEPs. MI + ES resulted in a significant increase in the magnitude of reciprocal inhibition immediately and 10 min after the task compared with baseline. MI and ES alone did not affect TA MEPs or reciprocal inhibition. MI combined with ES is effective in inducing plastic changes in lower limb corticospinal excitability and reciprocal Ia inhibition.
Collapse
Affiliation(s)
- Yoko Takahashi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomofumi Yamaguchi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | | | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | | | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
97
|
Lauber B, Kurz A, Gollhofer A, Taube W. Mental imagery and colour cues can prevent interference between motor tasks. Neuropsychologia 2019; 124:202-207. [PMID: 30557567 DOI: 10.1016/j.neuropsychologia.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
Motor interference can be observed when two motor tasks are learnt in subsequent order. The aim of the current study was to test two approaches potentially mitigating interference effects. The first approach used contextual colour cues requiring only little cognitive attention thus being assumed to be primarily implicit while the second, mental practice/rehearsal that demands much more active cognitive processing being considered explicit. Six groups performed a ballistic strength training immediately followed by the practice of an interfering visuomotor tracking task. Two groups received a contextual colour cue when presenting feedback about ballistic performance. During the practice of the interfering motor task, one of the two groups received the same colour cue during random trials while the other group received a different colour cue and a third control group no colour cue at all. The forth group mentally rehearsed the ballistic task during the practice of the interference task, while the respective control groups either mentally rehearsed a ramp and hold contraction instead of the ballistic task or didn't rehearse any task. The ballistic performance was tested before and after the ballistic training and in an immediate retention test after the learning of the interfering motor task. All groups significantly increased their ballistic performance after training. After practicing the interfering motor tracking, subjects receiving the same colour cue and subjects that mentally rehearsed the ballistic task did not show significant interference effect while all other groups did. These results indicate that implicit cuing with the same cue as well as explicit mental rehearsal of the initially learnt task can help to prevent motor interference without affecting performance improvements of the second motor task.
Collapse
Affiliation(s)
- Benedikt Lauber
- Department of Sport Science, University of Freiburg, Freiburg, Germany; Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.
| | - Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany; Bernstein Centre Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
98
|
Song M, Kim J. A Paradigm to Enhance Motor Imagery Using Rubber Hand Illusion Induced by Visuo-Tactile Stimulus. IEEE Trans Neural Syst Rehabil Eng 2019; 27:477-486. [PMID: 30703031 DOI: 10.1109/tnsre.2019.2895029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enhancing motor imagery (MI) results in amplified event-related desynchronization (ERD) and is important for MI-based rehabilitation and brain-computer interface (BCI) applications. Many attempts to enhance the MI by providing a visual guidance have been reported. We believe that the rubber hand illusion (RHI), which induces body ownership over an external object, can provide better guidance to enhance MI; thus, an RHI-based paradigm with motorized moving rubber hand was proposed. To validate the proposed MI enhancing paradigm, we conducted an experimental comparison among paradigms with 20 healthy subjects. The peak amplitude and arrival times of ERD were compared at contralateral and ipsilateral electroencephalogram channels. We found significantly amplified ERD caused by the proposed paradigm, which is similar to the ERD caused by motor execution. In addition, the arrival time suggests that the proposed paradigm is applicable for BCI. In conclusion, the proposed paradigm can significantly enhance the MI with better characteristics for use with BCI.
Collapse
|
99
|
Bunno Y. Does the duration of motor imagery affect the excitability of spinal anterior horn cells? Somatosens Mot Res 2018; 35:223-228. [PMID: 30461331 DOI: 10.1080/08990220.2018.1538963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Motor imagery, the process of imagining a physical action, has been shown to facilitate the excitability of spinal anterior horn cells. In the acute phase after a stroke, the excitability of spinal anterior horn cells is significantly reduced, which leads to motor deficits. This loss of movement can be prevented by increasing the excitability of spinal anterior horn cells immediately following an injury. Motor imagery is an effective method for facilitating the excitability of spinal anterior horn cells in patients with impaired movement; however, the optimal duration for motor imagery is unclear. MATERIALS AND METHODS To investigate time-dependent changes in spinal anterior horn cell excitability during motor imagery, healthy adult participants were recruited to measure the F-wave, an indicator of anterior horn cell excitability. F-waves were measured from participants at baseline, during motor imagery, and post-motor imagery. During motor imagery, participants imagined isometric thenar muscle activity at 50% maximum voluntary contraction for 5 min. F-waves were measured at 1, 3, and 5 min after beginning motor imagery and analysed for persistence and F/M amplitude ratio. RESULTS Persistence and F/M amplitude ratios at 1- and 3-min after motor imagery initiation were significantly greater than at baseline. The persistence and F/M amplitude ratio at 5-min after motor imagery initiation, however, was comparable to baseline levels. CONCLUSION Therefore, 1 to 3 min of motor imagery is likely sufficient to facilitate the excitability of spinal anterior horn cells.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- a Graduate School of Health Sciences , Graduate School of Kansai University of Health Sciences , Osaka , Japan.,b Clinical Physical Therapy Laboratory, Faculty of Health Sciences , Kansai University of Health Sciences , Osaka , Japan
| |
Collapse
|
100
|
Guerra ZF, Bellose LC, Coelho de Morais Faria CD, Lucchetti G. The effects of mental practice based on motor imagery for mobility recovery after subacute stroke: Protocol for a randomized controlled trial. Complement Ther Clin Pract 2018; 33:36-42. [PMID: 30396624 DOI: 10.1016/j.ctcp.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/25/2018] [Accepted: 08/05/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Mental practice of motor imagery has shown beneficial effects in stroke recovery. However, there are few clinical trials investigating it on the subacute phase. This study will investigate the effects of mental practice in the mobility of patients with subacute stroke. MATERIALS AND METHODS Randomized controlled trial including persons with subacute stroke (<3 months). All participants will receive physical exercises and will be randomly allocated into an experimental group (Mental Practice) or into a control group (cognitive training) for 4 weeks(12 sessions). RESULTS Primary outcomes will be assessed at baseline and after intervention and will be related to mobility, using Timed Up and Go test and 5 m walking speed test. Whereas secondary outcomes will be muscular strength, biomechanical strategies, mental health and quality of life. CONCLUSION The beneficial effects that may be found in this trial can be greatly relevant in clinical practice, justifying this scientific question.
Collapse
Affiliation(s)
- Zaqueline Fernandes Guerra
- Post Graduation Health Program, Federal University of Juiz de Fora, Faculdade de Ciências Médicas e da Saúde de Juiz de Fora (SUPREMA) and UNIVERSO - Universidade Salgado de Oliveira, Brazil
| | | | | | | |
Collapse
|