51
|
Hariz M, Cif L, Blomstedt P. Thirty Years of Global Deep Brain Stimulation: "Plus ça change, plus c'est la même chose"? Stereotact Funct Neurosurg 2023; 101:395-406. [PMID: 37844558 DOI: 10.1159/000533430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND The advent of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease 30 years ago has ushered a global breakthrough of DBS as a universal method for therapy and research in wide areas of neurology and psychiatry. The literature of the last three decades has described numerous concepts and practices of DBS, often branded as novelties or discoveries. However, reading the contemporary publications often elicits a sense of déjà vu in relation to several methods, attributes, and practices of DBS. Here, we review various applications and techniques of the modern-era DBS and compare them with practices of the past. SUMMARY Compared with modern literature, publications of the old-era functional stereotactic neurosurgery, including old-era DBS, show that from the very beginning multidisciplinarity and teamwork were often prevalent and insisted upon, ethical concerns were recognized, brain circuitries and rational for brain targets were discussed, surgical indications were similar, closed-loop stimulation was attempted, evaluations of surgical results were debated, and controversies were common. Thus, it appears that virtually everything done today in the field of DBS bears resemblance to old-time practices, or has been done before, albeit with partly other tools and techniques. Movement disorders remain the main indications for modern DBS as was the case for lesional surgery and old-era DBS. The novelties today consist of the STN as the dominant target for DBS, the tremendous advances in computerized brain imaging, the sophistication and versatility of implantable DBS hardware, and the large potential for research. KEY MESSAGES Many aspects of contemporary DBS bear strong resemblance to practices of the past. The dominant clinical indications remain movement disorders with virtually the same brain targets as in the past, with one exception: the STN. Other novel brain targets - that are so far subject to DBS trials - are the pedunculopontine nucleus for gait freezing, the anteromedial internal pallidum for Gilles de la Tourette and the fornix for Alzheimer's disease. The major innovations and novelties compared to the past concern mainly the unmatched level of research activity, its high degree of sponsorship, and the outstanding advances in technology that have enabled multimodal brain imaging and the miniaturization, versatility, and sophistication of implantable hardware. The greatest benefit for patients today, compared to the past, is the higher level of precision and safety of DBS, and of all functional stereotactic neurosurgery.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
| | - Laura Cif
- Laboratoire de Recherche en Neurosciences Cliniques, Montpellier, France
| | - Patric Blomstedt
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
52
|
Peeters J, Van Bogaert T, Boogers A, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. EEG-based biomarkers for optimizing deep brain stimulation contact configuration in Parkinson's disease. Front Neurosci 2023; 17:1275728. [PMID: 37869517 PMCID: PMC10585033 DOI: 10.3389/fnins.2023.1275728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Objective Subthalamic deep brain stimulation (STN-DBS) is a neurosurgical therapy to treat Parkinson's disease (PD). Optimal therapeutic outcomes are not achieved in all patients due to increased DBS technological complexity; programming time constraints; and delayed clinical response of some symptoms. To streamline the programming process, biomarkers could be used to accurately predict the most effective stimulation configuration. Therefore, we investigated if DBS-evoked potentials (EPs) combined with imaging to perform prediction analyses could predict the best contact configuration. Methods In 10 patients, EPs were recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. In two patients, we recorded from both hemispheres, resulting in recordings from a total of 12 hemispheres. A monopolar review was performed by stimulating on each contact and measuring the therapeutic window. CT and MRI data were collected. Prediction models were created to assess how well the EPs and imaging could predict the best contact configuration. Results EPs at 3 ms and at 10 ms were recorded. The prediction models showed that EPs can be combined with imaging data to predict the best contact configuration and hence, significantly outperformed random contact selection during a monopolar review. Conclusion EPs can predict the best contact configuration. Ultimately, these prediction tools could be implemented into daily practice to ease the DBS programming of PD patients.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Till Anselm Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
53
|
Hariz M, Blomstedt Y, Blomstedt P, Hariz G. Anthropology of Deep Brain Stimulation; the 30th Anniversary of STN DBS in 2023. Mov Disord Clin Pract 2023; 10:1285-1292. [PMID: 37772285 PMCID: PMC10525058 DOI: 10.1002/mdc3.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 09/30/2023] Open
Abstract
Background The year 2023 marks the 30th anniversary of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD). This procedure prompted a universal interest in DBS for various brain disorders and resulted in a unique expansion of clinical and scientific collaboration between many disciplines, with impact on many aspects of society. Objective To study the anthropology of DBS, that is, its ethno-geographic origins, its evolution, its impact on clinicians and scientists, and its influence on society at large. Material and Methods The authors scrutinized the geo-ethnic origins of the pioneers of modern DBS, and they evaluated, based on the literature and on a long-term praxis, the development of DBS and its impact on clinicians, on healthcare, and on society. Results Scientists and clinicians from various geo-ethnic origins pioneered modern DBS, leading to worldwide spread of this procedure and to the establishment of large multidisciplinary teams in many centers. Neurologists became actively involved in surgery and took on new laborious tasks of programming ever more complicated DBS systems. Publications sky-rocketed and the global spread of DBS impacted positively on several aspects of society, including healthcare, awareness of neurological diseases, interdisciplinary relations, conferences, patient organizations, unemployment, industry, etc. Conclusions STN DBS has boosted the field of deep brain electrotherapy for many neurological and psychiatric illnesses, and DBS has generated a global benefit on many aspects of society, well beyond its clinical benefits on symptoms of diseases. With the ever-increasing indications for DBS, more positive global impact is expected.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical NeuroscienceUmeå UniversityUmeåSweden
- UCL Institute of Neurology, Queen SquareLondonUnited Kingdom
| | | | | | - Gun‐Marie Hariz
- Department of Clinical NeuroscienceUmeå UniversityUmeåSweden
- Department of Community Medicine and RehabilitationUmeå UniversityUmeåSweden
| |
Collapse
|
54
|
Steinhardt J, Lokowandt L, Rasche D, Koch A, Tronnier V, Münte TF, Meyhöfer SM, Wilms B, Brüggemann N. Mechanisms and consequences of weight gain after deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease. Sci Rep 2023; 13:14202. [PMID: 37648732 PMCID: PMC10468527 DOI: 10.1038/s41598-023-40316-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/08/2023] [Indexed: 09/01/2023] Open
Abstract
Body weight gain in combination with metabolic alterations has been observed after deep brain stimulation (DBS) of subthalamic nucleus (STN) in patients with Parkinson's disease (PD), which potentially counteracts the positive effects of motor improvement. We aimed to identify stimulation-dependent effects on motor activities, body weight, body composition, energy metabolism, and metabolic blood parameters and to determine if these alterations are associated with the local impact of DBS on different STN parcellations. We assessed 14 PD patients who underwent STN DBS (PD-DBS) before as well as 6- and 12-months post-surgery. For control purposes, 18 PD patients under best medical treatment (PD-CON) and 25 healthy controls (H-CON) were also enrolled. Wrist actigraphy, body composition, hormones, and energy expenditure measurements were applied. Electrode placement in the STN was localized, and the local impact of STN DBS was estimated. We found that STN DBS improved motor function by ~ 40% (DBS ON, Med ON). Weight and fat mass increased by ~ 3 kg and ~ 3% in PD-DBS (all P ≤ 0.005). fT3 (P = 0.001) and insulin levels (P = 0.048) increased solely in PD-DBS, whereas growth hormone levels (P = 0.001), daily physical activity, and VO2 during walking were decreased in PD-DBS (all P ≤ 0.002). DBS of the limbic part of the STN was associated with changes in weight and body composition, sedentary activity, insulin levels (all P ≤ 0.040; all r ≥ 0.56), and inversely related to HOMA-IR (P = 0.033; r = - 0.62). Daily physical activity is decreased after STN DBS, which can contribute to weight gain and an unfavorable metabolic profile. We recommend actigraphy devices to provide feedback on daily activities to achieve pre-defined activity goals.
Collapse
Affiliation(s)
- Julia Steinhardt
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Laura Lokowandt
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Andreas Koch
- Section Maritime Medicine, Naval Medical Institute, Kiel, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Sebastian M Meyhöfer
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Britta Wilms
- Institute of Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Section Maritime Medicine, Naval Medical Institute, Kiel, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
55
|
Campbell BA, Favi Bocca L, Tiefenbach J, Hogue O, Nagel SJ, Rammo R, Escobar Sanabria D, Machado AG, Baker KB. Myogenic and cortical evoked potentials vary as a function of stimulus pulse geometry delivered in the subthalamic nucleus of Parkinson's disease patients. Front Neurol 2023; 14:1216916. [PMID: 37693765 PMCID: PMC10484227 DOI: 10.3389/fneur.2023.1216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The therapeutic efficacy of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) may be limited for some patients by the presence of stimulation-related side effects. Such effects are most often attributed to electrical current spread beyond the target region. Prior computational modeling studies have suggested that changing the degree of asymmetry of the individual phases of the biphasic, stimulus pulse may allow for more selective activation of neural elements in the target region. To the extent that different neural elements contribute to the therapeutic vs. side-effect inducing effects of DBS, such improved selectivity may provide a new parameter for optimizing DBS to increase the therapeutic window. Methods We investigated the effect of six different pulse geometries on cortical and myogenic evoked potentials in eight patients with PD whose leads were temporarily externalized following STN DBS implant surgery. DBS-cortical evoked potentials were quantified using peak to peak measurements and wavelets and myogenic potentials were quantified using RMS. Results We found that the slope of the recruitment curves differed significantly as a function of pulse geometry for both the cortical- and myogenic responses. Notably, this effect was observed most frequently when stimulation was delivered using a monopolar, as opposed to a bipolar, configuration. Discussion Manipulating pulse geometry results in differential physiological effects at both the cortical and neuromuscular level. Exploiting these differences may help to expand DBS' therapeutic window and support the potential for incorporating pulse geometry as an additional parameter for optimizing therapeutic benefit.
Collapse
Affiliation(s)
- Brett A. Campbell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Leonardo Favi Bocca
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| | - Jakov Tiefenbach
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
| | - Olivia Hogue
- Center for Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Richard Rammo
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - David Escobar Sanabria
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G. Machado
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
56
|
Ezzyat Y, Kragel JE, Solomon EA, Lega BC, Aronson JP, Jobst BC, Gross RE, Sperling MR, Worrell GA, Sheth SA, Wanda PA, Rizzuto DS, Kahana MJ. Functional and anatomical connectivity predict brain stimulation's mnemonic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550851. [PMID: 37609181 PMCID: PMC10441352 DOI: 10.1101/2023.07.27.550851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.
Collapse
Affiliation(s)
- Youssef Ezzyat
- Dept. of Psychology, Wesleyan University, Middletown CT 06459
| | | | - Ethan A. Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Bradley C. Lega
- Dept. of Neurosurgery, University of Texas Southwestern, Dallas TX 75390
| | - Joshua P. Aronson
- Dept. of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Barbara C. Jobst
- Dept. of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon NH 03756
| | - Robert E. Gross
- Dept. of Neurosurgery, Emory University Hospital, Atlanta GA 30322
| | - Michael R. Sperling
- Dept. of Neurology, Thomas Jefferson University Hospital, Philadelphia PA 19107
| | | | - Sameer A. Sheth
- Dept. of Neurosurgery, Columbia University Medical Center, New York, NY 10032
| | - Paul A. Wanda
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Daniel S. Rizzuto
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| | - Michael J. Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
57
|
Mügge F, Kleinholdermann U, Heun A, Ollenschläger M, Hannink J, Pedrosa DJ. Subthalamic 85 Hz deep brain stimulation improves walking pace and stride length in Parkinson's disease patients. Neurol Res Pract 2023; 5:33. [PMID: 37559161 PMCID: PMC10413698 DOI: 10.1186/s42466-023-00263-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Mobile gait sensors represent a compelling tool to objectify the severity of symptoms in patients with idiopathic Parkinson's disease (iPD), but also to determine the therapeutic benefit of interventions. In particular, parameters of Deep Brain stimulation (DBS) with its short latency could be accurately assessed using sensor data. This study aimed at gaining insight into gait changes due to different DBS parameters in patients with subthalamic nucleus (STN) DBS. METHODS An analysis of various gait examinations was performed on 23 of the initially enrolled 27 iPD patients with chronic STN DBS. Stimulation settings were previously adjusted for either amplitude, frequency, or pulse width in a randomised order. A linear mixed effects model was used to analyse changes in gait speed, stride length, and maximum sensor lift. RESULTS The findings of our study indicate significant improvements in gait speed, stride length, and leg lift measurable with mobile gait sensors under different DBS parameter variations. Notably, we observed positive results at 85 Hz, which proved to be more effective than often applied higher frequencies and that these improvements were traceable across almost all conditions. While pulse widths did produce some improvements in leg lift, they were less well tolerated and had inconsistent effects on some of the gait parameters. Our research suggests that using lower frequencies of DBS may offer a more tolerable and effective approach to enhancing gait in individuals with iPD. CONCLUSIONS Our results advocate for lower stimulation frequencies for patients who report gait difficulties, especially those who can adapt their DBS settings remotely. They also show that mobile gait sensors could be incorporated into clinical practice in the near future.
Collapse
Affiliation(s)
- F Mügge
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - U Kleinholdermann
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany.
| | - A Heun
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
| | - M Ollenschläger
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - J Hannink
- Portabiles HealthCare Technologies, Henkestraße 91, 91052, Erlangen, Germany
| | - D J Pedrosa
- Department of Neurology, University Hospital of Marburg, Baldingerstraße, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein- Straße, Marburg, Germany
| |
Collapse
|
58
|
Mederer T, Deuter D, Bründl E, Forras P, Schmidt NO, Kohl Z, Schlaier J. Factors influencing the reliability of intraoperative testing in deep brain stimulation for Parkinson's disease. Acta Neurochir (Wien) 2023; 165:2179-2187. [PMID: 37266718 PMCID: PMC10409887 DOI: 10.1007/s00701-023-05624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Several meta-analyses comparing the outcome of awake versus asleep deep brain stimulation procedures could not reveal significant differences concerning the postoperative improvement of motor symptoms. Only rarely information on the procedural details is provided for awake operations and how often somnolence and disorientation occurred, which might hamper the reliability of intraoperative clinical testing. The aim of our study was to investigate possible influencing factors on the occurrence of somnolence and disorientation in awake DBS procedures. METHODS We retrospectively analyzed 122 patients with Parkinson's disease having received implantation of a DBS system at our centre. Correlation analyses were performed for the duration of disease prior to surgery, number of microelectrode trajectories, AC-PC-coordinates of the planned target, UPDRS-scores, intraoperative application of sedative drugs, duration of the surgical procedure, perioperative application of apomorphine, and the preoperative L-DOPA equivalence dosage with the occurrence of intraoperative somnolence and disorientation. RESULTS Patients with intraoperative somnolence were significantly older (p=0.039). Increased duration of the DBS procedure (p=0.020), delayed start of the surgery (p=0.049), higher number of MER trajectories (p=0.041), and the patients' % UPDRS improvement (p=0.046) also correlated with the incidence of intraoperative somnolence. We identified the main contributing factor to intraoperative somnolence as the use of sedative drugs applied during skin incision and burr hole trepanation (p=0.019). Perioperatively applied apomorphine could reduce the occurrence of somnolent phases during the operation (p=0.026). CONCLUSION Several influencing factors were found to seemingly increase the risk of intraoperative somnolence and disorientation, while the use of sedative drugs seems to be the main contributing factor. We argue that awake DBS procedures should omit the use of sedatives for best clinical outcome. When reporting on awake DBS surgery these factors should be considered and adjusted for, to permit reliable interpretation and comparison of DBS study results.
Collapse
Affiliation(s)
- Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Daniel Deuter
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Elisabeth Bründl
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Patricia Forras
- Regensburg Regional Hospital for Forensic Health Psychiatry and Neurology, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Zacharias Kohl
- Regensburg Regional Hospital for Forensic Health Psychiatry and Neurology, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Jürgen Schlaier
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
59
|
Monje MH, Mañez‐Miró JU, Obeso JA. The Apparent Impunity of the Basal Ganglia to Therapeutic Lesioning: Clinical and Scientific Lessons. Mov Disord Clin Pract 2023; 10:S42-S46. [PMID: 37637986 PMCID: PMC10448138 DOI: 10.1002/mdc3.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Mariana H.G. Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Ken and Ruth Davee Department of NeurologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jorge U. Mañez‐Miró
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in NeuroscienceAutónoma de Madrid University‐Cajal InstituteMadridSpain
- Neurology Department, IMED HospitalesValenciaSpain
| | - José A. Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Universidad San Pablo‐CEUMadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
60
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
61
|
Pourahmad R, Saleki K, Esmaili M, Abdollahi A, Alijanizadeh P, Gholinejad MZ, Banazadeh M, Ahmadi M. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? IBRO Neurosci Rep 2023; 14:507-513. [PMID: 37304345 PMCID: PMC10248795 DOI: 10.1016/j.ibneur.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Gait deficits are found in various degenerative central nervous system conditions, and are particularly a hallmark of Parkinson's disease (PD). While there is no cure for such neurodegenerative disorders, Levodopa is considered as the standard medication in PD patients. Often times, the therapy of severe PD consists of deep brain stimulation (DBS) of the subthalamic nucleus. Earlier research exploring the effect of gait have reported contradictory results or insufficient efficacy. A change in gait includes various parameters, such as step length, cadence, Double-stance phase duration which may be positively affected by DBS. DBS could also be effective in correcting the levodopa-induced postural sway abnormalities. Moreover, during normal walking, interaction among the subthalamic nucleus and cortex -essential regions which exert a role in locomotion- are coupled. However, during the freezing of gait, the activity is desynchronized. The mechanisms underlying DBS-induced neurobehavioral improvements in such scenarios requires further study. The present review discusses DBS in the context of gait, the benefits associated with DBS compared to standard pharmacotherapy options, and provides insights into future research.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences(SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Arian Abdollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mona Ahmadi
- Department of Neurology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
62
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
63
|
Fan CH, Tsai HC, Tsai YS, Wang HC, Lin YC, Chiang PH, Wu N, Chou MH, Ho YJ, Lin ZH, Yeh CK. Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound. ACS NANO 2023; 17:9140-9154. [PMID: 37163347 DOI: 10.1021/acsnano.2c12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An accurate method for neural stimulation within the brain could be very useful for treating brain circuit dysfunctions and neurological disorders. With the aim of developing such a method, this study investigated the use of piezoelectric molybdenum disulfide nanosheets (MoS2 NS) to remotely convert ultrasound energy into localized electrical stimulation in vitro and in vivo. The application of ultrasound to cells surrounding MoS2 NS required only a single pulse of 2 MHz ultrasound (400 kPa, 1,000,000 cycles, and 500 ms pulse duration) to elicit significant responses in 37.9 ± 7.4% of cells in terms of fluxes of calcium ions without detectable cellular damage. The proportion of responsive cells was mainly influenced by the acoustic pressure, number of ultrasound cycles, and concentration of MoS2 NS. Tests using appropriate blockers revealed that voltage-gated membrane channels were activated. In vivo data suggested that, with ultrasound stimulation, neurons closest to the MoS2 NS were 3-fold more likely to present c-Fos expression than cells far from the NS. The successful activation of neurons surrounding MoS2 NS suggests that this represents a method with high spatial precision for selectively modulating one or several targeted brain circuits.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701401, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701401, Taiwan
| | - Hong-Chieh Tsai
- Division of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Sheng Tsai
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Hsien-Chu Wang
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yu-Chun Lin
- Department of Medical Science, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Po-Han Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Min-Hwa Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu City 30010, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City 300044, Taiwan
| |
Collapse
|
64
|
Alosaimi F, Dominguez-Paredes D, Knoben R, Almasabi F, Hescham S, Kozielski K, Temel Y, Jahanshahi A. Wireless stimulation of the subthalamic nucleus with nanoparticles modulates key monoaminergic systems similar to contemporary deep brain stimulation. Behav Brain Res 2023; 444:114363. [PMID: 36849047 DOI: 10.1016/j.bbr.2023.114363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/14/2022] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is commonly used to alleviate motor symptoms in several movement disorders. However, the procedure is invasive, and the technology has remained largely stagnant since its inception decades ago. Recently, we have shown that wireless nanoelectrodes may offer an alternative approach to conventional DBS. However, this method is still in its infancy, and more research is required to characterize its potential before it can be considered as an alternative to conventional DBS. OBJECTIVES Herein, we aimed to investigate the effect of stimulation via magnetoelectric nanoelectrodes on primary neurotransmitter systems that have implications for DBS in movement disorders. METHODS Mice were injected with either magnetoelectric nanoparticles (MENPs) or magnetostrictive nanoparticles (MSNPs, as a control) in the subthalamic nucleus (STN). Mice then underwent magnetic stimulation, and their motor behavior was assessed in the open field test. In addition, magnetic stimulation was applied before sacrifice and post-mortem brains were processed for immunohistochemistry (IHC) to assess the co-expression of c-Fos with either tyrosine hydroxylase (TH), tryptophan hydroxylase-2 (TPH2) or choline acetyltransferase (ChAT). RESULTS Stimulated animals covered longer distances in the open field test when compared to controls. Moreover, we found a significant increase in c-Fos expression in the motor cortex (MC) and paraventricular region of the thalamus (PV-thalamus) after magnetoelectric stimulation. Stimulated animals showed fewer TPH2/c-Fos double-labeled cells in the dorsal raphe nucleus (DRN), as well as TH/c-Fos double-labeled cells in the ventral tegmental area (VTA), but not in the substantia nigra pars compacta (SNc). There was no significant difference in the number of ChAT/ c-Fos double-labeled cells in the pedunculopontine nucleus (PPN). CONCLUSIONS Magnetoelectric DBS in mice enables selective modulation of deep brain areas and animal behavior. The measured behavioral responses are associated with changes in relevant neurotransmitter systems. These changes are somewhat similar to those observed in conventional DBS, suggesting that magnetoelectric DBS might be a suitable alternative.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands; Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - David Dominguez-Paredes
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Rick Knoben
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Faris Almasabi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Kristen Kozielski
- School of Computation, Information and Technology, Technical University of Munich, Munich 80333, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht 6202AZ, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
65
|
Heß T, Oehlwein C, Milani TL. Anticipatory Postural Adjustments and Compensatory Postural Responses to Multidirectional Perturbations-Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation in Parkinson's Disease. Brain Sci 2023; 13:brainsci13030454. [PMID: 36979264 PMCID: PMC10046463 DOI: 10.3390/brainsci13030454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.
Collapse
Affiliation(s)
- Tobias Heß
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Christian Oehlwein
- Neurological Outpatient Clinic for Parkinson Disease and Deep Brain Stimulation, 07551 Gera, Germany
| | - Thomas L Milani
- Department of Human Locomotion, Chemnitz University of Technology, 09126 Chemnitz, Germany
| |
Collapse
|
66
|
Sun S, Wang X, Shi X, Fang H, Sun Y, Li M, Han H, He Q, Wang X, Zhang X, Zhu ZW, Chen F, Wang M. Neural pathway connectivity and discharge changes between M1 and STN in hemiparkinsonian rats. Brain Res Bull 2023; 196:1-19. [PMID: 36878325 DOI: 10.1016/j.brainresbull.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Alterations of electrophysiological activities, such as changed spike firing rates, reshaping the firing patterns, and aberrant frequency oscillations between the subthalamic nucleus (STN) and the primary motor cortex (M1), are thought to contribute to motor impairment in Parkinson's disease (PD). However, the alterations of electrophysiological characteristics of STN and M1 in PD are still unclear, especially under specific treadmill movement. To examine the relationship between electrophysiological activity in the STN-M1 pathway, extracellular spike trains and local field potential (LFPs) of STN and M1 were simultaneously recorded during resting and movement in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. The results showed that the identified STN neurons and M1 neurons exhibited abnormal neuronal activity after dopamine loss. The dopamine depletion altered the LFP power in STN and M1 whatever in rest or movement states. Furthermore, the enhanced synchronization of LFP oscillations after dopamine loss was found in 12-35 Hz (beta frequencies) between the STN and M1 during rest and movement. In addition, STN neurons were phase-locked firing to M1 oscillations at 12-35 Hz during rest epochs in 6-OHDA lesioned rats. The dopamine depletion also impaired the anatomical connectivity between the M1 and STN by injecting anterograde neuroanatomical tracing virus into M1 in control and PD rats. Collectively, impairment of' electrophysiological activity and anatomical connectivity in the M1-STN pathway may be the basis for dysfunction of the cortico-basal ganglia circuit, correlating with motor symptoms of PD.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xuenan Wang
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Hongyu Han
- Weifang Middle School, Weifang 261031, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xiaojun Wang
- The First Hospital Affiliated with Shandong First Medicine University, Jinan 250014, China
| | - Xiao Zhang
- Editorial Department of Journal, Shandong Jianzhu University, Jinan 250014, China
| | - Zhi Wei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan 250014, China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China.
| |
Collapse
|
67
|
Block CK, Patel M, Risk BB, Staikova E, Loring D, Esper CD, Scorr L, Higginbotham L, Aia P, DeLong MR, Wichmann T, Factor SA, Au Yong N, Willie JT, Boulis NM, Gross RE, Buetefisch C, Miocinovic S. Patients with Cognitive Impairment in Parkinson's Disease Benefit from Deep Brain Stimulation: A Case-Control Study. Mov Disord Clin Pract 2023; 10:382-391. [PMID: 36949802 PMCID: PMC10026300 DOI: 10.1002/mdc3.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 01/18/2023] Open
Abstract
Background Deep brain stimulation (DBS) for Parkinson's disease (PD) is generally contraindicated in persons with dementia but it is frequently performed in people with mild cognitive impairment or normal cognition, and current clinical guidelines are primarily based on these cohorts. Objectives To determine if moderately cognitive impaired individuals including those with mild dementia could meaningfully benefit from DBS in terms of motor and non-motor outcomes. Methods In this retrospective case-control study, we identified a cohort of 40 patients with PD who exhibited moderate (two or more standard deviations below normative scores) cognitive impairment (CI) during presurgical workup and compared their 1-year clinical outcomes to a cohort of 40 matched patients with normal cognition (NC). The surgery targeted subthalamus, pallidus or motor thalamus, in a unilateral, bilateral or staged approach. Results At preoperative baseline, the CI cohort had higher Unified Parkinson's Disease Rating Scale (UPDRS) subscores, but similar levodopa responsiveness compared to the NC cohort. The NC and CI cohorts demonstrated comparable degrees of postoperative improvement in the OFF-medication motor scores, motor fluctuations, and medication reduction. There was no difference in adverse event rates between the two cohorts. Outcomes in the CI cohort did not depend on the target, surgical staging, or impaired cognitive domain. Conclusions Moderately cognitively impaired patients with PD can experience meaningful motor benefit and medication reduction with DBS.
Collapse
Affiliation(s)
- Cady K. Block
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Margi Patel
- Department of NeurologyTexas A&M University, Baylor University Medical CenterDallasTexasUSA
| | - Benjamin B. Risk
- Department of Biostatistics and BioinformaticsEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Ekaterina Staikova
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - David Loring
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Christine D. Esper
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Laura Scorr
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Lenora Higginbotham
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Pratibha Aia
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Mahlon R. DeLong
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Thomas Wichmann
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Stewart A. Factor
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Nicholas Au Yong
- Department of NeurosurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jon T. Willie
- Department of Neurosurgery, Neurology and PsychiatryWashington University School of MedicineSt LouisMissouriUSA
| | - Nicholas M. Boulis
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| | - Robert E. Gross
- Department of NeurosurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Cathrin Buetefisch
- Department of Neurology, Rehabilitation Medicine and RadiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Svjetlana Miocinovic
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Udall Center of Excellence in Parkinson's Disease ResearchEmory National Primate Research CenterAtlantaGeorgiaUSA
| |
Collapse
|
68
|
Su ZH, Patel S, Gavine B, Buchanan T, Bogdanovic M, Sarangmat N, Green AL, Bloem BR, FitzGerald JJ, Antoniades CA. Deep Brain Stimulation and Levodopa Affect Gait Variability in Parkinson Disease Differently. Neuromodulation 2023; 26:382-393. [PMID: 35562261 DOI: 10.1016/j.neurom.2022.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Both dopaminergic medication and subthalamic nucleus (STN) deep brain stimulation (DBS) can improve the amplitude and speed of gait in Parkinson disease (PD), but relatively little is known about their comparative effects on gait variability. Gait irregularity has been linked to the degeneration of cholinergic neurons in the pedunculopontine nucleus (PPN). OBJECTIVES The STN and PPN have reciprocal connections, and we hypothesized that STN DBS might improve gait variability by modulating PPN function. Dopaminergic medication should not do this, and we therefore sought to compare the effects of medication and STN DBS on gait variability. MATERIALS AND METHODS We studied 11 patients with STN DBS systems on and off with no alteration to their medication, and 15 patients with PD without DBS systems on and off medication. Participants walked for two minutes in each state, wearing six inertial measurement units. Variability has previously often been expressed in terms of SD or coefficient of variation over a testing session, but these measures conflate long-term variability (eg, gradual slowing, which is not necessarily pathological) with short-term variability (true irregularity). We used Poincaré analysis to separate the short- and long-term variability. RESULTS DBS decreased short-term variability in lower limb gait parameters, whereas medication did not have this effect. In contrast, STN DBS had no effect on arm swing and trunk motion variability, whereas medication increased them, without obvious dyskinesia. CONCLUSIONS Our results suggest that STN DBS acts through a nondopaminergic mechanism to reduce gait variability. We believe that the most likely explanation is the retrograde activation of cholinergic PPN projection neurons.
Collapse
Affiliation(s)
- Zi H Su
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Salil Patel
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Bronwyn Gavine
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Marko Bogdanovic
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | | | - Alexander L Green
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James J FitzGerald
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
69
|
Peeters J, Boogers A, Van Bogaert T, Davidoff H, Gransier R, Wouters J, Nuttin B, Mc Laughlin M. Electrophysiologic Evidence That Directional Deep Brain Stimulation Activates Distinct Neural Circuits in Patients With Parkinson Disease. Neuromodulation 2023; 26:403-413. [PMID: 35088733 DOI: 10.1016/j.neurom.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Deep brain stimulation (DBS) delivered via multicontact leads implanted in the basal ganglia is an established therapy to treat Parkinson disease (PD). However, the different neural circuits that can be modulated through stimulation on different DBS contacts are poorly understood. Evidence shows that electrically stimulating the subthalamic nucleus (STN) causes a therapeutic effect through antidromic activation of the hyperdirect pathway-a monosynaptic connection from the cortex to the STN. Recent studies suggest that stimulating the substantia nigra pars reticulata (SNr) may improve gait. The advent of directional DBS leads now provides a spatially precise means to probe these neural circuits and better understand how DBS affects distinct neural networks. MATERIALS AND METHODS We measured cortical evoked potentials (EPs) using electroencephalography (EEG) in response to low-frequency DBS using the different directional DBS contacts in eight patients with PD. RESULTS A short-latency EP at 3 milliseconds originating from the primary motor cortex appeared largest in amplitude when stimulating DBS contacts closest to the dorsolateral STN (p < 0.001). A long-latency EP at 10 milliseconds originating from the premotor cortex appeared strongest for DBS contacts closest to the SNr (p < 0.0001). CONCLUSIONS Our results show that at the individual patient level, electrical stimulation of different nuclei produces distinct EP signatures. Our approach could be used to identify the functional location of each DBS contact and thus help patient-specific DBS programming. CLINICAL TRIAL REGISTRATION The ClinicalTrials.gov registration number for the study is NCT04658641.
Collapse
Affiliation(s)
- Jana Peeters
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| | - Alexandra Boogers
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hannah Davidoff
- Division of Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Robin Gransier
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Division of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Research Group Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
70
|
Tatsuo S, Tatsuo S, Tsushima F, Sakashita N, Oyu K, Ide S, Kakeda S. Improved visualization of the subthalamic nucleus on synthetic MRI with optimized parameters: initial study. Acta Radiol 2023; 64:690-697. [PMID: 35171064 DOI: 10.1177/02841851221080010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Synthetic magnetic resonance imaging (SyMRI) enables to reformat various images by adjusting the MR parameters. PURPOSE To investigate whether customization of the repetition time (TR), echo time (TE), and inversion time (TI) in SyMRI could improve the visualization of subthalamic nucleus (STN). MATERIAL AND METHODS We examined five healthy volunteers using both coronal SyMRI and quantitative susceptibility mapping (QSM), seven patients with Parkinson's disease (PD) using coronal SyMRI, and 15 patients with PD using coronal QSM. Two neuroradiologists reformatted SyMRI (optimized SyMRI) by adjusting TR, TE, and TI to achieve maximum tissue contrast between the STN and the adjacent brain parenchyma. The optimized MR parameters in the PD patients varied according to the individual. For regular SyMRI (T2-weighted imaging [T2WI] and STIR), optimized SyMRI, and QSM, qualitative visualization scores of the STN (STN score) were recorded. The contrast-to-noise ratio (CNR) of the STN was also measured. RESULTS For the STN scores in both groups, the optimized SyMRI were significantly higher than the regular SyMRI (P < 0.05), and there were no significant differences between optimized SyMRI and QSM. For the CNR of differentiation of the STN from the substantia nigra, the optimized SyMRI was higher than the regular SyMRI (volunteer: T2WI P = 0.10 and STIR P = 0.26; PD patient: T2WI P = 0.43 and STIR P = 0.25), but the optimized SyMRI was lower than the QSM (volunteer: P = 0.26; PD patient: P = 0.03). CONCLUSIONS On SyMRI, optimization of MR parameters (TR, TE, and TI) on an individual basis may be useful to increase the conspicuity of the STN.
Collapse
Affiliation(s)
- Sayuri Tatsuo
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Soichiro Tatsuo
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiyasu Tsushima
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nina Sakashita
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Oyu
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Shingo Kakeda
- Department of Radiology, 26280Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
71
|
Peeters J, Boogers A, Van Bogaert T, Dembek TA, Gransier R, Wouters J, Vandenberghe W, De Vloo P, Nuttin B, Mc Laughlin M. Towards biomarker-based optimization of deep brain stimulation in Parkinson's disease patients. Front Neurosci 2023; 16:1091781. [PMID: 36711127 PMCID: PMC9875598 DOI: 10.3389/fnins.2022.1091781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Background Subthalamic deep brain stimulation (DBS) is an established therapy to treat Parkinson's disease (PD). To maximize therapeutic outcome, optimal DBS settings must be carefully selected for each patient. Unfortunately, this is not always achieved because of: (1) increased technological complexity of DBS devices, (2) time restraints, or lack of expertise, and (3) delayed therapeutic response of some symptoms. Biomarkers to accurately predict the most effective stimulation settings for each patient could streamline this process and improve DBS outcomes. Objective To investigate the use of evoked potentials (EPs) to predict clinical outcomes in PD patients with DBS. Methods In ten patients (12 hemispheres), a monopolar review was performed by systematically stimulating on each DBS contact and measuring the therapeutic window. Standard imaging data were collected. EEG-based EPs were then recorded in response to stimulation at 10 Hz for 50 s on each DBS-contact. Linear mixed models were used to assess how well both EPs and image-derived information predicted the clinical data. Results Evoked potential peaks at 3 ms (P3) and at 10 ms (P10) were observed in nine and eleven hemispheres, respectively. Clinical data were well predicted using either P3 or P10. A separate model showed that the image-derived information also predicted clinical data with similar accuracy. Combining both EPs and image-derived information in one model yielded the highest predictive value. Conclusion Evoked potentials can accurately predict clinical DBS responses. Combining EPs with imaging data further improves this prediction. Future refinement of this approach may streamline DBS programming, thereby improving therapeutic outcomes. Clinical trial registration ClinicalTrials.gov, identifier NCT04658641.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Boogers
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Robin Gransier
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium,Laboratory for Parkinson Research, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Philippe De Vloo
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium,*Correspondence: Myles Mc Laughlin,
| |
Collapse
|
72
|
Zhu GY, Zhang JG, Yuan TS, Chen YC, Liu DF, Ma RY, Zhang X, Du TT. Sex modulates the outcome of subthalamic nucleus deep brain stimulation in patients with Parkinson’s disease. Neural Regen Res 2023; 18:901-907. [DOI: 10.4103/1673-5374.353506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
73
|
Kähkölä J, Lahtinen M, Keinänen T, Katisko J. Stimulation of the Presupplementary Motor Area Cluster of the Subthalamic Nucleus Predicts More Consistent Clinical Outcomes. Neurosurgery 2022; 92:1058-1065. [PMID: 36700693 DOI: 10.1227/neu.0000000000002292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The development of diffusion tensor imaging and tractography has raised increasing interest in the functional targeting of deep brain stimulation of the subthalamic nucleus (STN) in Parkinson disease. OBJECTIVE To study, using deterministic tractography, the functional subdivisions of the STN and hyperdirect white matter connections located between the STN and the medial frontal cortex, especially the presupplementary motor area (preSMA), SMA, primary motor area (M1), and dorsolateral premotor cortex, and to study retrospectively whether this information correlates with clinical outcome. METHODS Twenty-two patients with Parkinson disease who underwent STN deep brain stimulation were analyzed. Using 3 T MR images, the medial frontal cortex was manually segmented into preSMA, SMA, M1, and dorsolateral premotor cortex, which were then used to determine the functional subdivisions of the lateral border of the STN. The intersectional quantities of the volume of activated tissue (VAT) and the hyperdirect white matter connections were calculated. The results were combined with clinical data including unilateral 12-month postoperative motor outcome and levodopa equivalent daily dose. RESULTS Stimulated clusters of the STN were connected mostly to the cortical SMA and preSMA regions. Patients with primarily preSMA cluster stimulation (presmaVAT% ≥ 50%) had good responses to the treatment with unilateral motor improvement over 40% and levodopa equivalent daily dose reduction over 60%. Larger VAT was not found to correlate with better patient outcomes. CONCLUSION Our study is the first to suggest that stimulating, predominantly, the STN cluster where preSMA hyperdirect pathways are located, could be predictive of more consistent treatment results.
Collapse
Affiliation(s)
- Johannes Kähkölä
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Maija Lahtinen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Tuija Keinänen
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jani Katisko
- Oulu Research Group of Advanced Surgical Technologies and Physics - ORGASTP, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.,Neurocenter, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
74
|
Kim Y, Jung D, Oya M, Kennedy M, Lence T, Alberico SL, Narayanan NS. Phase-adaptive brain stimulation of striatal D1 medium spiny neurons in dopamine-depleted mice. Sci Rep 2022; 12:21780. [PMID: 36526822 PMCID: PMC9758228 DOI: 10.1038/s41598-022-26347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Brain rhythms are strongly linked with behavior, and abnormal rhythms can signify pathophysiology. For instance, the basal ganglia exhibit a wide range of low-frequency oscillations during movement, but pathological "beta" rhythms at ~ 20 Hz have been observed in Parkinson's disease (PD) and in PD animal models. All brain rhythms have a frequency, which describes how often they oscillate, and a phase, which describes the precise time that peaks and troughs of brain rhythms occur. Although frequency has been extensively studied, the relevance of phase is unknown, in part because it is difficult to causally manipulate the instantaneous phase of ongoing brain rhythms. Here, we developed a phase-adaptive, real-time, closed-loop algorithm to deliver optogenetic stimulation at a specific phase with millisecond latency. We combined this Phase-Adaptive Brain STimulation (PABST) approach with cell-type-specific optogenetic methods to stimulate basal ganglia networks in dopamine-depleted mice that model motor aspects of human PD. We focused on striatal medium spiny neurons expressing D1-type dopamine receptors because these neurons can facilitate movement. We report three main results. First, we found that our approach delivered PABST within system latencies of 13 ms. Second, we report that closed-loop stimulation powerfully influenced the spike-field coherence of local brain rhythms within the dorsal striatum. Finally, we found that both 4 Hz PABST and 20 Hz PABST improved movement speed, but we found differences between phase only with 4 Hz PABST. These data provide causal evidence that phase is relevant for brain stimulation, which will allow for more precise, targeted, and individualized brain stimulation. Our findings are applicable to a broad range of preclinical brain stimulation approaches and could also inform circuit-specific neuromodulation treatments for human brain disease.
Collapse
Affiliation(s)
- Youngcho Kim
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| | - Dennis Jung
- grid.412750.50000 0004 1936 9166University of Rochester Medical Center, Rochester, New York, NY 14642 USA
| | - Mayu Oya
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| | - Morgan Kennedy
- grid.214572.70000 0004 1936 8294Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Tomas Lence
- grid.214572.70000 0004 1936 8294Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | | | - Nandakumar S. Narayanan
- grid.214572.70000 0004 1936 8294Department of Neurology, University of Iowa, 169 Newton Road, Pappajohn Biomedical Discovery Building-1336, Iowa City, IA 52242 USA
| |
Collapse
|
75
|
Tripoliti E, Ramig L. Elektrische Stimulation tiefer Hirnstrukturen: Auswirkungen auf das Sprechen. SPRACHE · STIMME · GEHÖR 2022. [DOI: 10.1055/a-1941-3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
76
|
Chen S, Xu SJ, Li WG, Chen T, Li C, Xu S, Yang N, Liu YM. Remote programming for subthalamic deep brain stimulation in Parkinson's disease. Front Neurol 2022; 13:1061274. [PMID: 36504645 PMCID: PMC9729540 DOI: 10.3389/fneur.2022.1061274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective for the treatment of Parkinson's disease (PD). Moreover, remote programming is widely used in Mainland China. This necessitates evaluating the ability of remote programming to achieve the ideal postoperative effect. Therefore, we aimed to retrospectively evaluate the effects of different programming modes on the effectiveness of STN-DBS 12 months postoperatively in patients with PD. Methods Clinical data were collected retrospectively, before and 12 months after surgery, in 83 patients with PD. Based on the programming modes voluntarily selected by the patients during 12 months postoperatively, they were divided into three groups, namely remote programming alone, hospital programming alone, and hospital + remote programming. We compared the programming data and the effects of different programming methods on STN-DBS-related improvements 12 months postoperatively among these groups. Furthermore, we analyzed STN-DBS-related improvements at 12 months postoperatively in 76 patients. Results The effectiveness of STN-DBS was not influenced by the three programming modes. The postoperative Movement Disorder Society Unified Parkinson's Disease Rating Scale scores did not reveal statistically significant differences between the remote alone and hospital alone programming groups, except for motor examination. The postoperative decline in the levodopa equivalent daily dose was most apparent in the hospital programming alone group. The programming frequency of the hospital + remote programming group was considerably higher than that of the remaining groups. Seventy-six patients with PD displayed good STN-DBS surgical efficacy. Conclusion Programming modes do not influence the short-term efficacy of STN-DBS, and remote programming can yield a satisfactory surgical effect.
Collapse
|
77
|
Cai W, Young CB, Yuan R, Lee B, Ryman S, Kim J, Yang L, Henderson VW, Poston KL, Menon V. Dopaminergic medication normalizes aberrant cognitive control circuit signalling in Parkinson's disease. Brain 2022; 145:4042-4055. [PMID: 35357463 PMCID: PMC10200291 DOI: 10.1093/brain/awac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 08/21/2023] Open
Abstract
Dopaminergic medication is widely used to alleviate motor symptoms of Parkinson's disease, but these medications also impact cognition with significant variability across patients. It is hypothesized that dopaminergic medication impacts cognition and working memory in Parkinson's disease by modulating frontoparietal-basal ganglia cognitive control circuits, but little is known about the underlying causal signalling mechanisms and their relation to individual differences in response to dopaminergic medication. Here we use a novel state-space computational model with ultra-fast (490 ms resolution) functional MRI to investigate dynamic causal signalling in frontoparietal-basal ganglia circuits associated with working memory in 44 Parkinson's disease patients ON and OFF dopaminergic medication, as well as matched 36 healthy controls. Our analysis revealed aberrant causal signalling in frontoparietal-basal ganglia circuits in Parkinson's disease patients OFF medication. Importantly, aberrant signalling was normalized by dopaminergic medication and a novel quantitative distance measure predicted individual differences in cognitive change associated with medication in Parkinson's disease patients. These findings were specific to causal signalling measures, as no such effects were detected with conventional non-causal connectivity measures. Our analysis also identified a specific frontoparietal causal signalling pathway from right middle frontal gyrus to right posterior parietal cortex that is impaired in Parkinson's disease. Unlike in healthy controls, the strength of causal interactions in this pathway did not increase with working memory load and the strength of load-dependent causal weights was not related to individual differences in working memory task performance in Parkinson's disease patients OFF medication. However, dopaminergic medication in Parkinson's disease patients reinstated the relation with working memory performance. Our findings provide new insights into aberrant causal brain circuit dynamics during working memory and identify mechanisms by which dopaminergic medication normalizes cognitive control circuits.
Collapse
Affiliation(s)
- Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rui Yuan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byeongwook Lee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sephira Ryman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeehyun Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurice Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victor W Henderson
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathleen L Poston
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
78
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative illness with both motor and nonmotor symptoms. Deep brain stimulation (DBS) is an established safe neurosurgical symptomatic therapy for eligible patients with advanced disease in whom medical treatment fails to provide adequate symptom control and good quality of life, or in whom dopaminergic medications induce severe side effects such as dyskinesias. DBS can be tailored to the patient's symptoms and targeted to various nodes along the basal ganglia-thalamus circuitry, which mediates the various symptoms of the illness; DBS in the thalamus is most efficient for tremors, and DBS in the pallidum most efficient for rigidity and dyskinesias, whereas DBS in the subthalamic nucleus (STN) can treat both tremors, akinesia, rigidity and dyskinesias, and allows for decrease in doses of medications even in patients with advanced stages of the disease, which makes it the preferred target for DBS. However, DBS in the STN assumes that the patient is not too old, with no cognitive decline or relevant depression, and does not exhibit severe and medically resistant axial symptoms such as balance and gait disturbances, and falls. Dysarthria is the most common side effect of DBS, regardless of the brain target. DBS has a long-lasting effect on appendicular symptoms, but with progression of disease, nondopaminergic axial features become less responsive to DBS. DBS for PD is highly specialised; to enable adequate selection and follow-up of patients, DBS requires dedicated multidisciplinary teams of movement disorder neurologists, functional neurosurgeons, specialised DBS nurses and neuropsychologists.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden.,UCL-Queen Square Institute of Neurology, London, UK
| | - Patric Blomstedt
- Department of Clinical Neuroscience, University Hospital of Umeå, Umeå, Sweden
| |
Collapse
|
79
|
Temiz G, Santin MDN, Olivier C, Collomb-Clerc A, Fernandez-Vidal S, Hainque E, Bardinet E, Lau B, François C, Karachi C, Welter ML. Freezing of gait depends on cortico-subthalamic network recruitment following STN-DBS in PD patients. Parkinsonism Relat Disord 2022; 104:49-57. [PMID: 36242900 DOI: 10.1016/j.parkreldis.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Subthalamic deep-brain-stimulation (STN-DBS) is an effective means to treat Parkinson's disease (PD) symptoms. Its benefit on gait disorders is variable, with freezing of gait (FOG) worsening in about 30% of cases. Here, we investigate the clinical and anatomical features that could explain post-operative FOG. METHODS Gait and balance disorders were assessed in 19 patients, before and after STN-DBS using clinical scales and gait recordings. The location of active stimulation contacts were evaluated individually and the volumes of activated tissue (VAT) modelled for each hemisphere. We used a whole brain tractography template constructed from another PD cohort to assess the connectivity of each VAT within the 39 Brodmann cortical areas (BA) to search for correlations between postoperative PD disability and cortico-subthalamic connectivity. RESULTS STN-DBS induced a 100% improvement to a 166% worsening in gait disorders, with a mean FOG decrease of 36%. We found two large cortical clusters for VAT connectivity: one "prefrontal", mainly connected with BA 8,9,10,11 and 32, and one "sensorimotor", mainly connected with BA 1-2-3,4 and 6. After surgery, FOG severity positively correlated with the right prefrontal VAT connectivity, and negatively with the right sensorimotor VAT connectivity. The right prefrontal VAT connectivity also tended to be positively correlated with the UPDRS-III score, and negatively with step length. The MDRS score positively correlated with the right sensorimotor VAT connectivity. CONCLUSION Recruiting right sensorimotor and avoiding right prefrontal cortico-subthalamic fibres with STN-DBS could explain reduced post-operative FOG, since gait is a complex locomotor program that necessitates accurate cognitive control.
Collapse
Affiliation(s)
- Gizem Temiz
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Marie des Neiges Santin
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Claire Olivier
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; PANAM core Facility, Paris Brain Institute, Paris, France
| | - Antoine Collomb-Clerc
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Sara Fernandez-Vidal
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Elodie Hainque
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Eric Bardinet
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Brian Lau
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Chantal François
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France
| | - Carine Karachi
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; Neurosurgery Department, AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, F-75013, Paris, France
| | - Marie-Laure Welter
- Inserm 1127, Sorbonne Université, UPMC Univ Paris 06, UMRS 1127, CNRS, UMR 7225, Institut Du Cerveau et de la Moelle Epinière, F-75013, Paris, France; PANAM core Facility, Paris Brain Institute, Paris, France; Neurophysiology Department, Rouen University Hospital, CHU Rouen, F-76000, Rouen, France.
| |
Collapse
|
80
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
81
|
Qi G, Diao X, Hou S, Kong J, Jin Y. Label-Free SERS Detection of Protein Damage in Organelles under Electrostimulation with 2D AuNPs-based Nanomembranes as Substrates. Anal Chem 2022; 94:14931-14937. [PMID: 36264200 DOI: 10.1021/acs.analchem.2c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins as the material basis of life are the main undertakers of life activities. However, it is difficult to identify the related proteins in organelles during stimuli-induced stress responses in cells and remains a great challenge in early diagnosis and treatment of disease. Here, proteins in the cell nucleus and mitochondria of cells under the electrical stimulation (ES) process were collected and sensitively detected based on label-free surface-enhanced Raman spectroscopy (SERS) by using AuNP-based nanomembranes as high-performance SERS substrates. Due to the existence of rich "hot spots" on the 2D plasmonic sensing platform, high-quality SERS spectra of proteins were obtained with superior sensitivity and repeatability. From the SERS analyses in vitro, it was found that the conformation of some proteins in the two kinds of organelles from cancerous HCT-116 cells (compared with normal NCM-460 cells) changed significantly and the expression levels of tyrosine, phenylalanine, and tryptophan were significantly promoted during the stimulation process. Although currently the exact proteins are still unknown, the damage of proteins in the organelles of cells at the amino acid level under ES can be revealed by the method. The developed plasmonic SERS sensing platform would be promising for bioassay and cell studies.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuping Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiao Kong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
82
|
Campbell BA, Favi Bocca L, Escobar Sanabria D, Almeida J, Rammo R, Nagel SJ, Machado AG, Baker KB. The impact of pulse timing on cortical and subthalamic nucleus deep brain stimulation evoked potentials. Front Hum Neurosci 2022; 16:1009223. [PMID: 36204716 PMCID: PMC9532054 DOI: 10.3389/fnhum.2022.1009223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of pulse timing is an important factor in our understanding of how to effectively modulate the basal ganglia thalamocortical (BGTC) circuit. Single pulse low-frequency DBS-evoked potentials generated through electrical stimulation of the subthalamic nucleus (STN) provide insight into circuit activation, but how the long-latency components change as a function of pulse timing is not well-understood. We investigated how timing between stimulation pulses delivered in the STN region influence the neural activity in the STN and cortex. DBS leads implanted in the STN of five patients with Parkinson's disease were temporarily externalized, allowing for the delivery of paired pulses with inter-pulse intervals (IPIs) ranging from 0.2 to 10 ms. Neural activation was measured through local field potential (LFP) recordings from the DBS lead and scalp EEG. DBS-evoked potentials were computed using contacts positioned in dorsolateral STN as determined through co-registered post-operative imaging. We quantified the degree to which distinct IPIs influenced the amplitude of evoked responses across frequencies and time using the wavelet transform and power spectral density curves. The beta frequency content of the DBS evoked responses in the STN and scalp EEG increased as a function of pulse-interval timing. Pulse intervals <1.0 ms apart were associated with minimal to no change in the evoked response. IPIs from 1.5 to 3.0 ms yielded a significant increase in the evoked response, while those >4 ms produced modest, but non-significant growth. Beta frequency activity in the scalp EEG and STN LFP response was maximal when IPIs were between 1.5 and 4.0 ms. These results demonstrate that long-latency components of DBS-evoked responses are pre-dominantly in the beta frequency range and that pulse interval timing impacts the level of BGTC circuit activation.
Collapse
Affiliation(s)
- Brett A. Campbell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Leonardo Favi Bocca
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - David Escobar Sanabria
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Julio Almeida
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Richard Rammo
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Sean J. Nagel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G. Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kenneth B. Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
- *Correspondence: Kenneth B. Baker
| |
Collapse
|
83
|
Wessel JR, Diesburg DA, Chalkley NH, Greenlee JDW. A causal role for the human subthalamic nucleus in non-selective cortico-motor inhibition. Curr Biol 2022; 32:3785-3791.e3. [PMID: 35841891 PMCID: PMC9511894 DOI: 10.1016/j.cub.2022.06.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Common cortico-basal ganglia models of motor control suggest a key role for the subthalamic nucleus (STN) in motor inhibition.1-3 In particular, when already-initiated actions have to be suddenly stopped, the STN is purportedly recruited via a hyperdirect pathway to net inhibit the cortico-motor system in a broad, non-selective fashion.4 Indeed, the suppression of cortico-spinal excitability (CSE) during rapid action stopping extends beyond the stopped muscle and affects even task-irrelevant motor representations.5,6 Although such non-selective CSE suppression has long been attributed to the broad inhibitory influence of STN on the motor system, causal evidence for this association is hitherto lacking. Here, 20 Parkinson's disease patients treated with STN deep-brain stimulation (DBS) and 20 matched healthy controls performed a verbal stop-signal task while CSE was measured from a task-unrelated hand muscle. DBS allowed a causal manipulation of STN, while CSE was measured using transcranial magnetic stimulation (TMS) over primary motor cortex and concurrent electromyography. In patients OFF-DBS and controls, the CSE of the hand was non-selectively suppressed when the verbal response was successfully stopped. Crucially, this effect disappeared when STN was disrupted via DBS in the patient group. Using this unique combination of DBS and TMS during human behavior, the current study provides first causal evidence that STN is likely involved in non-selectively suppressing the physiological excitability of the cortico-motor system during action stopping. This confirms a core prediction of long-held cortico-basal ganglia circuit models of movement. The absence of cortico-motor inhibition during STN-DBS may also provide potential insights into the common side effects of STN-DBS, such as increased impulsivity.7-11.
Collapse
Affiliation(s)
- Jan R Wessel
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52245, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52245, USA
| | - Nathan H Chalkley
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jeremy D W Greenlee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
84
|
Steiner LA, Kühn AA, Geiger JR, Alle H, Popovic MR, Kalia SK, Hodaie M, Lozano AM, Hutchison WD, Milosevic L. Persistent synaptic inhibition of the subthalamic nucleus by high frequency stimulation. Brain Stimul 2022; 15:1223-1232. [PMID: 36058524 DOI: 10.1016/j.brs.2022.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/10/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) provides symptomatic relief in a growing number of neurological indications, but local synaptic dynamics in response to electrical stimulation that may relate to its mechanism of action have not been fully characterized. OBJECTIVE The objectives of this study were to (1) study local synaptic dynamics during high frequency extracellular stimulation of the subthalamic nucleus (STN), and (2) compare STN synaptic dynamics with those of the neighboring substantia nigra pars reticulata (SNr). METHODS Two microelectrodes were advanced into the STN and SNr of patients undergoing DBS surgery for Parkinson's disease (PD). Neuronal firing and evoked field potentials (fEPs) were recorded with one microelectrode during stimulation from an adjacent microelectrode. RESULTS Inhibitory fEPs could be discerned within the STN and their amplitudes predicted bidirectional effects on neuronal firing (p = .013). There were no differences between STN and SNr inhibitory fEP dynamics at low stimulation frequencies (p > .999). However, inhibitory neuronal responses were sustained over time in STN during high frequency stimulation but not in SNr (p < .001) where depression of inhibitory input was coupled with a return of neuronal firing (p = .003). INTERPRETATION Persistent inhibitory input to the STN suggests a local synaptic mechanism for the suppression of subthalamic firing during high frequency stimulation. Moreover, differences in the resiliency versus vulnerability of inhibitory inputs to the STN and SNr suggest a projection source- and frequency-specificity for this mechanism. The feasibility of targeting electrophysiologically-identified neural structures may provide insight into how DBS achieves frequency-specific modulation of neuronal projections.
Collapse
Affiliation(s)
- Leon A Steiner
- Krembil Brain Institute, University Health Network, Canada; Department of Neurology, Charité-Universitätsmedizin Berlin, Germany; Berlin Institute of Health (BIH), Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Germany
| | - Jörg Rp Geiger
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Germany
| | - Henrik Alle
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Germany
| | - Milos R Popovic
- KITE Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, University Health Network, Canada; KITE Research Institute, University Health Network, Canada; Department of Surgery, University of Toronto, Canada
| | - Mojgan Hodaie
- Krembil Brain Institute, University Health Network, Canada; Department of Surgery, University of Toronto, Canada
| | - Andres M Lozano
- Krembil Brain Institute, University Health Network, Canada; Department of Surgery, University of Toronto, Canada
| | - William D Hutchison
- Krembil Brain Institute, University Health Network, Canada; Department of Surgery, University of Toronto, Canada; Department of Physiology, University of Toronto, Canada
| | - Luka Milosevic
- Krembil Brain Institute, University Health Network, Canada; KITE Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
85
|
Amlong C, Rusy D, Sanders RD, Lake W, Raz A. Dexmedetomidine depresses neuronal activity in the subthalamic nucleus during deep brain stimulation electrode implantation surgery. BJA OPEN 2022; 3:100088. [PMID: 37588575 PMCID: PMC10430856 DOI: 10.1016/j.bjao.2022.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 08/03/2022] [Indexed: 08/18/2023]
Abstract
Background Micro-electrode recordings are often necessary during electrode implantation for deep brain stimulation of the subthalamic nucleus. Dexmedetomidine may be a useful sedative for these procedures, but there is limited information regarding its effect on neural activity in the subthalamic nucleus and on micro-electrode recording quality. Methods We recorded neural activity in five patients undergoing deep brain stimulation implantation to the subthalamic nucleus. Activity was recorded after subthalamic nucleus identification while patients received dexmedetomidine sedation (loading - 1 μg kg-1 over 10-15 min, maintenance - 0.7 μg kg-1 h-1). We compared the root-mean square (RMS) and beta band (13-30 Hz) oscillation power of multi-unit activity recorded by microelectrode before, during and after recovery from dexmedetomidine sedation. RMS was normalised to values recorded in the white matter. Results Multi-unit activity decreased during sedation in all five patients. Mean normalised RMS decreased from 2.8 (1.5) to 1.6 (1.1) during sedation (43% drop, p = 0.056). Beta band power dropped by 48.4%, but this was not significant (p = 0.15). Normalised RMS values failed to return to baseline levels during the time allocated for the study (30 min). Conclusions In this small sample, we demonstrate that dexmedetomidine decreases neuronal firing in the subthalamic nucleus as expressed in the RMS of the multi-unit activity. As multi-unit activity is a factor in determining the subthalamic nucleus borders during micro-electrode recordings, dexmedetomidine should be used with caution for sedation during these procedures. Clinical trial number NCT01721460.
Collapse
Affiliation(s)
- Corey Amlong
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Deborah Rusy
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Robert D. Sanders
- University of Sydney, Sydney, Australia
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Wendell Lake
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
86
|
Nguyen M, Ali SM, Alterman RL, Luo L. Effective deep brain stimulation lead revision guided by computerized lead localization: A case report. Brain Stimul 2022; 15:1125-1127. [PMID: 35985470 DOI: 10.1016/j.brs.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022] Open
Affiliation(s)
- Michael Nguyen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Syed Musadiq Ali
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron L Alterman
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lan Luo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
87
|
High-frequency stimulation of the subthalamic nucleus induces a sustained inhibition of serotonergic system via loss of cell phenotype. Sci Rep 2022; 12:14011. [PMID: 35978112 PMCID: PMC9385659 DOI: 10.1038/s41598-022-18294-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become a standard treatment for Parkinson's disease (PD). However, in a considerable number of patients debilitating psychiatric side-effects occur. Recent research has revealed that external stimuli can alter the neurotransmitters' homeostasis in neurons, which is known as "neurotransmitter respecification". Herein, we addressed if neurotransmitter respecification could be a mechanism by which DBS suppresses the serotonergic function in the dorsal raphe nucleus (DRN) leading to mood changes. We infused transgenic 5-HT-Cre (ePET-Cre) mice with AAV viruses to achieve targeted expression of eYFP and the genetically encoded calcium indicator GCaMP6s in the DRN prior to methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Mice received bilateral DBS electrodes in the STN and an optic fiber in the DRN for calcium photometry. MPTP-treated mice demonstrated behavioral and histological PD phenotype, whereas all STN-DBS animals exhibited an increased immobility time in the forced swim test, reduced calcium activity, and loss of tryptophan hydroxylase-2 expression in the DRN. Given the prominent role of calcium transients in mediating neurotransmitter respecification, these results suggest a loss of serotonergic phenotype in the DRN following STN-DBS. These findings indicate that loss of serotonergic cell phenotype may underlie the unwanted depressive symptoms following STN-DBS.
Collapse
|
88
|
Alhourani A, Wylie SA, Summers JE, Phibbs FT, Bradley EB, Neimat JS, Van Wouwe NC. Developing Predictor Models of Postoperative Verbal Fluency After Deep Brain Stimulation Using Preoperative Neuropsychological Assessment. Neurosurgery 2022; 91:256-262. [PMID: 35506958 PMCID: PMC9514727 DOI: 10.1227/neu.0000000000001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) for Parkinson disease provides significant improvement of motor symptoms but can also produce neurocognitive side effects. A decline in verbal fluency (VF) is among the most frequently reported side effects. Preoperative factors that could predict VF decline have yet to be identified. OBJECTIVE To develop predictive models of DBS postoperative VF decline using a machine learning approach. METHODS We used a prospective database of patients who underwent neuropsychological and VF assessment before both subthalamic nucleus (n = 47, bilateral = 44) and globus pallidus interna (n = 43, bilateral = 39) DBS. We used a neurobehavioral rating profile as features for modeling postoperative VF. We constructed separate models for action, semantic, and letter VF. We used a leave-one-out scheme to test the accuracy of the predictive models using median absolute error and correlation with actual postoperative scores. RESULTS The predictive models were able to predict the 3 types of VF with high accuracy ranging from a median absolute error of 0.92 to 1.36. Across all three models, higher preoperative fluency, digit span, education, and Mini-Mental State Examination were predictive of higher postoperative fluency scores. By contrast, higher frontal system deficits, age, Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease scored by the patient, disease duration, and Behavioral Inhibition/Behavioral Activation Scale scores were predictive of lower postoperative fluency scores. CONCLUSION Postoperative VF can be accurately predicted using preoperative neurobehavioral rating scores above and beyond preoperative VF score and relies on performance over different aspects of executive function.
Collapse
Affiliation(s)
- Ahmad Alhourani
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Scott A. Wylie
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Jessica E. Summers
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fenna T. Phibbs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elise B. Bradley
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | | |
Collapse
|
89
|
Deuschl G, Antonini A, Costa J, Śmiłowska K, Berg D, Corvol J, Fabbrini G, Ferreira J, Foltynie T, Mir P, Schrag A, Seppi K, Taba P, Ruzicka E, Selikhova M, Henschke N, Villanueva G, Moro E. European Academy of Neurology/Movement Disorder Society ‐ European Section guideline on the treatment of Parkinson's disease: I. Invasive therapies. Eur J Neurol 2022; 29:2580-2595. [DOI: 10.1111/ene.15386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Günther Deuschl
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Joao Costa
- Faculdade de Medicina da Universidade de Lisboa Lisbon Portugal
| | - Katarzyna Śmiłowska
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Daniela Berg
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Jean‐Christophe Corvol
- Institut du Cerveau–Paris Brain Institute Assistance Publique Hôpitaux de Paris Pitié‐Salpêtrière Hospital Department of Neurology, Centre d'Investigation Clinique Neurosciences Sorbonne Université Paris France
| | - Giovanni Fabbrini
- Department Human Neurosciences Sapienza University of Rome Rome Italy
- Neuromed Rome Italy
| | - Joaquim Ferreira
- Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Instituto de Medicina Molecular João Lobo Antunes Lisbon Portugal
- Campus Neurológico Torres Vedras Portugal
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences Institute of Neurology London UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/Universidad de Sevilla Seville Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Departamento de Medicina Facultad de Medicina Universidad de Sevilla Seville Spain
| | - Annette Schrag
- Institute of Neurology, University Clinic London London UK
| | - Klaus Seppi
- Klinik f. Neurologie Medizinische Universität Innsbruck Innsbruck Austria
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine University of Tartu Tartu Estonia
- Tartu University Hospital Tartu Estonia
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czechia
| | - Marianna Selikhova
- Department of Neurology Pirogov Russian National Research Medical University Moscow Russia
| | | | | | - Elena Moro
- Division of Neurology, Grenoble, Grenoble Institute of Neurosciences Grenoble Alpes University Grenoble France
| |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW To review the most recent evidence about the clinical applicability of transcranial MRI-guided focused ultrasound (MRgFUS), including clinical evidence and indications, recent technical developments for its use and future prospects. RECENT FINDINGS Unilateral MRgFUS thalamotomy for both essential and parkinsonian tremors is an approved and well established therapy. Recent studies have focused on its long-term safety and efficacy as well as technical advances for refining the approach. Moreover, ultrasound has expanded its application in Parkinson's disease, with clinical trials successfully targeting other brain regions like the subthalamic nucleus, the globus pallidus and the pallidothalamic tract, providing benefits for features that thalamotomy neglects. New indications, such as focal dystonia or neuropsychiatric conditions (namely obsessive-compulsive disorder and depression) have also been explored, with encouraging preliminary results. Finally, the application of ultrasound in low-intensity modality allows other approaches like focal blood-brain barrier opening and neuromodulation, which promise to be highly relevant in translational research. SUMMARY MRgFUS is a growing emergent technique. Its application in clinical routine is becoming widely accepted as a therapeutic option. Novel approaches and new potential applications are anticipated.
Collapse
|
91
|
Deuschl G, Antonini A, Costa J, Śmiłowska K, Berg D, Corvol J, Fabbrini G, Ferreira J, Foltynie T, Mir P, Schrag A, Seppi K, Taba P, Ruzicka E, Selikhova M, Henschke N, Villanueva G, Moro E. European Academy of Neurology/Movement Disorder Society‐European Section Guideline on the Treatment of Parkinson's Disease: I. Invasive Therapies. Mov Disord 2022; 37:1360-1374. [DOI: 10.1002/mds.29066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Günther Deuschl
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Joao Costa
- Faculdade de Medicina da Universidade de Lisboa Lisbon Portugal
| | - Katarzyna Śmiłowska
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Daniela Berg
- Department of Neurology, UKSH‐Kiel Campus Christian‐Albrechts‐University Kiel Germany
| | - Jean‐Christophe Corvol
- Institut du Cerveau‐Paris Brain Institute, Assistance Publique Hôpitaux de Paris, Pitié‐Salpêtrière Hospital, Department of Neurology, Centre d'Investigation Clinique Neurosciences Sorbonne Université Paris France
| | - Giovanni Fabbrini
- Department Human Neurosciences Sapienza University of Rome Rome Italy
- IRCCS Neuromed Rome Italy
| | - Joaquim Ferreira
- Faculdade de Medicina Universidade de Lisboa Lisbon Portugal
- Instituto de Medicina Molecular João Lobo Antunes Lisbon Portugal
- Campus Neurológico Torres Vedras Portugal
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences Institute of Neurology London UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío/Universidad de Sevilla Seville Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas Madrid Spain
- Departamento de Medicina Facultad de Medicina Universidad de Sevilla Seville Spain
| | - Annette Schrag
- Institute of Neurology, University Clinic London London UK
| | - Klaus Seppi
- Klinik f. Neurologie Medizinische Universität Innsbruck Innsbruck Austria
| | - Pille Taba
- Department of Neurology and Neurosurgery, Institute of Clinical Medicine University of Tartu Tartu Estonia
- Tartu University Hospital Tartu Estonia
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine Charles University and General University Hospital in Prague Prague Czechia
| | | | | | | | - Elena Moro
- Division of Neurology, Grenoble, Grenoble Institute of Neurosciences Grenoble Alpes University Grenoble France
| |
Collapse
|
92
|
Bove F, Cavallieri F, Castrioto A, Meoni S, Schmitt E, Bichon A, Lhommée E, Pélissier P, Kistner A, Chevrier E, Seigneuret E, Chabardès S, Valzania F, Fraix V, Moro E. Does Motor Symptoms Asymmetry Predict Motor Outcome of Subthalamic Deep Brain Stimulation in Parkinson's Disease Patients? Front Hum Neurosci 2022; 16:931858. [PMID: 35799771 PMCID: PMC9253299 DOI: 10.3389/fnhum.2022.931858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background In Parkinson's disease (PD), the side of motor symptoms onset may influence disease progression, with a faster motor symptom progression in patients with left side lateralization. Moreover, worse neuropsychological outcomes after subthalamic nucleus deep brain stimulation (STN-DBS) have been described in patients with predominantly left-sided motor symptoms. The objective of this study was to evaluate if the body side of motor symptoms onset may predict motor outcome of bilateral STN-DBS. Methods This retrospective study included all consecutive PD patients treated with bilateral STN-DBS at Grenoble University Hospital from 1993 to 2015. Demographic, clinical and neuroimaging data were collected before (baseline condition) and 1 year after surgery (follow-up condition). The predictive factors of motor outcome at one-year follow-up, measured by the percentage change in the MDS-UPDRS-III score, were evaluated through univariate and multivariate linear regression analysis. Results A total of 233 patients were included with one-year follow-up after surgery [143 males (61.40%); 121 (51.90 %) right body onset; 112 (48.10%) left body onset; mean age at surgery, 55.31 ± 8.44 years; mean disease duration, 11.61 ± 3.87]. Multivariate linear regression analysis showed that the left side of motor symptoms onset did not predict motor outcome (β = 0.093, 95% CI = −1.967 to 11.497, p = 0.164). Conclusions In this retrospective study, the body side of motor symptoms onset did not significantly influence the one-year motor outcome in a large cohort of PD patients treated with bilateral STN-DBS.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Cavallieri
- Neurology Unit, Department of Neuromotor and Rehabilitation, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- *Correspondence: Francesco Cavallieri
| | - Anna Castrioto
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Sara Meoni
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Emmanuelle Schmitt
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Amélie Bichon
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eugénie Lhommée
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Pierre Pélissier
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Andrea Kistner
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eric Chevrier
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Eric Seigneuret
- Division of Neurosurgery, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Stephan Chabardès
- Division of Neurosurgery, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Franco Valzania
- Neurology Unit, Department of Neuromotor and Rehabilitation, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valerie Fraix
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| | - Elena Moro
- Division of Neurology, Grenoble Institute of Neurosciences, Inserm U1216, CHU of Grenoble, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
93
|
Prange S, Lin Z, Nourredine M, Danaila T, Laurencin C, Lagha-Boukbiza O, Anheim M, Klinger H, Longato N, Phillipps C, Voirin J, Polo G, Simon E, Mertens P, Rolland AS, Devos D, Metereau E, Tranchant C, Thobois S. Limbic stimulation drives mania in STN-DBS in Parkinson disease: a prospective study. Ann Neurol 2022; 92:411-417. [PMID: 35703252 DOI: 10.1002/ana.26434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
In this one-year prospective study, Parkinson's disease (PD) patients with or without mania following STN-DBS were compared to investigate risk and etiological factors, clinical management and consequences. Eighteen (16.2%) out of 111 consecutive PD patients developed mania, of whom 17 were males. No preoperative risk factor was identified. Postoperative mania was related to ventral limbic subthalamic stimulation in 15 (83%) patients, and resolved as stimulation was relocated to the sensorimotor STN, besides discontinuation or reduction of dopamine agonists and use of low-dose clozapine in 12 patients, while motor and nonmotor outcomes were similar. These findings underpin the prominent role of limbic subthalamic stimulation in postoperative mania. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stéphane Prange
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
| | - Zhengyu Lin
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France.,Department of Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Teodor Danaila
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Chloé Laurencin
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Nadine Longato
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clelie Phillipps
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN, Strasbourg University Hospital, Strasbourg, France
| | - Gustavo Polo
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Emile Simon
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Patrick Mertens
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Anne-Sophie Rolland
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - David Devos
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - Elise Metereau
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Stéphane Thobois
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Oullins, France
| | | |
Collapse
|
94
|
Peeters J, Boogers A, Van Bogaert T, Gransier R, Wouters J, Nuttin B, Mc Laughlin M. Current Steering Using Multiple Independent Current Control Deep Brain Stimulation Technology Results in Distinct Neurophysiological Responses in Parkinson’s Disease Patients. Front Hum Neurosci 2022; 16:896435. [PMID: 35721356 PMCID: PMC9203070 DOI: 10.3389/fnhum.2022.896435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Background Deep brain stimulation (DBS) is an effective neuromodulation therapy to treat people with medication-refractory Parkinson’s disease (PD). However, the neural networks affected by DBS are not yet fully understood. Recent studies show that stimulating on different DBS-contacts using a single current source results in distinct EEG-based evoked potentials (EPs), with a peak at 3 ms (P3) associated with dorsolateral subthalamic nucleus stimulation and a peak at 10 ms associated with substantia nigra stimulation. Multiple independent current control (MICC) technology allows the center of the electric field to be moved in between two adjacent DBS-contacts, offering a potential advantage in spatial precision. Objective Determine if MICC precision targeting results in distinct neurophysiological responses recorded via EEG. Materials and Methods We recorded cortical EPs in five hemispheres (four PD patients) using EEG whilst employing MICC to move the electric field from the most dorsal DBS-contact to the most ventral in 15 incremental steps. Results The center of the electric field location had a significant effect on both the P3 and P10 amplitude in all hemispheres where a peak was detected (P3, detected in 4 of 5 hemispheres, p < 0.0001; P10, detected in 5 of 5 hemispheres, p < 0.0001). Post hoc analysis indicated furthermore that MICC technology can significantly refine the resolution of steering. Conclusion Using MICC to incrementally move the center of the electric field to locations between adjacent DBS-contacts resulted in significantly different neurophysiological responses that may allow further precision of the programming of individual patients.
Collapse
Affiliation(s)
- Jana Peeters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- *Correspondence: Jana Peeters,
| | - Alexandra Boogers
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Tine Van Bogaert
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robin Gransier
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
95
|
Characterizing the trends in patient demographics, complications, and short-term outcomes after deep brain stimulation procedures. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2021.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
96
|
Korsun O, Renvall H, Nurminen J, Mäkelä JP, Pekkonen E. Modulation of sensory cortical activity by deep brain stimulation in advanced Parkinson's Disease. Eur J Neurosci 2022; 56:3979-3990. [PMID: 35560964 PMCID: PMC9544049 DOI: 10.1111/ejn.15692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite optimal oral drug treatment, about 90% of patients with Parkinson's disease develop motor fluctuation and dyskinesia within 5-10 years from the diagnosis. Moreover, the patients show non-motor symptoms in different sensory domains. Bilateral deep brain stimulation applied to the subthalamic nucleus is considered the most effective treatment in advanced Parkinson's disease and it has been suggested to affect sensorimotor modulation and relate to motor improvement in patients. However, observations on the relationship between sensorimotor activity and clinical improvement have remained sparse. Here we studied the somatosensory evoked magnetic fields in thirteen right-handed patients with advanced Parkinson's disease before and 7 months after stimulator implantation. Somatosensory processing was addressed with magnetoencephalography during alternated median nerve stimulation at both wrists. The strengths and the latencies of the ~60-ms responses at the contralateral primary somatosensory cortices were highly variable but detectable and reliably localized in all patients. The response strengths did not differ between preoperative and postoperative DBSON measurements. The change in the response strength between pre- and postoperative condition in the dominant left hemisphere of our right-handed patients correlated with the alleviation of their motor symptoms (p = 0.04). However, the result did not survive correction for multiple comparisons. Magnetoencephalography appears an effective tool to explore non-motor effects in patients with Parkinson's disease, and it may help in understanding the neurophysiological basis of deep brain stimulation. However, the high interindividual variability in the somatosensory responses and poor tolerability of DBSOFF condition warrants larger patient groups and measurements also in non-medicated patients.
Collapse
Affiliation(s)
- Olesia Korsun
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Hanna Renvall
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Jussi Nurminen
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland.,Motion Analysis Laboratory, Children's Hospital, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jyrki P Mäkelä
- Biomag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki University, and Aalto University School of Science, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
97
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
98
|
Raoul S, Brissot R, Lefaucheur JP, Nguyen JM, Rouaud T, Meas Y, Huchet A, Razafimahefa N, Damier P, Nizard J, Nguyen JP. Additional Benefit of Intraoperative Electroacupuncture in Improving Tolerance of Deep Brain Stimulation Surgical Procedure in Parkinsonian Patients. J Clin Med 2022; 11:jcm11102680. [PMID: 35628808 PMCID: PMC9145270 DOI: 10.3390/jcm11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Deep brain stimulation (DBS) is an effective technique to treat patients with advanced Parkinson’s disease. The surgical procedure of DBS implantation is generally performed under local anesthesia due to the need for intraoperative clinical testing. However, this procedure is long (5–7 h on average) and, therefore, the objective that the patient remains co-operative and tolerates the intervention well is a real challenge. Objective: To evaluate the additional benefit of electroacupuncture (EA) performed intraoperatively to improve the comfort of parkinsonian patients during surgical DBS implantation. Methods: This single-center randomized study compared two groups of patients. In the first group, DBS implantation was performed under local anesthesia alone, while the second group received EA in addition. The patients were evaluated preoperatively, during the different stages of the surgery, and 2 days after surgery, using the 9-item Edmonton Symptom Assessment System (ESAS), including a total sum score and physical and emotional subscores. Results: The data of nine patients were analyzed in each group. Although pain and tiredness increased in both groups after placement of the stereotactic frame, the ESAS item “lack of appetite”, as well as the ESAS total score and physical subscore increased after completion of the first burr hole until the end of the surgical procedure in the control group only. ESAS total score and physical subscore were significantly higher at the end of the intervention in the control group compared to the EA group. After the surgical intervention (D2), anxiety and ESAS emotional subscore were improved in both groups, but the feeling of wellbeing improved in the EA group only. Finally, one patient developed delirium during the intervention and none in the EA group. Discussion: This study shows that intraoperative electroacupuncture significantly improves the tolerance of DBS surgery in parkinsonian patients. This easy-to-perform procedure could be fruitfully added in clinical practice.
Collapse
Affiliation(s)
- Sylvie Raoul
- Service de Neurochirurgie, Hôpital Laennec, CHU, 44093 Nantes, France; (R.B.); (N.R.)
- Correspondence: ; Tel.: +33-240165080
| | - Régine Brissot
- Service de Neurochirurgie, Hôpital Laennec, CHU, 44093 Nantes, France; (R.B.); (N.R.)
| | - Jean-Pascal Lefaucheur
- EA4391, Excitabilité Nerveuse et Thérapeutique, Université Paris Est Créteil, 94000 Créteil, France; (J.-P.L.); (J.N.)
- Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, AP-HP, 94000 Créteil, France
| | - Jean-Michel Nguyen
- Service de Biostatistiques et d’épidémiologie, Hôpital Saint Jacques, CHU, 44093 Nantes, France;
| | - Tiphaine Rouaud
- Service de Neurologie, Hôpital Laennec, CHU, 44093 Nantes, France; (T.R.); (P.D.)
| | - Yunsan Meas
- Service Douleur, Soins palliatifs et de Support et UIC22, Hôpital Laennec, CHU, 44093 Nantes, France; (Y.M.); (J.-P.N.)
| | | | | | - Philippe Damier
- Service de Neurologie, Hôpital Laennec, CHU, 44093 Nantes, France; (T.R.); (P.D.)
| | - Julien Nizard
- EA4391, Excitabilité Nerveuse et Thérapeutique, Université Paris Est Créteil, 94000 Créteil, France; (J.-P.L.); (J.N.)
- Service Douleur, Soins palliatifs et de Support et UIC22, Hôpital Laennec, CHU, 44093 Nantes, France; (Y.M.); (J.-P.N.)
| | - Jean-Paul Nguyen
- Service Douleur, Soins palliatifs et de Support et UIC22, Hôpital Laennec, CHU, 44093 Nantes, France; (Y.M.); (J.-P.N.)
- Centre D’évaluation et de Traitement de la Douleur, Clinique Brétéché, Groupe Elsan, 44000 Nantes, France
| |
Collapse
|
99
|
Bingham CS, McIntyre CC. Subthalamic deep brain stimulation of an anatomically detailed model of the human hyperdirect pathway. J Neurophysiol 2022; 127:1209-1220. [PMID: 35320026 PMCID: PMC9054256 DOI: 10.1152/jn.00004.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
The motor hyperdirect pathway (HDP) is considered a key target in the treatment of Parkinson's disease with subthalamic deep brain stimulation (DBS). This hypothesis is partially derived from the association of HDP activation with evoked potentials (EPs) generated in the motor cortex and subthalamic nucleus (STN) after a DBS pulse. However, the biophysical details of how and when DBS-induced action potentials (APs) in HDP neurons reach their terminations in the cortex or STN remain unclear. Therefore, we used an anatomically detailed representation of the motor HDP, as well as the internal capsule (IC), in a model of human subthalamic DBS to explore AP activation and transmission in the HDP and IC. Our results show that small diameter HDP axons exhibited AP initiation in their subthalamic terminal arbor, which resulted in relatively long transmission latencies to cortex (∼3.5-8 ms). Alternatively, large diameter HDP axons were most likely to be directly activated in the capsular region, which resulted in short transmission times to the cortex (∼1-3 ms). However, those large diameter HDP antidromic APs would be indistinguishable from any other IC axons that were also activated by the stimulus. Conversely, DBS-induced APs in both small and large diameter HDP axons reached their synaptic boutons in the STN with similar timings, but both spanned a wide temporal range (∼0.5-5 ms). We also found that using anodic or bipolar stimulation helped to bias activation of the HDP over the IC. These computational results provide useful information for linking HDP activation with EP recordings in clinical experiments.NEW & NOTEWORTHY We used biophysical models to study pathway recruitment and conduction latencies of the hyperdirect pathway (HDP) in response to subthalamic deep brain stimulation (DBS). The model system allowed us to assess the influence of increased anatomical realism on pathway activity and the possibility of identifying HDP activity in evoked potentials (EPs) recorded in either the subthalamic nucleus (STN) or cortex. The model predicts that HDP activation is accentuated by complex axonal branching in the STN.
Collapse
Affiliation(s)
- Clayton S Bingham
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Neurosurgery, Duke University, Durham, North Carolina
| |
Collapse
|
100
|
Boussac M, Arbus C, Klinger H, Eusebio A, Hainque E, Corvol JC, Rascol O, Rousseau V, Harroch E, d'Apollonia CS, Croiset A, Ory-Magne F, De Barros A, Fabbri M, Moreau C, Rolland AS, Benatru I, Anheim M, Marques AR, Maltête D, Drapier S, Jarraya B, Hubsch C, Guehl D, Meyer M, Rouaud T, Giordana B, Tir M, Devos D, Brefel-Courbon C. Personality Related to Quality-of-Life Improvement After Deep Brain Stimulation in Parkinson's Disease (PSYCHO-STIM II). JOURNAL OF PARKINSON'S DISEASE 2022; 12:699-711. [PMID: 34897100 DOI: 10.3233/jpd-212883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deep brain stimulation of the sub-thalamic nucleus (DBS-STN) reduces symptoms in Parkinson's disease (PD) patients with motor fluctuations. However, some patients may not feel ameliorated afterwards, despite an objective motor improvement. It is thus important to find new predictors of patients' quality of life (QoL) amelioration after DBS-STN. We hypothesized that personality dimensions might affect QoL after DBS-STN. OBJECTIVE To evaluate associations between personality dimensions and QoL improvement one year after DBS-STN. METHODS DBS-STN-PD patients (n = 303) having answered the "Temperament and Character Inventory" (TCI) before surgery and the PDQ-39 before and one year after surgery were included, from the cohort study PREDI-STIM. Linear regression models were used to evaluate associations between TCI dimensions and change in PDQ-39 scores after DBS-STN. RESULTS Novelty Seeking and Cooperativeness scores before surgery were positively associated with PDQ-39 scores improvement after DBS-STN (FDR-adjusted p < 0.01). Moreover, paradoxically unimproved patients with deterioration of their PDQ-39 scores after DBS-STN despite improvement of their MDS-UPDRS-IV scores had lower Cooperativeness scores, while paradoxically improved patients with amelioration of their PDQ-39 scores despite deterioration of their MDS-UPDRS-IV scores had higher Reward Dependence scores. CONCLUSION Some presurgical personality dimensions were significantly associated with QoL amelioration and discrepancy between motor state and QoL changes after DBS-STN in PD. Educational programs before DBS-STN should take in account patient personality dimensions to better deal with their expectations.
Collapse
Affiliation(s)
- Mathilde Boussac
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France
| | - Christophe Arbus
- Psychiatry Department of the University Hospital of Toulouse, CHU Purpan, Toulouse, France
| | - Helene Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Lyon, France
| | - Alexandre Eusebio
- Aix Marseille Université, AP-HM, Hôpital de La Timone, Service de Neurologie et Pathologie du Mouvement, and UMR CNRS, Institut de Neuroscience de La Timone, NS-PARK/FCRIN Network, Marseille, France
| | - Elodie Hainque
- Département de Neurologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France et Faculté de Médecine de Sorbonne Université, Paris, France
| | - Jean Christophe Corvol
- Sorbonne Université, Paris Brain Institute -ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, NS-PARK/FCRIN, Department of Neurology, Paris, France
| | - Olivier Rascol
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France.,Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Vanessa Rousseau
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Estelle Harroch
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Charlotte Scotto d'Apollonia
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Aurélie Croiset
- CERPPS-Study and Research Center in Psychopathology and Health Psychology, University of Toulouse II Jean-Jaurès, Toulouse, France
| | - Fabienne Ory-Magne
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France.,Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Amaury De Barros
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France.,Department of Neurosurgery, Toulouse University Hospital, Toulouse, France
| | - Margherita Fabbri
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France.,Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | - Caroline Moreau
- Department of Medical Pharmacology, Neurology and Movement Disorders Department, Referent center of Parkinson's disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, Lille, NS-PARK/FCRIN Network, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Neurology and Movement Disorders Department, Referent center of Parkinson's disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, Lille, NS-PARK/FCRIN Network, France
| | - Isabelle Benatru
- Neurology Department, University Hospital of Poitiers, Poitiers, France; INSERM, CHU de Poitiers, University of Poitiers, Centre d'Investigation Clinique CIC1402, Poitiers, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Ana-Raquel Marques
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, France
| | - David Maltête
- Department of Neurology, Rouen University Hospital and University of Rouen, France; INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France
| | - Sophie Drapier
- CHU Rennes, Service de neurologie, CIC-INSERM 1414, Rennes, France
| | - Béchir Jarraya
- Pôle Neurosciences, Foch Hospital, Suresnes; Université Paris-Saclay, UVSQ, INSERM U992, CEA Paris-Saclay, Neurospin, France
| | - Cécile Hubsch
- Hôpital Fondation A de Rothschild, Service de recherche clinique, Paris, France
| | - Dominique Guehl
- Institut des Maladies Neurodégénératives (IMN, CNRS U5393), Université de Bordeaux, Bordeaux, France.,Service de Neurophysiologie Clinique, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Mylène Meyer
- Service de neurologie, Hôpital Central, CHRU de Nancy, Nancy Cedex, France
| | - Tiphaine Rouaud
- Clinique Neurologique, Hôpital Guillaume et René Laennec, Boulevard Jacques Monod, Nantes Cedex, France
| | - Bruno Giordana
- CHU Nice, Department of Psychiatry and Psychotherapy, Nice, France
| | - Mélissa Tir
- Department of Neurology, Department of Neurosurgery, Expert Centre for Parkinson's disease, Amiens University Hospital, EA 4559 Laboratoire de Neurosciences Fonctionnelles et Pathologie (LNFP) Université de Picardie Jules Verne, University of Picardy Jules Verne (UPJV), NS-PARK/FCRIN Network, Amiens, France
| | - David Devos
- Department of Medical Pharmacology, Neurology and Movement Disorders Department, Referent center of Parkinson's disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, Lille, NS-PARK/FCRIN Network, France
| | - Christine Brefel-Courbon
- Toulouse Neuro Imaging Center, University of Toulouse, Inserm, UPS, France.,Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Clinical Investigation Center, University Hospital of Toulouse, NeuroToul COEN (Center of Excellence in Neurodegeneration), Toulouse, NS-PARK/FCRIN Network, France
| | | |
Collapse
|