51
|
Khachatryan A, Read SH, Madison T. External control arms for rare diseases: building a body of supporting evidence. J Pharmacokinet Pharmacodyn 2023; 50:501-506. [PMID: 37095406 PMCID: PMC10673956 DOI: 10.1007/s10928-023-09858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Comparator arms in randomized clinical trials may be impractical and/or unethical to assemble in rare diseases. In the absence of comparator arms, evidence generated from external control studies has been used to support successful regulatory submissions and health technology assessments (HTA). However, conducting robust and rigorous external control arm studies is challenging and despite all efforts, residual biases may remain. As a result, regulatory and HTA agencies may request additional external control analyses so that decisions may be made based upon a body of supporting evidence.This paper introduces external control studies and provides an overview of the key methodological issues to be considered in the design of these studies. A series of case studies are presented in which evidence derived from one or more external controls was submitted to regulatory and HTA agencies to provide support for the consistency of findings.
Collapse
|
52
|
Steigerwald C, Borsuk J, Pappas J, Galey M, Scott A, Devaney JM, Miller DE, Abreu NJ. CLN2 disease resulting from a novel homozygous deep intronic splice variant in TPP1 discovered using long-read sequencing. Mol Genet Metab 2023; 140:107713. [PMID: 37922835 DOI: 10.1016/j.ymgme.2023.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.
Collapse
Affiliation(s)
- Connolly Steigerwald
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jill Borsuk
- Division of Clinical Genetics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John Pappas
- Division of Clinical Genetics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98195, USA
| | - Anna Scott
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA 08105, USA
| | | | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nicolas J Abreu
- Division of Neurogenetics, Department of Neurology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
53
|
Nickel M, Gissen P, Greenaway R, Cappelletti S, Hamborg C, Ragni B, Ribitzki T, Schulz A, Tondo I, Specchio N. Language Delay in Patients with CLN2 Disease: Could It Support Earlier Diagnosis? Neuropediatrics 2023; 54:402-406. [PMID: 37329878 PMCID: PMC10643021 DOI: 10.1055/s-0043-1770143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare pediatric disorder associated with rapid neurodegeneration, and premature death in adolescence. An effective enzyme replacement therapy (cerliponase alfa) has been approved that can reduce this predictable neurological decline. The nonspecific early symptoms of CLN2 disease frequently delay diagnosis and appropriate management. Seizures are generally recognized as the first presenting symptom of CLN2 disease, but emerging data show that language delay may precede this. An improved understanding of language deficits in the earliest stage of CLN2 disease may support the early identification of patients. In this article, CLN2 disease experts examine how language development is affected by CLN2 disease in their clinical practices. The authors' experiences highlighted the timings of first words and first use of sentences, and language stagnation as key features of language deficits in CLN2 disease, and how deficits in language may be an earlier sign of the disease than seizures. Potential challenges in identifying early language deficits include assessing patients with other complex needs, and recognizing that a child's language abilities are not within normal parameters given the variability of language development in young children. CLN2 disease should be considered in children presenting with language delay and/or seizures to facilitate earlier diagnosis and access to treatment that can significantly reduce morbidity.
Collapse
Affiliation(s)
- Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
| | - Rebecca Greenaway
- Neurodisability Service, Great Ormond Street Hospital, London, United Kingdom
| | - Simona Cappelletti
- Rare and Complex Epilepsy Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network: EpiCARE, Rome, Italy
| | | | - Benedetta Ragni
- Rare and Complex Epilepsy Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network: EpiCARE, Rome, Italy
| | | | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilaria Tondo
- Rare and Complex Epilepsy Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network: EpiCARE, Rome, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network: EpiCARE, Rome, Italy
| |
Collapse
|
54
|
Itoh K, Tsukimoto J. Lysosomal sialidase NEU1, its intracellular properties, deficiency, and use as a therapeutic agent. Glycoconj J 2023; 40:611-619. [PMID: 38147151 DOI: 10.1007/s10719-023-10135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/27/2023]
Abstract
Neuraminidase 1 (NEU1) is a lysosomal sialidase that cleaves terminal α-linked sialic acid residues from sialylglycans. NEU1 is biosynthesized in the rough endoplasmic reticulum (RER) lumen as an N-glycosylated protein to associate with its protective protein/cathepsin A (CTSA) and then form a lysosomal multienzyme complex (LMC) also containing β-galactosidase 1 (GLB1). Unlike other mammalian sialidases, including NEU2 to NEU4, NEU1 transport to lysosomes requires association of NEU1 with CTSA, binding of the CTSA carrying terminal mannose 6-phosphate (M6P)-type N-glycan with M6P receptor (M6PR), and intralysosomal NEU1 activation at acidic pH. In contrast, overexpression of the single NEU1 gene in mammalian cells causes intracellular NEU1 protein crystallization in the RER due to self-aggregation when intracellular CTSA is reduced to a relatively low level. Sialidosis (SiD) and galactosialidosis (GS) are autosomal recessive lysosomal storage diseases caused by the gene mutations of NEU1 and CTSA, respectively. These incurable diseases associate with the NEU1 deficiency, excessive accumulation of sialylglycans in neurovisceral organs, and systemic manifestations. We established a novel GS model mouse carrying homozygotic Ctsa IVS6 + 1 g/a mutation causing partial exon 6 skipping with simultaneous deficiency of Ctsa and Neu1. Symptoms developed in the GS mice like those in juvenile/adult GS patients, such as myoclonic seizures, suppressed behavior, gargoyle-like face, edema, proctoptosis due to Neu1 deficiency, and sialylglycan accumulation associated with neurovisceral inflammation. We developed a modified NEU1 (modNEU1), which does not form protein crystals but is transported to lysosomes by co-expressed CTSA. In vivo gene therapy for GS and SiD utilizing a single adeno-associated virus (AAV) carrying modNEU1 and CTSA genes under dual promoter control will be created.
Collapse
Affiliation(s)
- Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan.
| | - Jun Tsukimoto
- Department of Medicinal Biotechnology, Institute for Medicinal Biotechnology, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
55
|
Kovács AD, Gonzalez Hernandez JL, Pearce DA. Acidified drinking water improves motor function, prevents tremors and changes disease trajectory in Cln2 R207X mice, a model of late infantile Batten disease. Sci Rep 2023; 13:19229. [PMID: 37932327 PMCID: PMC10628098 DOI: 10.1038/s41598-023-46283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Batten disease is a group of mostly pediatric neurodegenerative lysosomal storage disorders caused by mutations in the CLN1-14 genes. We have recently shown that acidified drinking water attenuated neuropathological changes and improved motor function in the Cln1R151X and Cln3-/- mouse models of infantile CLN1 and juvenile CLN3 diseases. Here we tested if acidified drinking water has beneficial effects in Cln2R207X mice, a nonsense mutant model of late infantile CLN2 disease. Cln2R207X mice have motor deficits, muscle weakness, develop tremors, and die prematurely between 4 and 6 months of age. Acidified water administered to Cln2R207X male mice from postnatal day 21 significantly improved motor function, restored muscle strength and prevented tremors as measured at 3 months of age. Acidified drinking water also changed disease trajectory, slightly delaying the death of Cln2R207X males and females. The gut microbiota compositions of Cln2R207X and wild-type male mice were markedly different and acidified drinking water significantly altered the gut microbiota of Cln2R207X mice. This suggests that gut bacteria might contribute to the beneficial effects of acidified drinking water. Our study demonstrates that drinking water is a major environmental factor that can alter disease phenotypes and disease progression in rodent disease models.
Collapse
Affiliation(s)
- Attila D Kovács
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD, 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
56
|
Elvidge KL, Christodoulou J, Farrar MA, Tilden D, Maack M, Valeri M, Ellis M, Smith NJC. The collective burden of childhood dementia: a scoping review. Brain 2023; 146:4446-4455. [PMID: 37471493 PMCID: PMC10629766 DOI: 10.1093/brain/awad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 07/22/2023] Open
Abstract
Childhood dementia is a devastating and under-recognized group of disorders with a high level of unmet need. Typically monogenic in origin, this collective of individual neurodegenerative conditions are defined by a progressive impairment of neurocognitive function, presenting in childhood and adolescence. This scoping review aims to clarify definitions and conceptual boundaries of childhood dementia and quantify the collective disease burden. A literature review identified conditions that met the case definition. An expert clinical working group reviewed and ratified inclusion. Epidemiological data were extracted from published literature and collective burden modelled. One hundred and seventy genetic childhood dementia disorders were identified. Of these, 25 were analysed separately as treatable conditions. Collectively, currently untreatable childhood dementia was estimated to have an incidence of 34.5 per 100 000 (1 in 2900 births), median life expectancy of 9 years and prevalence of 5.3 per 100 000 persons. The estimated number of premature deaths per year is similar to childhood cancer (0-14 years) and approximately 70% of those deaths will be prior to adulthood. An additional 49.8 per 100 000 births are attributable to treatable conditions that would cause childhood dementia if not diagnosed early and stringently treated. A relational database of the childhood dementia disorders has been created and will be continually updated as new disorders are identified (https://knowledgebase.childhooddementia.org/). We present the first comprehensive overview of monogenic childhood dementia conditions and their collective epidemiology. Unifying these conditions, with consistent language and definitions, reinforces motivation to advance therapeutic development and health service supports for this significantly disadvantaged group of children and their families.
Collapse
Affiliation(s)
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michelle A Farrar
- Department of Neurology, Sydney Children's Hospital Network, Randwick, NSW 2031, Australia
- Discipline of Paediatrics, School of Clinical Medicine, UNSW Medicine and Health, Sydney, NSW 2052, Australia
| | | | - Megan Maack
- Childhood Dementia Initiative, Brookvale, NSW 2100, Australia
| | | | - Magda Ellis
- THEMA Consulting Pty Ltd, Pyrmont, NSW 2009, Australia
| | - Nicholas J C Smith
- Discipline of Paediatrics, University of Adelaide, Women's and Children's Hospital, North Adelaide, South Australia 5006, Australia
- Department of Neurology and Clinical Neurophysiology, Women’s and Children’s Health Network, North Adelaide, South Australia 5006, Australia
| |
Collapse
|
57
|
Latzer IT, Blau N, Ferreira CR, Pearl PL. Clinical and biochemical footprints of inherited metabolic diseases. XV. Epilepsies. Mol Genet Metab 2023; 140:107690. [PMID: 37659319 PMCID: PMC11753621 DOI: 10.1016/j.ymgme.2023.107690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
We provide a comprehensive overview of inherited metabolic disorders (IMDs) in which epilepsy is a prominent manifestation. Our unique database search has identified 256 IMDs associated with various types of epilepsies, which we classified according to the classic pathophysiology-based classification of IMDs, and according to selected seizure-related factors (neonatal seizures, infantile spasms, myoclonic seizures, and characteristic EEG patterns) and treatability for the underlying metabolic defect. Our findings indicate that inherited metabolic epilepsies are more likely to present in the neonatal period, with infantile spasms or myoclonic seizures. Additionally, the ∼20% of treatable inherited metabolic epilepsies found by our search were mainly associated with the IMD groups of "cofactor and mineral metabolism" and "Intermediary nutrient metabolism." The information provided by this study, including a comprehensive list of IMDs with epilepsy stratified according to age of onset, and seizure type and characteristics, along with an overview of the key clinical features and proposed diagnostic and therapeutic approaches, may benefit any epileptologist and healthcare provider caring for individuals with metabolic conditions.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
58
|
Pearl PL. Comment: Amenable Treatable Severe Pediatric Epilepsies. Semin Pediatr Neurol 2023; 47:101073. [PMID: 37919041 DOI: 10.1016/j.spen.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 11/04/2023]
Abstract
AMENABLE TREATABLE SEVERE PEDIATRIC EPILEPSIES Phillip L. Pearl Seminars in Pediatric Neurology Volume 23, Issue 2, May 2016, Pages 158-166 Vitamin-dependent epilepsies and multiple metabolic epilepsies are amenable to treatment that markedly improves the disease course. Knowledge of these amenably treatable severe pediatric epilepsies allows for early identification, testing, and treatment. These disorders present with various phenotypes, including early onset epileptic encephalopathy (refractory neonatal seizures, early myoclonic encephalopathy, and early infantile epileptic encephalop athy), infantile spasms, or mixed generalized seizure types in infancy, childhood, or even adolescence and adulthood. The disorders are presented as vitamin responsive epilepsies such as pyridoxine, pyridoxal-5-phosphate, folinic acid, and biotin; transportopathies like GLUT-1, cerebral folate deficiency, and biotin thiamine responsive disorder; amino and organic acidopathies including serine synthesis defects, creatine synthesis disorders, molybdenum cofactor deficiency, and cobalamin deficiencies; mitochondrial disorders; urea cycle disorders; neurotransmitter defects; and disorders of glucose homeostasis. In each case, targeted intervention directed toward the underlying metabolic pathophysiology affords for the opportunity to significantly effect the outcome and prognosis of an otherwise severe pediatric epilepsy.
Collapse
Affiliation(s)
- Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
59
|
Dulz S, Schwering C, Wildner J, Spartalis C, Schuettauf F, Bartsch U, Wibbeler E, Nickel M, Spitzer MS, Atiskova Y, Schulz A. Ongoing retinal degeneration despite intraventricular enzyme replacement therapy with cerliponase alfa in late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2 disease). Br J Ophthalmol 2023; 107:1478-1483. [PMID: 35772852 DOI: 10.1136/bjo-2022-321260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) is a neurodegenerative, blinding lysosomal storage disorder. The purpose of the current study was to characterise the progression of CLN2-associated retinal degeneration in patients under intraventricular enzyme replacement therapy (ERT) with cerliponase alfa. METHODS We analysed visual function, retinal morphology and neuropaediatric data using preferential looking test (PLT), Weill Cornell Batten Scale (WCBS), optical coherence tomography (OCT) imaging and the Hamburg Motor-Language late-infantile neuronal ceroid lipofuscinosis (LINCL) Scale (M-L scale). RESULTS Fifty-six eyes of 28 patients had baseline PLT, WCBS and OCT. 15 patients underwent serial examinations, resulting in a total of 132 OCT scans and WCBS results, 66 Hamburg M-L scores and 49 PLT results during a mean follow-up time of 18.2 months (range 5-40). A negative correlation (r=-0.69, p<0.001) was found between central retinal thickness (CRT) values and age at examination with a maximal annual decrease of 23 µm between 56 and 80 months of age. A significant correlation was observed between PLT results and the age at examination (r=0.46, p=0.001), the WCBS scores (r=0.62; p<0.001) and CRT values (r=-0.64; p<0.001). The M-L score correlated with the ocular measurements (CRT: r=0.58, p<0.001; WCBS r=-0.64, p<0.001; PLT score: r=-0.57, p<0.001). CONCLUSION Despite intraventricular ERT, retinal degeneration progressed in patients with CLN2 and was particularly pronounced between 56 and 80 months of age. Retina-directed therapies should therefore be initiated before or as early as possible during the phase of rapid retinal degeneration. PLT and WCBS were identified as valuable outcome measures to monitor disease progression. TRIAL REGISTRATION NUMBER NCT04613089.
Collapse
Affiliation(s)
- Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Schwering
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Wildner
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Spartalis
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Schuettauf
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Wibbeler
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Nickel
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Stephan Spitzer
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Schulz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
60
|
Barbour K, Tian N, Yozawitz EG, Wolf S, McGoldrick PE, Sands TT, Nelson A, Basma N, Grinspan ZM. Creating rare epilepsy cohorts using keyword search in electronic health records. Epilepsia 2023; 64:2738-2749. [PMID: 37498137 PMCID: PMC10984273 DOI: 10.1111/epi.17725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Administrative codes to identify people with rare epilepsies in electronic health records are limited. The current study evaluated the use of keyword search as an alternative method for rare epilepsy cohort creation using electronic health records data. METHODS Data included clinical notes from encounters with International Classification of Diseases, Ninth Revision (ICD-9) codes for seizures, epilepsy, and/or convulsions during 2010-2014, across six health care systems in New York City. We identified cases with rare epilepsies by searching clinical notes for keywords associated with 33 rare epilepsies. We validated cases via manual chart review. We compared the performance of keyword search to manual chart review using positive predictive value (PPV), sensitivity, and F-score. We selected an initial combination of keywords using the highest F-scores. RESULTS Data included clinical notes from 77 924 cases with ICD-9 codes for seizures, epilepsy, and/or convulsions. The all-keyword search method identified 6095 candidates, and manual chart review confirmed that 2068 (34%) had a rare epilepsy. The initial combination method identified 1862 cases with a rare epilepsy, and this method performed as follows: PPV median = .64 (interquartile range [IQR] = .50-.81, range = .20-1.00), sensitivity median = .93 (IQR = .76-1.00, range = .10-1.00), and F-score median = .71 (IQR = .63-.85, range = .18-1.00). Using this method, we identified four cohorts of rare epilepsies with over 100 individuals, including infantile spasms, Lennox-Gastaut syndrome, Rett syndrome, and tuberous sclerosis complex. We identified over 50 individuals with two rare epilepsies that do not have specific ICD-10 codes for cohort creation (epilepsy with myoclonic atonic seizures, Sturge-Weber syndrome). SIGNIFICANCE Keyword search is an effective method for cohort creation. These findings can improve identification and surveillance of individuals with rare epilepsies and promote their referral to specialty clinics, clinical research, and support groups.
Collapse
Affiliation(s)
- Kristen Barbour
- University of California San Diego, San Diego, California, USA
| | - Niu Tian
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elissa G Yozawitz
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven Wolf
- Boston Children's Health Physicians, Hawthorne, New York, USA
- New York Medical College, Valhalla, New York, USA
| | - Patricia E McGoldrick
- Boston Children's Health Physicians, Hawthorne, New York, USA
- New York Medical College, Valhalla, New York, USA
| | - Tristan T Sands
- Columbia University Irving Medical Center, New York, New York, USA
| | - Aaron Nelson
- New York University Langone Medical Center, New York, New York, USA
| | | | | |
Collapse
|
61
|
Cameron JM, Ellis CA, Berkovic SF. ILAE Genetics Literacy series: Progressive myoclonus epilepsies. Epileptic Disord 2023; 25:670-680. [PMID: 37616028 PMCID: PMC10947580 DOI: 10.1002/epd2.20152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Progressive Myoclonus Epilepsy (PME) is a rare epilepsy syndrome characterized by the development of progressively worsening myoclonus, ataxia, and seizures. A molecular diagnosis can now be established in approximately 80% of individuals with PME. Almost fifty genetic causes of PME have now been established, although some remain extremely rare. Herein, we provide a review of clinical phenotypes and genotypes of the more commonly encountered PMEs. Using an illustrative case example, we describe appropriate clinical investigation and therapeutic strategies to guide the management of this often relentlessly progressive and devastating epilepsy syndrome. This manuscript in the Genetic Literacy series maps to Learning Objective 1.2 of the ILAE Curriculum for Epileptology (Epileptic Disord. 2019;21:129).
Collapse
Affiliation(s)
- Jillian M. Cameron
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | - Colin A. Ellis
- Department of NeurologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of MedicineUniversity of MelbourneAustin HealthMelbourneVictoriaAustralia
| | | |
Collapse
|
62
|
Leppert HG, Anderson JT, Timm KJ, Davoli C, Pratt MA, Booth CD, White KA, Rechtzigel MJ, Meyerink BL, Johnson TB, Brudvig JJ, Weimer JM. Sortilin inhibition treats multiple neurodegenerative lysosomal storage disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559064. [PMID: 37790379 PMCID: PMC10543011 DOI: 10.1101/2023.09.22.559064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models. Live-cell imaging and comparative transcriptomics demonstrates that the transcription factor EB (TFEB), an upstream regulator of lysosomal biogenesis, is activated upon treatment with AF38469. Utilizing CLN2 and CLN3 Batten disease mouse models, we performed a short-term efficacy study and show that treatment with AF38469 prevents the accumulation of lysosomal storage material and the development of neuroinflammation, key disease associated pathologies. Tremor phenotypes, an early behavioral phenotype in the CLN2 disease model, were also completely rescued. These findings reveal sortilin inhibition as a novel and highly efficacious therapeutic modality for the treatment of multiple forms of Batten disease.
Collapse
Affiliation(s)
- Hannah G. Leppert
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | - Kaylie J. Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Cristina Davoli
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Melissa A. Pratt
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Clarissa D. Booth
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | | | | | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
| | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| |
Collapse
|
63
|
Mitchell NL, Murray SJ, Wellby MP, Barrell GK, Russell KN, Deane AR, Wynyard JR, Palmer MJ, Pulickan A, Prendergast PM, Casy W, Gray SJ, Palmer DN. Long-term safety and dose escalation of intracerebroventricular CLN5 gene therapy in sheep supports clinical translation for CLN5 Batten disease. Front Genet 2023; 14:1212228. [PMID: 37614821 PMCID: PMC10442658 DOI: 10.3389/fgene.2023.1212228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
CLN5 neuronal ceroid lipofuscinosis (NCL, Batten disease) is a rare, inherited fatal neurodegenerative disorder caused by mutations in the CLN5 gene. The disease is characterised by progressive neuronal loss, blindness, and premature death. There is no cure. This study evaluated the efficacy of intracerebroventricular (ICV) delivery of an adeno-associated viral vector encoding ovine CLN5 (scAAV9/oCLN5) in a naturally occurring sheep model of CLN5 disease. CLN5 affected (CLN5-/-) sheep received low, moderate, or high doses of scAAV9/oCLN5 at three disease stages. The treatment delayed disease progression, extended survival and slowed stereotypical brain atrophy in most animals. Of note, one high dose treated animal only developed mild disease symptomology and survived to 60.1 months of age, triple the natural life expectancy of an untreated CLN5-/- sheep. Eyesight was not preserved at any administration age or dosage. Histopathologic examination revealed that greater transduction efficiency was achieved through higher ICV doses, and this resulted in greater amelioration of disease pathology. Together with other pre-clinical data from CLN5-/- sheep, the safety and efficacy data from these investigational new drug (IND)-enabling studies supported the initiation of the first in-human CLN5 gene therapy clinical study using the ICV delivery route for the treatment of CLN5 NCL. Clinical Trial Registration: https://clinicaltrials.gov/, identifier NCT05228145.
Collapse
Affiliation(s)
- Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| | - Samantha J. Murray
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Martin P. Wellby
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K. Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N. Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Ashley R. Deane
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - John R. Wynyard
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Madeleine J. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Anila Pulickan
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | - Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
- Department of Radiology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
64
|
Panjeshahi S, Karimzadeh P, Movafagh A, Ahmadabadi F, Rahimian E, Alijanpour S, Miryounesi M. Clinical and genetic characterization of neuronal ceroid lipofuscinoses (NCLs) in 29 Iranian patients: identification of 11 novel mutations. Hum Genet 2023; 142:1001-1016. [PMID: 37074398 DOI: 10.1007/s00439-023-02556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/10/2023] [Indexed: 04/20/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative lysosomal storage diseases which are considered among the most frequent causes of dementia in childhood worldwide This study aimed to identify the gene variants, molecular etiologies, and clinical features in 23 unrelated Iranian families with NCL. In total, 29 patients with neuronal ceroid lipofuscinoses (NCLs), diagnosed based on clinical manifestations, MRI neuroimaging, and electroencephalography (EEG), were recruited for this study. Through whole-exome sequencing (WES), functional prediction, Sanger sequencing, and segregation analysis, we found that 12 patients (41.3%) with mutations in the CLN6 gene, 7 patients (24%) with the TPP1 (CLN2) gene variants, and 4 patients (13.7%) with mutations in the MFSD8 (CLN7) gene. Also, mutations in each of the CLN3 and CLN5 genes were detected in 2 cases and mutations of each PPT1 (CLN1) and CLN8 gene were observed in only 1 separate patient. We identified 18 different mutations, 11 (61%) of which are novel, never have been reported before, and the others have been previously described. The gene variants identified in this study expand the number of published clinical cases and the variant frequency spectrum of the neuronal ceroid lipofuscinoses (NCLs) genes; moreover, the identification of these variants supplies foundational clues for future NCL diagnosis and therapy.
Collapse
Affiliation(s)
- Samareh Panjeshahi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Research Center, Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ahmadabadi
- Pediatric Neurology Research Center, Pediatric Neurology Department, Mofid Children's Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
65
|
Pearl PL, Tokatly Latzer I, Lee HHC, Rotenberg A. New Therapeutic Approaches to Inherited Metabolic Pediatric Epilepsies. Neurology 2023; 101:124-133. [PMID: 36878704 PMCID: PMC10382274 DOI: 10.1212/wnl.0000000000207133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023] Open
Abstract
Treatment options for inherited metabolic epilepsies are rapidly expanding with advances in molecular biology and the genomic revolution. Traditional dietary and nutrient modification and inhibitors or enhancers of protein and enzyme function, the mainstays of therapy, are undergoing continuous revisions to increase biological activity and reduce toxicity. Enzyme replacement and gene replacement and editing hold promise for genetically targeted treatment and cures. Molecular, imaging, and neurophysiologic biomarkers are emerging as key indicators of disease pathophysiology, severity, and response to therapy.
Collapse
Affiliation(s)
- Phillip L Pearl
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA.
| | - Itay Tokatly Latzer
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henry H C Lee
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alexander Rotenberg
- From the Department of Neurology (P.L.P., I.T.L., H.H.C.L., A.R.), Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
66
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
67
|
Silva P, Janjan N, Ramos KS, Udeani G, Zhong L, Ory MG, Smith ML. External control arms: COVID-19 reveals the merits of using real world evidence in real-time for clinical and public health investigations. Front Med (Lausanne) 2023; 10:1198088. [PMID: 37484840 PMCID: PMC10359981 DOI: 10.3389/fmed.2023.1198088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Randomized controlled trials are considered the 'gold standard' to reduce bias by randomizing patients to an experimental intervention, versus placebo or standard of care cohort. There are inherent challenges to enrolling a standard of care or cohorts: costs, site engagement logistics, socioeconomic variability, patient willingness, ethics of placebo interventions, cannibalizing the treatment arm population, and extending study duration. The COVID-19 pandemic has magnified aspects of constraints in trial recruitment and logistics, spurring innovative approaches to reducing trial sizes, accelerating trial accrual while preserving statistical rigor. Using data from medical records and databases allows for construction of external control arms that reduce the costs of an external control arm (ECA) randomized to standard of care. Simultaneously examining covariates of the clinical outcomes in ECAs that are being measured in the interventional arm can be particularly useful in phase 2 trials to better understand social and genetic determinants of clinical outcomes that might inform pivotal trial design. The FDA and EMA have promulgated a number of publicly available guidance documents and qualification reports that inform the use of this regulatory science tool to streamline clinical development, of phase 4 surveillance, and policy aspects of clinical outcomes research. Availability and quality of real-world data (RWD) are a prevalent impediment to the use of ECAs given such data is not collected with the rigor and deliberateness that characterizes prospective interventional control arm data. Conversely, in the case of contemporary control arms, a clinical trial outcome can be compared to a contemporary standard of care in cases where the standard of care is evolving at a fast pace, such as the use of checkpoint inhibitors in cancer care. Innovative statistical methods are an essential aspect of an ECA strategy and regulatory paths for these innovative approaches have been navigated, qualified, and in some cases published.
Collapse
Affiliation(s)
- Patrick Silva
- Institute of Bioscience and Technology and Department of Translational Medical Sciences, College Station, TX, United States
| | - Nora Janjan
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Kenneth S. Ramos
- Institute of Bioscience and Technology and Department of Translational Medical Sciences, College Station, TX, United States
| | - George Udeani
- Department of Clinical Pharmacy, School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Lixian Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Marcia G. Ory
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Matthew Lee Smith
- Center for Community Health and Aging, School of Public Health, Texas A&M University, College Station, TX, United States
| |
Collapse
|
68
|
Al‐Saady M, Beerepoot S, Plug BC, Breur M, Galabova H, Pouwels PJW, Boelens J, Lindemans C, van Hasselt PM, Matzner U, Vanderver A, Bugiani M, van der Knaap MS, Wolf NI. Neurodegenerative disease after hematopoietic stem cell transplantation in metachromatic leukodystrophy. Ann Clin Transl Neurol 2023; 10:1146-1159. [PMID: 37212343 PMCID: PMC10351661 DOI: 10.1002/acn3.51796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023] Open
Abstract
OBJECTIVE Metachromatic leukodystrophy is a lysosomal storage disease caused by deficient arylsulfatase A. It is characterized by progressive demyelination and thus mainly affects the white matter. Hematopoietic stem cell transplantation may stabilize and improve white matter damage, yet some patients deteriorate despite successfully treated leukodystrophy. We hypothesized that post-treatment decline in metachromatic leukodystrophy might be caused by gray matter pathology. METHODS Three metachromatic leukodystrophy patients treated with hematopoietic stem cell transplantation with a progressive clinical course despite stable white matter pathology were clinically and radiologically analyzed. Longitudinal volumetric MRI was used to quantify atrophy. We also examined histopathology in three other patients deceased after treatment and compared them with six untreated patients. RESULTS The three clinically progressive patients developed cognitive and motor deterioration after transplantation, despite stable mild white matter abnormalities on MRI. Volumetric MRI identified cerebral and thalamus atrophy in these patients, and cerebellar atrophy in two. Histopathology showed that in brain tissue of transplanted patients, arylsulfatase A expressing macrophages were clearly present in the white matter, but absent in the cortex. Arylsulfatase A expression within patient thalamic neurons was lower than in controls, the same was found in transplanted patients. INTERPRETATION Neurological deterioration may occur after hematopoietic stem cell transplantation in metachromatic leukodystrophy despite successfully treated leukodystrophy. MRI shows gray matter atrophy, and histological data demonstrate absence of donor cells in gray matter structures. These findings point to a clinically relevant gray matter component of metachromatic leukodystrophy, which does not seem sufficiently affected by transplantation.
Collapse
Affiliation(s)
- Murtadha Al‐Saady
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| | - Shanice Beerepoot
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Nierkens and Lindemans GroupPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Bonnie C. Plug
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Hristina Galabova
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Petra J. W. Pouwels
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, Amsterdam University Medical CentersVU universityAmsterdamthe Netherlands
| | - Jaap‐Jan Boelens
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Caroline Lindemans
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
- Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Peter M. van Hasselt
- Stem Cell Transplantation and Cellular Therapies Program, Department of PediatricsMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular Biology, Medical FacultyRheinische Friedrich‐Wilhelm UniversityBonnGermany
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children's Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical CentersVU University and Neuroscience Campus AmsterdamAmsterdamthe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
- Department of Integrative NeurophysiologyVU UniversityAmsterdamthe Netherlands
| | - Nicole I. Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, and Amsterdam Neuroscience, Cellular & Molecular MechanismsVrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
69
|
Mitchell NL, Russell KN, Barrell GK, Tammen I, Palmer DN. Characterization of neuropathology in ovine CLN5 and CLN6 neuronal ceroid lipofuscinoses (Batten disease). Dev Neurobiol 2023; 83:127-142. [PMID: 37246363 DOI: 10.1002/dneu.22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Sheep with naturally occurring CLN5 and CLN6 forms of neuronal ceroid lipofuscinoses (Batten disease) share the key clinical features of the human disease and represent an ideal model system in which the clinical efficacy of gene therapies is developed and test. However, it was first important to characterize the neuropathological changes that occur with disease progression in affected sheep. This study compared neurodegeneration, neuroinflammation, and lysosomal storage accumulation in CLN5 affected Borderdale, CLN6 affected South Hampshire, and Merino sheep brains from birth to end-stage disease at ≤24 months of age. Despite very different gene products, mutations, and subcellular localizations, the pathogenic cascade was remarkably similar for all three disease models. Glial activation was present at birth in affected sheep and preceded neuronal loss, with both spreading from the visual and parieto-occipital cortices most prominently associated with clinical symptoms to the entire cortical mantle by end-stage disease. In contrast, the subcortical regions were less involved, yet lysosomal storage followed a near-linear increase across the diseased sheep brain with age. Correlation of these neuropathological changes with published clinical data identified three potential therapeutic windows in affected sheep-presymptomatic (3 months), early symptomatic (6 months), and a later symptomatic disease stage (9 months of age)-beyond which the extensive depletion of neurons was likely to diminish any chance of therapeutic benefit. This comprehensive natural history of the neuropathological changes in ovine CLN5 and CLN6 disease will be integral in determining what impact treatment has at each of these disease stages.
Collapse
Affiliation(s)
- Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Imke Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
70
|
Sleat DE, Banach-Petrosky W, Larrimore KE, Nemtsova Y, Wiseman JA, Najafi A, Johnson D, Poole TA, Takahashi K, Cooper JD, Lobel P. A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1. J Inherit Metab Dis 2023; 46:720-734. [PMID: 37078466 PMCID: PMC10330656 DOI: 10.1002/jimd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.
Collapse
Affiliation(s)
- David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| | - Whitney Banach-Petrosky
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Katherine E. Larrimore
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Jennifer A. Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Allison Najafi
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
| | - Dymonn Johnson
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Timothy A. Poole
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Keigo Takahashi
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Jonathan D. Cooper
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Genetics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Neurology, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
71
|
Takahashi K, Eultgen EM, Wang SH, Rensing NR, Nelvagal HR, Dearborn JT, Danos O, Buss N, Sands MS, Wong M, Cooper JD. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J Clin Invest 2023; 133:e165908. [PMID: 37104037 PMCID: PMC10266778 DOI: 10.1172/jci165908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua T. Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jonathan D. Cooper
- Department of Pediatrics
- Department of Neurology, and
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
72
|
Yue W, Shen J. Local Delivery Strategies for Peptides and Proteins into the CNS: Status Quo, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:810. [PMID: 37375758 DOI: 10.3390/ph16060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decades, peptides and proteins have been increasingly important in the treatment of various human diseases and conditions owing to their specificity, potency, and minimized off-target toxicity. However, the existence of the practically impermeable blood brain barrier (BBB) limits the entry of macromolecular therapeutics into the central nervous systems (CNS). Consequently, clinical translation of peptide/protein therapeutics for the treatment of CNS diseases has been limited. Over the past decades, developing effective delivery strategies for peptides and proteins has gained extensive attention, in particular with localized delivery strategies, due to the fact that they are capable of circumventing the physiological barrier to directly introduce macromolecular therapeutics into the CNS to improve therapeutic effects and reduce systemic side effects. Here, we discuss various local administration and formulation strategies that have shown successes in the treatment of CNS diseases using peptide/protein therapeutics. Lastly, we discuss challenges and future perspectives of these approaches.
Collapse
Affiliation(s)
- Weizhou Yue
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
73
|
El-Hage N, Haney MJ, Zhao Y, Rodriguez M, Wu Z, Liu M, Swain CJ, Yuan H, Batrakova EV. Extracellular Vesicles Released by Genetically Modified Macrophages Activate Autophagy and Produce Potent Neuroprotection in Mouse Model of Lysosomal Storage Disorder, Batten Disease. Cells 2023; 12:1497. [PMID: 37296618 PMCID: PMC10252192 DOI: 10.3390/cells12111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Over the recent decades, the use of extracellular vesicles (EVs) has attracted considerable attention. Herein, we report the development of a novel EV-based drug delivery system for the transport of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1) to treat Batten disease (BD). Endogenous loading of macrophage-derived EVs was achieved through transfection of parent cells with TPP1-encoding pDNA. More than 20% ID/g was detected in the brain following a single intrathecal injection of EVs in a mouse model of BD, ceroid lipofuscinosis neuronal type 2 (CLN2) mice. Furthermore, the cumulative effect of EVs repetitive administrations in the brain was demonstrated. TPP1-loaded EVs (EV-TPP1) produced potent therapeutic effects, resulting in efficient elimination of lipofuscin aggregates in lysosomes, decreased inflammation, and improved neuronal survival in CLN2 mice. In terms of mechanism, EV-TPP1 treatments caused significant activation of the autophagy pathway, including altered expression of the autophagy-related proteins LC3 and P62, in the CLN2 mouse brain. We hypothesized that along with TPP1 delivery to the brain, EV-based formulations can enhance host cellular homeostasis, causing degradation of lipofuscin aggregates through the autophagy-lysosomal pathway. Overall, continued research into new and effective therapies for BD is crucial for improving the lives of those affected by this condition.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Mori Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Carson J. Swain
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| |
Collapse
|
74
|
Tokatly Latzer I, Pearl PL. Treatment of neurometabolic epilepsies: Overview and recent advances. Epilepsy Behav 2023; 142:109181. [PMID: 37001467 DOI: 10.1016/j.yebeh.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/08/2023]
Abstract
The rarity and heterogeneity of neurometabolic diseases make it challenging to reach evidence-based principles for their specific treatments. Indeed, current treatments for many of these diseases remain symptomatic and supportive. However, an ongoing scientific and medical revolution has led to dramatic breakthroughs in molecular sciences and genetics, revealing precise pathophysiologic mechanisms. Accordingly, this has led to significant progress in the development of novel therapeutic approaches aimed at treating epilepsy resulting from these conditions, as well as their other manifestations. We overview recent notable treatment advancements, from vitamins, trace minerals, and diets to unique medications targeting the elemental pathophysiology at a molecular or cellular level, including enzyme replacement therapy, enzyme enhancing therapy, antisense oligonucleotide therapy, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
75
|
Knoernschild K, Johnson HJ, Schroeder KE, Swier VJ, White KA, Sato TS, Rogers CS, Weimer JM, Sieren JC. Magnetic resonance brain volumetry biomarkers of CLN2 Batten disease identified with miniswine model. Sci Rep 2023; 13:5146. [PMID: 36991106 PMCID: PMC10060411 DOI: 10.1038/s41598-023-32071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease (Batten disease) is a rare pediatric disease, with symptom development leading to clinical diagnosis. Early diagnosis and effective tracking of disease progression are required for treatment. We hypothesize that brain volumetry is valuable in identifying CLN2 disease at an early stage and tracking disease progression in a genetically modified miniswine model. CLN2R208X/R208X miniswine and wild type controls were evaluated at 12- and 17-months of age, correlating to early and late stages of disease progression. Magnetic resonance imaging (MRI) T1- and T2-weighted data were acquired. Total intercranial, gray matter, cerebrospinal fluid, white matter, caudate, putamen, and ventricle volumes were calculated and expressed as proportions of the intracranial volume. The brain regions were compared between timepoints and cohorts using Gardner-Altman plots, mean differences, and confidence intervals. At an early stage of disease, the total intracranial volume (- 9.06 cm3), gray matter (- 4.37% 95 CI - 7.41; - 1.83), caudate (- 0.16%, 95 CI - 0.24; - 0.08) and putamen (- 0.11% 95 CI - 0.23; - 0.02) were all notably smaller in CLN2R208X/R208X miniswines versus WT, while cerebrospinal fluid was larger (+ 3.42%, 95 CI 2.54; 6.18). As the disease progressed to a later stage, the difference between the gray matter (- 8.27%, 95 CI - 10.1; - 5.56) and cerebrospinal fluid (+ 6.88%, 95 CI 4.31; 8.51) continued to become more pronounced, while others remained stable. MRI brain volumetry in this miniswine model of CLN2 disease is sensitive to early disease detection and longitudinal change monitoring, providing a valuable tool for pre-clinical treatment development and evaluation.
Collapse
Affiliation(s)
- Kevin Knoernschild
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Kimberly E Schroeder
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | - Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Takashi S Sato
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA
| | | | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, 200 Hawkins Drive cc704 GH, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
76
|
Munesue Y, Ageyama N, Kimura N, Takahashi I, Nakayama S, Okabayashi S, Katakai Y, Koie H, Yagami KI, Ishii K, Tamaoka A, Yasutomi Y, Shimozawa N. Cynomolgus macaque model of neuronal ceroid lipofuscinosis type 2 disease. Exp Neurol 2023; 363:114381. [PMID: 36918063 DOI: 10.1016/j.expneurol.2023.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal-recessive fatal neurodegenerative diseases that occur in children and young adults, with symptoms including ataxia, seizures and visual impairment. We report the discovery of cynomolgus macaques carrying the CLN2/TPP1 variant and our analysis of whether the macaques could be a new non-human primate model for NCL type 2 (CLN2) disease. Three cynomolgus macaques presented progressive neuronal clinical symptoms such as limb tremors and gait disturbance after about 2 years of age. Morphological analyses using brain MRI at the endpoint of approximately 3 years of age revealed marked cerebellar and cerebral atrophy of the gray matter, with sulcus dilation, gyrus thinning, and ventricular enlargement. Histopathological analyses of three affected macaques revealed severe neuronal loss and degeneration in the cerebellar and cerebral cortices, accompanied by glial activation and/or changes in axonal morphology. Neurons observed throughout the central nervous system contained autofluorescent cytoplasmic pigments, which were identified as ceroid-lipofuscin based on staining properties, and the cerebral cortex examined by transmission electron microscopy had curvilinear profiles, the typical ultrastructural pattern of CLN2. These findings are commonly observed in all forms of NCL. DNA sequencing analysis identified a homozygous single-base deletion (c.42delC) of the CLN2/TPP1 gene, resulting in a frameshifted premature stop codon. Immunohistochemical analysis showed that tissue from the affected macaques lacked a detectable signal against TPP1, the product of the CLN2/TPP1 gene. Analysis for transmission of the CLN2/TPP1 mutated gene revealed that 47 (49.5%) and 48 (50.5%) of the 95 individuals genotyped in the CLN2-affected macaque family were heterozygous carriers and homozygous wild-type individuals, respectively. Thus, we identified cynomolgus macaques as a non-human primate model of CLN2 disease. The CLN2 macaques reported here could become a useful resource for research and the development of drugs and methods for treating CLN2 disease, which involves severe symptoms in humans.
Collapse
Affiliation(s)
- Yoshiko Munesue
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naohide Ageyama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Nobuyuki Kimura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Veterinary Associated Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Ichiro Takahashi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Shunya Nakayama
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Sachi Okabayashi
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Yuko Katakai
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba, Ibaraki 305-0843, Japan
| | - Hiroshi Koie
- Laboratory of Veterinary Physiology/Pathophysiology, Nihon University, College of Bioresource Science, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ken-Ichi Yagami
- Laboratory Animal Resource Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuhiro Ishii
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Division of Clinical Medicine, Department of Neurology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan; Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Nobuhiro Shimozawa
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.
| |
Collapse
|
77
|
Videnovic A, Pfeiffer HCV, Tylki-Szymańska A, Berry-Kravis E, Ezgü F, Ganju J, Jurecka A, Lang AE. Study design challenges and strategies in clinical trials for rare diseases: Lessons learned from pantothenate kinase-associated neurodegeneration. Front Neurol 2023; 14:1098454. [PMID: 36970548 PMCID: PMC10032345 DOI: 10.3389/fneur.2023.1098454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Substantial challenges in study design and methodology exist during clinical trial development to examine treatment response in patients with a rare disease, especially those with predominant central nervous system involvement and heterogeneity in clinical manifestations and natural history. Here we discuss crucial decisions which may significantly impact success of the study, including patient selection and recruitment, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. We review strategies for the successful development of a clinical trial to evaluate treatment of a rare disease with a focus on inborn errors of metabolism (IEMs) that present with movement disorders. The strategies presented using pantothenate kinase-associated neurodegeneration (PKAN) as the rare disease example can be applied to other rare diseases, particularly IEMs with movement disorders (e.g., other neurodegeneration with brain iron accumulation disorders, lysosomal storage disorders). The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families. In addition to these strategies, we discuss the urgent need for a paradigm shift within the regulatory processes to help accelerate medical product development and bring new innovations and advances to patients with rare neurodegenerative diseases who need them earlier in disease progression and prior to clinical manifestations.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Aleksandar Videnovic
| | - Helle C. V. Pfeiffer
- Department of Child Neurology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Pediatrics, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Anna Tylki-Szymańska
- Department of Pediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute IPCZD, Warsaw, Poland
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences, Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Fatih Ezgü
- Department of Pediatrics, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Jitendra Ganju
- Consultant to BridgeBio, San Francisco, CA, United States
| | - Agnieszka Jurecka
- CoA Therapeutics, Inc., A BridgeBio Company, San Francisco, CA, United States
- *Correspondence: Agnieszka Jurecka
| | - Anthony E. Lang
- Department of Medicine (Neurology), Edmond J. Safra Program in Parkinson's Disease, and the Rossy Progressive Supranuclear Palsy Centre, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
78
|
Nott E, Behl KE, Brambilla I, Green TE, Lucente M, Vavassori R, Watson A, Dalla Bernardina B, Hildebrand MS. Rare. The importance of research, analysis, reporting and education in 'solving' the genetic epilepsies: A perspective from the European patient advocacy group for EpiCARE. Eur J Med Genet 2023; 66:104680. [PMID: 36623768 DOI: 10.1016/j.ejmg.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/14/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Affiliation(s)
- E Nott
- European Patient Advocacy Group (ePAG) EpiCARE, France; Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK.
| | - K E Behl
- Alternating Hemiplegia of Childhood UK (AHCUK) and Alternating Hemiplegia of Childhood Federation of Europe (AHCFE), UK
| | - I Brambilla
- European Patient Advocacy Group (ePAG) EpiCARE, France; Dravet Italia Onlus; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - T E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - M Lucente
- European Patient Advocacy Group (ePAG) EpiCARE, France; Associazione Italiana GLUT1 Onlus, Italy
| | - R Vavassori
- European Patient Advocacy Group (ePAG) EpiCARE, France; International Alternating Hemiplegia of Childhood Research Consortium (IAHCRC), USA; Alternating Hemiplegia of Childhood 18+ (AHC18+ e.V.) Association, Germany
| | - A Watson
- European Patient Advocacy Group (ePAG) EpiCARE, France; Ring20 Research and Support UK, UK
| | - B Dalla Bernardina
- Dravet Italia Onlus; Research Center for Pediatric Epilepsies Verona, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy
| | - M S Hildebrand
- Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| |
Collapse
|
79
|
Nittari G, Tomassoni D, Roy P, Martinelli I, Tayebati SK, Amenta F. Batten disease through different in vivo and in vitro models: A review. J Neurosci Res 2023; 101:298-315. [PMID: 36434776 DOI: 10.1002/jnr.25147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.
Collapse
Affiliation(s)
- Giulio Nittari
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ilenia Martinelli
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| |
Collapse
|
80
|
Belousova ED, Mikhaуlova SV, Zakharova EY. The diagnostic challenges presented in a patient with neuronal ceroid lipofuscinosis type 2. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2023. [DOI: 10.21508/1027-4065-2023-68-1-30-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (NCL2) is a severe, continuously progressive hereditary metabolic disease for which there is an effective enzyme replacement therapy.Purpose. To study the opinions of specialists (pediatric neurologists, neurologists-epileptologists, geneticists) about the obstacles to the early diagnosis of neuronal ceroid lipofuscinosis type 2 in patients.Material and methods. The study was conducted by the method of in-depth interviews. 25 physicians dealing with NCL2 pts took part in the interview.Results. From 2000 to 2021, 45 patients with NCL2 were identified in the Russian Federation. Data on the course of the disease were obtained from 38 patients aged 3 to 11 years, of which 16 received enzyme replacement therapy. At the time of the interview, 32/38 were alive, 4/32 had died, and outcome data for 2 patients were missing. The age of onset of the first symptoms varied significantly: from 1 year 10 months to 3 years 6 months. The median age at which children were diagnosed with NCL2 was 52 months, or 4 years 5 months, but it varied from 12 to 96 months. At the time of diagnosis, in addition to epileptic seizures and delayed speech development, ataxia and loss of motor development, as well as other symptoms, were already noted. EEG was performed in 73% of all cases (with photostimulation only in 34%). MRI at an early stage of the disease was performed in only 40%. Only 46% of patients receive (or have ever received) enzyme replacement therapy. In 41% of cases, enzyme replacement therapy was not prescribed due to the long-term diagnosis of NCL2, which led to a palliative status and refusal of the patients’ parents from therapy.Conclusion. Early diagnosis of NCL2 is difficult due to the non-specificity of the first symptoms, as well as due to the poor awareness of doctors about the disease and the main methods of its diagnosis, which leads to late prescribing of enzyme replacement therapy.
Collapse
Affiliation(s)
- E. D. Belousova
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University
| | | | | |
Collapse
|
81
|
AAV vectors applied to the treatment of CNS disorders: Clinical status and challenges. J Control Release 2023; 355:458-473. [PMID: 36736907 DOI: 10.1016/j.jconrel.2023.01.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
In recent years, adeno-associated virus (AAV) has become the most important vector for central nervous system (CNS) gene therapy. AAV has already shown promising results in the clinic, for several CNS diseases that cannot be treated with drugs, including neurodegenerative diseases, neuromuscular diseases, and lysosomal storage disorders. Currently, three of the four commercially available AAV-based drugs focus on neurological disorders, including Upstaza for aromatic l-amino acid decarboxylase deficiency, Luxturna for hereditary retinal dystrophy, and Zolgensma for spinal muscular atrophy. All these studies have provided paradigms for AAV-based therapeutic intervention platforms. AAV gene therapy, with its dual promise of targeting disease etiology and enabling 'long-term correction' of disease processes, has the advantages of immune privilege, high delivery efficiency, tissue specificity, and cell tropism in the CNS. Although AAV-based gene therapy has been shown to be effective in most CNS clinical trials, limitations have been observed in its clinical applications, which are often associated with side effects. In this review, we summarized the therapeutic progress, challenges, limitations, and solutions for AAV-based gene therapy in 14 types of CNS diseases. We focused on viral vector technologies, delivery routes, immunosuppression, and other relevant clinical factors. We also attempted to integrate several hurdles faced in clinical and preclinical studies with their solutions, to seek the best path forward for the application of AAV-based gene therapy in the context of CNS diseases. We hope that these thoughtful recommendations will contribute to the efficient translation of preclinical studies and wide application of clinical trials.
Collapse
|
82
|
Sampaio LPDB, Manreza MLGD, Pessoa A, Gurgel-Giannetti J, Coan AC, Júnior HVDL, Embiruçu EK, Henriques-Souza AMDM, Kok F. Clinical management and diagnosis of CLN2 disease: consensus of the Brazilian experts group. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:284-295. [PMID: 37059438 PMCID: PMC10104757 DOI: 10.1055/s-0043-1761434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare neurodegenerative genetic disease that affects children in early life. Its classic form is rapidly progressive, leading to death within the first 10 years. The urge for earlier diagnosis increases with the availability of enzyme replacement therapy. A panel of nine Brazilian child neurologists combined their expertise in CLN2 with evidence from the medical literature to establish a consensus to manage this disease in Brazil. They voted 92 questions including diagnosis, clinical manifestations, and treatment of the disease, considering the access to healthcare in this country. Clinicians should suspect CLN2 disease in any child, from 2 to 4 years old, with language delay and epilepsy. Even though the classic form is the most prevalent, atypical cases with different phenotypes can be found. Electroencephalogram, magnetic resonance imaging, molecular and biochemical testing are the main tools to investigate and confirm the diagnosis. However, we have limited access to molecular testing in Brazil, and rely on the support from the pharmaceutical industry. The management of CLN2 should involve a multidisciplinary team and focus on the quality of life of patients and on family support. Enzyme replacement therapy with Cerliponase α is an innovative treatment approved in Brazil since 2018; it delays functional decline and provides quality of life. Given the difficulties for the diagnosis and treatment of rare diseases in our public health system, the early diagnosis of CLN2 needs improvement as enzyme replacement therapy is available and modifies the prognosis of patients.
Collapse
Affiliation(s)
| | | | - André Pessoa
- Universidade Estadual do Ceará, Hospital Infantil Albert Sabin, Fortaleza CE, Brazil
| | - Juliana Gurgel-Giannetti
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Hospital das Clínicas, Belo Horizonte MG, Brazil
| | - Ana Carolina Coan
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Campinas SP, Brazil
| | | | - Emília Katiane Embiruçu
- Universidade do Estado da Bahia, Hospital Universitário Professor Edgard Santos, Salvador BA, Brazil
| | | | - Fernando Kok
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, São Paulo SP, Brazil
| |
Collapse
|
83
|
Sivananthan S, Lee L, Anderson G, Csanyi B, Williams R, Gissen P. Buffy Coat Score as a Biomarker of Treatment Response in Neuronal Ceroid Lipofuscinosis Type 2. Brain Sci 2023; 13:209. [PMID: 36831752 PMCID: PMC9954623 DOI: 10.3390/brainsci13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
The introduction of intracerebroventricular (ICV) enzyme replacement therapy (ERT) for treatment of neuronal ceroid lipofuscinosis type 2 (CLN2) disease has produced dramatic improvements in disease management. However, assessments of therapeutic effect for ICV ERT are limited to clinical observational measures, namely the CLN2 Clinical Rating Scale, a subjective measure of motor and language performance. There is a need for an objective biomarker to enable assessments of disease progression and response to treatment. To address this, we investigated whether the proportion of cells with abnormal storage inclusions on electron microscopic examination of peripheral blood buffy coats could act as a biomarker of disease activity in CLN2 disease. We conducted a prospective longitudinal analysis of six patients receiving ICV ERT. We demonstrated a substantial and continuing reduction in the proportion of abnormal cells over the course of treatment, whereas symptomatic scores revealed little or no change over time. Here, we proposed the use of the proportion of cells with abnormal storage as a biomarker of response to therapy in CLN2. In the future, as more tissue-specific biomarkers are developed, the buffy coats may form part of a panel of biomarkers in order to give a more holistic view of a complex disease.
Collapse
Affiliation(s)
- Siyamini Sivananthan
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Laura Lee
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Barbara Csanyi
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
| | - Ruth Williams
- Department of Children’s Neurosciences, Evelina London Children’s Hospital, London SE1 7EH, UK
| | - Paul Gissen
- Department of Inherited Metabolic Diseases, Great Ormond Street Hospital, London WC1N 1EH, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
84
|
Muschol N, Koehn A, von Cossel K, Okur I, Ezgu F, Harmatz P, de Castro Lopez MJ, Couce ML, Lin SP, Batzios S, Cleary M, Solano M, Nestrasil I, Kaufman B, Shaywitz AJ, Maricich SM, Kuca B, Kovalchin J, Zanelli E. A phase I/II study on intracerebroventricular tralesinidase alfa in patients with Sanfilippo syndrome type B. J Clin Invest 2023; 133:165076. [PMID: 36413418 PMCID: PMC9843052 DOI: 10.1172/jci165076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BackgroundSanfilippo type B is a mucopolysaccharidosis (MPS) with a major neuronopathic component characterized by heparan sulfate (HS) accumulation due to mutations in the NAGLU gene encoding alfa-N-acetyl-glucosaminidase. Enzyme replacement therapy for neuronopathic MPS requires efficient enzyme delivery throughout the brain in order to normalize HS levels, prevent brain atrophy, and potentially delay cognitive decline.MethodsIn this phase I/II open-label study, patients with MPS type IIIB (n = 22) were treated with tralesinidase alfa administered i.c.v. The patients were monitored for drug exposure; total HS and HS nonreducing end (HS-NRE) levels in both cerebrospinal fluid (CSF) and plasma; anti-drug antibody response; brain, spleen, and liver volumes as measured by MRI; and cognitive development as measured by age-equivalent (AEq) scores.ResultsIn the Part 1 dose escalation (30, 100, and 300 mg) phase, a 300 mg dose of tralesinidase alfa was necessary to achieve normalization of HS and HS-NRE levels in the CSF and plasma. In Part 2, 300 mg tralesinidase alfa sustained HS and HS-NRE normalization in the CSF and stabilized cortical gray matter volume (CGMV) over 48 weeks of treatment. Resolution of hepatomegaly and a reduction in spleen volume were observed in most patients. Significant correlations were also established between the change in cognitive AEq score and plasma drug exposure, plasma HS-NRE levels, and CGMV.ConclusionAdministration of tralesinidase alfa i.c.v. effectively normalized HS and HS-NRE levels as a prerequisite for clinical efficacy. Peripheral drug exposure data suggest a role for the glymphatic system in altering tralesinidase alfa efficacy.Trial registrationClinicaltrials.gov NCT02754076.FUNDINGBioMarin Pharmaceutical Inc. and Allievex Corporation.
Collapse
Affiliation(s)
- Nicole Muschol
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Anja Koehn
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Katharina von Cossel
- University Medical Center Hamburg-Eppendorf, International Center for Lysosomal Disorders (ICLD), Hamburg, Germany
| | - Ilyas Okur
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Fatih Ezgu
- Gazi University Faculty of Medicine, Departments of Pediatric Metabolism and Genetics, Ankara, Turkey
| | - Paul Harmatz
- UCSF Benioff Children’s Hospital Oakland, Oakland, California, USA
| | - Maria J. de Castro Lopez
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | - Maria Luz Couce
- Hospital Clínico Universitario de Santiago, University of Santiago de Compostela, IDIS, CIBERER, MetabERN, A Coruña, Spain
| | | | | | | | | | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Kaufman
- CLB Consulting, Falls of Neuse, Raleigh, North Carolina, USA
| | | | | | - Bernice Kuca
- Allievex Corporation, Marblehead, Massachusetts, USA
| | | | - Eric Zanelli
- Allievex Corporation, Marblehead, Massachusetts, USA
| |
Collapse
|
85
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
86
|
Khamis S, Mitakidou MR, Champion M, Goyal S, Jones RL, Siddiqui A, Sabanathan S, Hedderly T, Lin JP, Jungbluth H, Papandreou A. Clinical Reasoning: A Teenage Girl With Progressive Hyperkinetic Movements, Seizures, and Encephalopathy. Neurology 2023; 100:30-37. [PMID: 36130841 PMCID: PMC9827126 DOI: 10.1212/wnl.0000000000201385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/26/2022] [Indexed: 01/11/2023] Open
Abstract
The "epilepsy-dyskinesia" spectrum is increasingly recognized in neurogenetic and neurometabolic conditions. It can be challenging to diagnose because of clinical and genetic heterogeneity, atypical or nonspecific presentations, and the rarity of each diagnostic entity. This is further complicated by the lack of sensitive or specific biomarkers for most nonenzymatic neurometabolic conditions. Nevertheless, clinical awareness and timely diagnosis are paramount to facilitate appropriate prognostication, counseling, and management.This report describes a case of a teenage girl who had presented at 14 months with a protracted illness manifesting as gastrointestinal upset and associated motor and cognitive regression. A choreoathetoid movement disorder, truncal ataxia, and microcephaly evolved after the acute phase. Neurometabolic and inflammatory investigations, EEG, brain MRI, muscle biopsy (including respiratory chain enzyme studies), and targeted genetic testing were unremarkable. A second distinct regression phase ensued at 14 years consisting of encephalopathy, multifocal motor seizures, absent deep tendon reflexes and worsening movements, gut dysmotility, and dysphagia. Video EEGs showed an evolving developmental and epileptic encephalopathy with multifocal seizures and nonepileptic movements. MRI of the brain revealed evolving and fluctuating patchy bihemispheric cortical changes, cerebellar atrophy with signal change, mild generalized brain volume loss, and abnormal lactate on MR spectroscopy. The article discusses the differential diagnostic approach and management options for patients presenting with neurologic regression, encephalopathy, seizures, and hyperkinetic movements. It also emphasizes the utility of next-generation sequencing in providing a rapid, efficient, cost-effective way of determining the underlying etiology of complex neurologic presentations.
Collapse
Affiliation(s)
- Sonia Khamis
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria R Mitakidou
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Michael Champion
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sushma Goyal
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Rachel L Jones
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ata Siddiqui
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Saraswathy Sabanathan
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tammy Hedderly
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jean-Pierre Lin
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Heinz Jungbluth
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Apostolos Papandreou
- From the Paediatric Neurology Department, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK; Metabolic Medicine Department, Evelina London Children's Hospital, London, UK; Clinical Neurophysiology Department, Evelina London Children's Hospital, London, UK; Clinical Genetics Department, Guys and St Thomas Hospital, London, UK; Neuroradiology Department, Evelina London Children's Hospital, London, UK; Women and Children's Health Institute, Faculty of Life Sciences & Medicine, King's College London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, UK; and Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
87
|
Kick GR, Whiting REH, Ota-Kuroki J, Castaner LJ, Morgan-Jack B, Sabol JC, Meiman EJ, Ortiz F, Katz ML. Intravitreal gene therapy preserves retinal function in a canine model of CLN2 neuronal ceroid lipofuscinosis. Exp Eye Res 2023; 226:109344. [PMID: 36509165 PMCID: PMC9839638 DOI: 10.1016/j.exer.2022.109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
CLN2 neuronal ceroid lipofuscinosis is a rare hereditary neurodegenerative disorder characterized by deleterious sequence variants in TPP1 that result in reduced or abolished function of the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Children with this disorder experience progressive neurological decline and vision loss starting around 2-4 years of age. Ocular disease is characterized by progressive retinal degeneration and impaired retinal function culminating in total loss of vision. Similar retinal pathology occurs in a canine model of CLN2 disease with a null variant in TPP1. A study using the dog model was performed to evaluate the efficacy of ocular gene therapy to provide a continuous, long-term source of human TPP1 (hTPP1) to the retina, inhibit retinal degeneration and preserve retinal function. TPP1-/- dogs received an intravitreal injection of 1 x 1012 viral genomes of AAV2.CAG.hTPP1 in one eye and AAV2.CAG.GFP in the contralateral eye at 4 months of age. Ophthalmic exams, in vivo ocular imaging and electroretinography were repeated monthly to assess retinal structure and function. Retinal morphology, hTPP1 and GFP expression in the retina, optic nerve and lateral geniculate nucleus, and hTPP1 concentrations in the vitreous were evaluated after the dogs were euthanized at end stage neurological disease at approximately 10 months of age. Intravitreal administration of AAV2.CAG.hTPP1 resulted in stable, widespread expression of hTPP1 throughout the inner retina, prevented disease-related declines in retinal function and inhibited disease-related cell loss and storage body accumulation in the retina for at least 6 months. Uveitis occurred in eyes treated with the hTPP1 vector, but this did not prevent therapeutic efficacy. The severity of the uveitis was ameliorated with anti-inflammatory treatments. These results indicate that a single intravitreal injection of AAV2.CAG.hTPP1 is an effective treatment to inhibit ocular disease progression in canine CLN2 disease.
Collapse
Affiliation(s)
- Grace Robinson Kick
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Rebecca E H Whiting
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Juri Ota-Kuroki
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Leilani J Castaner
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Brandie Morgan-Jack
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Julianna C Sabol
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Elizabeth J Meiman
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Francheska Ortiz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
88
|
Kashyap SN, Boyle NR, Roberson ED. Preclinical Interventions in Mouse Models of Frontotemporal Dementia Due to Progranulin Mutations. Neurotherapeutics 2023; 20:140-153. [PMID: 36781744 PMCID: PMC10119358 DOI: 10.1007/s13311-023-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Heterozygous loss-of-function mutations in progranulin (GRN) cause frontotemporal dementia (FTD), a leading cause of early-onset dementia characterized clinically by behavioral, social, and language deficits. There are currently no FDA-approved therapeutics for FTD-GRN, but this has been an active area of investigation, and several approaches are now in clinical trials. Here, we review preclinical development of therapies for FTD-GRN with a focus on testing in mouse models. Since most FTD-GRN-associated mutations cause progranulin haploinsufficiency, these approaches focus on raising progranulin levels. We begin by considering the disorders associated with altered progranulin levels, and then review the basics of progranulin biology including its lysosomal, neurotrophic, and immunomodulatory functions. We discuss mouse models of progranulin insufficiency and how they have been used in preclinical studies on a variety of therapeutic approaches. These include approaches to raise progranulin expression from the normal allele or facilitate progranulin production by the mutant allele, as well as approaches to directly increase progranulin levels by delivery across the blood-brain barrier or by gene therapy. Several of these approaches have entered clinical trials, providing hope that new therapies for FTD-GRN may be the next frontier in the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Shreya N Kashyap
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
89
|
Fine A, Wirrell E, Nickels K. Optimizing Therapy of Seizures in Children and Adolescents with Developmental Disabilities. NEURODEVELOPMENTAL PEDIATRICS 2023:631-653. [DOI: 10.1007/978-3-031-20792-1_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
90
|
Abstract
The lysosomal storage disorders are hereditary metabolic disorders characterized by autosomal recessive inheritance, mainly caused by deficiency of an enzyme responsible for the intra-lysosomal breakdown of various substrates and products of cellular metabolism. This chapter examines the underlying defects, clinical manifestations, and provides context for the expected clinical outcome of various available therapy options employing enzyme replacement therapy, hematopoietic stem cell transplantation, substrate reduction, and enzyme enhancement therapies.
Collapse
Affiliation(s)
- Gregory M Pastores
- Department of Medicine (Clinical Genetics), National Center for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland; Department of Medicine (Genetics), University College of Dublin School of Medicine, Dublin, Ireland.
| |
Collapse
|
91
|
Van Nynatten LR, Slessarev M, Martin CM, Leligdowicz A, Miller MR, Patel MA, Daley M, Patterson EK, Cepinskas G, Fraser DD. Novel plasma protein biomarkers from critically ill sepsis patients. Clin Proteomics 2022; 19:50. [PMID: 36572854 PMCID: PMC9792322 DOI: 10.1186/s12014-022-09389-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.
Collapse
Affiliation(s)
| | - Marat Slessarev
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Claudio M Martin
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Aleks Leligdowicz
- Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Michael R Miller
- Lawson Health Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Maitray A Patel
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Lawson Health Research Institute, London, ON, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
- The Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, Canada.
- Pediatrics, Western University, London, ON, Canada.
- Clinical Neurological Sciences, Western University, London, ON, Canada.
- Physiology and Pharmacology, Western University, London, ON, Canada.
- London Health Sciences Centre, Room C2-C82, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
92
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
93
|
Berg AT, Kaat AJ, Gaebler-Spira D. Measuring the inch stones for progress: Gross motor function in the developmental and epileptic encephalopathies. Epilepsy Behav 2022; 137:108953. [PMID: 36368092 DOI: 10.1016/j.yebeh.2022.108953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEE) entail moderate to profound impairments in gross motor skills and mobility, which are poorly quantified with clinical outcomes assessments (COA) used in neuro-typical populations. We studied the motor domain of the Adaptive Behavior Assessment System-3 for ages 0-5 years (ABAS) used outside of its intended age range with a focus on raw scores. METHODS In a cross-sectional survey, 117 parents of children with a variety of DEEs (ages 1-35 years, median = 9) completed the motor domain section of the ABAS. Floor and ceiling effects and associations with epilepsy-related factors were assessed with appropriate parametric and nonparametric statistical techniques. The sensitivity of the ABAS and additional measures of mobility borrowed from the cerebral palsy literature (Functional Activities Questionnaire (FAQ-22) walking level (FAQ-WL)) to different levels of the Functional Mobility Scale was determined. RESULTS ABAS motor scores corresponded to a median age equivalent of 20.5 months (Inter-Quartile Range (IQR) 8-34). Most raw scores corresponded to standardized scores > 2 standard deviations below the ABAS standardization sample mean. ABAS raw scores demonstrated minimal floor and ceiling effects (<5%). In linear regression models, scores increased with age under 6 years (p < 0.0001) but flattened out thereafter. Scores varied substantially by DEE group (p < 0.001) and decreased with higher convulsive seizure frequency (<0.0001) and number of seizure medications (p < 0.001). ABAS and other motor scores were sensitive to important differences in mobility as represented by the FMS at 5 yards. Further, they correlated with declines in mobility function from 5 to 500 yards. SIGNIFICANCE An out-of-range COA with raw scores may provide a measure of motor ability and mobility sensitive within the range of moderate to profound impairment seen in patients with DEE. This approach could shorten the time to appropriate COA development and ensure timely clinical trial readiness for novel therapies for rare DEEs.
Collapse
Affiliation(s)
- Anne T Berg
- COMBINEDBrain, Nashville, TN, United States; Northwestern Feinberg School of Medicine, Department of Neurology, Chicago, IL, United States.
| | - Aaron J Kaat
- Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Deborah Gaebler-Spira
- Shirley Ryan Ability Lab, Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Northwestern Feinberg School of Medicine, Chicago, IL, United States; Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
94
|
Liu J, Barrett JS, Leonardi ET, Lee L, Roychoudhury S, Chen Y, Trifillis P. Natural History and Real-World Data in Rare Diseases: Applications, Limitations, and Future Perspectives. J Clin Pharmacol 2022; 62 Suppl 2:S38-S55. [PMID: 36461748 PMCID: PMC10107901 DOI: 10.1002/jcph.2134] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
Abstract
Rare diseases represent a highly heterogeneous group of disorders with high phenotypic and genotypic diversity within individual conditions. Due to the small numbers of people affected, there are unique challenges in understanding rare diseases and drug development for these conditions, including patient identification and recruitment, trial design, and costs. Natural history data and real-world data (RWD) play significant roles in defining and characterizing disease progression, final patient populations, novel biomarkers, genetic relationships, and treatment effects. This review provides an introduction to rare diseases, natural history data, RWD, and real-world evidence, the respective sources and applications of these data in several rare diseases. Considerations for data quality and limitations when using natural history and RWD are also elaborated. Opportunities are highlighted for cross-sector collaboration, standardized and high-quality data collection using new technologies, and more comprehensive evidence generation using quantitative approaches such as disease progression modeling, artificial intelligence, and machine learning. Advanced statistical approaches to integrate natural history data and RWD to further disease understanding and guide more efficient clinical study design and data analysis in drug development in rare diseases are also discussed.
Collapse
Affiliation(s)
- Jing Liu
- Pfizer, Inc., Groton, Connecticut, USA
| | - Jeffrey S Barrett
- Critical Path Institute, Rare Disease Cures Accelerator Data Analytics Platform, Tucson, Arizona, USA
| | | | - Lucy Lee
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | | | - Yong Chen
- Pfizer, Inc., Groton, Connecticut, USA
| | | |
Collapse
|
95
|
Papandreou A, Soo AKS, Spaull R, Mankad K, Kurian MA, Sudhakar S. Expanding the Spectrum of Early Neuroradiologic Findings in β Propeller Protein-Associated Neurodegeneration. AJNR Am J Neuroradiol 2022; 43:1810-1814. [PMID: 36328404 DOI: 10.3174/ajnr.a7693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND PURPOSE β propeller protein-associated neurodegeneration (BPAN) is the most common neurodegeneration with brain iron accumulation disorder. Typical radiologic findings are T2 hypointensity in the substantia nigra and globus pallidus, as well as a T1 halolike substantia nigra hyperintense signal surrounding a hypointense central area. However, these findings are often subtle or absent on initial scans, risking diagnostic delay. In this study, we sought to investigate radiologic findings that could aid in the early diagnosis of BPAN. MATERIALS AND METHODS A retrospective cohort study was performed in a national referral center, including all pediatric patients with confirmed pathogenic WDR45 mutations and consistent clinical semiology. MR imaging findings were independently reported by 2 pediatric neuroradiologists. RESULTS Fifteen patients were included in the study, and 27 scans were available for review. The initial neuroimaging study was undertaken at a mean age of 3.2 years. Iron deposition was uncommon in patients younger than 4 years of age. Neuroradiologic features from very early on included dentate, globus pallidus, and substantia nigra swelling, as well as a thin corpus callosum and small pontine volume. Optic nerve thinning was also present in all patients. CONCLUSIONS Our study highlights the key early MR imaging features of BPAN. Iron deposition in the globus pallidus and substantia nigra is not common in children younger than 4 years of age; clinicians should not be deterred from suspecting BPAN in the presence of the findings described in this study and the appropriate clinical context.
Collapse
Affiliation(s)
- A Papandreou
- From the Molecular Neurosciences (A.P., A.K.S.S., R.S., M.A.K.), Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK .,Departments of Neurology (A.P., A.K.S.S., R.S., M.A.K.)
| | - A K S Soo
- From the Molecular Neurosciences (A.P., A.K.S.S., R.S., M.A.K.), Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK.,Departments of Neurology (A.P., A.K.S.S., R.S., M.A.K.)
| | - R Spaull
- From the Molecular Neurosciences (A.P., A.K.S.S., R.S., M.A.K.), Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK.,Departments of Neurology (A.P., A.K.S.S., R.S., M.A.K.)
| | - K Mankad
- Neuroradiology (K.M., S.S.), Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, UK
| | - M A Kurian
- From the Molecular Neurosciences (A.P., A.K.S.S., R.S., M.A.K.), Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK.,Departments of Neurology (A.P., A.K.S.S., R.S., M.A.K.)
| | - S Sudhakar
- Neuroradiology (K.M., S.S.), Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, UK
| |
Collapse
|
96
|
Papandreou A, Doykov I, Spiewak J, Komarov N, Habermann S, Kurian MA, Mills PB, Mills K, Gissen P, Heywood WE. Niemann-Pick type C disease as proof-of-concept for intelligent biomarker panel selection in neurometabolic disorders. Dev Med Child Neurol 2022; 64:1539-1546. [PMID: 35833379 PMCID: PMC9796541 DOI: 10.1111/dmcn.15334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/31/2023]
Abstract
AIM Using Niemann-Pick type C disease (NPC) as a paradigm, we aimed to improve biomarker discovery in patients with neurometabolic disorders. METHOD Using a multiplexed liquid chromatography tandem mass spectrometry dried bloodspot assay, we developed a selective intelligent biomarker panel to monitor known biomarkers N-palmitoyl-O-phosphocholineserine and 3β,5α,6β-trihydroxy-cholanoyl-glycine as well as compounds predicted to be affected in NPC pathology. We applied this panel to a clinically relevant paediatric patient cohort (n = 75; 35 males, 40 females; mean age 7 years 6 months, range 4 days-19 years 8 months) presenting with neurodevelopmental and/or neurodegenerative pathology, similar to that observed in NPC. RESULTS The panel had a far superior performance compared with individual biomarkers. Namely, NPC-related established biomarkers used individually had 91% to 97% specificity but the combined panel had 100% specificity. Moreover, multivariate analysis revealed long-chain isoforms of glucosylceramide were elevated and very specific for patients with NPC. INTERPRETATION Despite advancements in next-generation sequencing and precision medicine, neurological non-enzymatic disorders remain difficult to diagnose and lack robust biomarkers or routine functional testing for genetic variants of unknown significance. Biomarker panels may have better diagnostic accuracy than individual biomarkers in neurometabolic disorders, hence they can facilitate more prompt disease identification and implementation of emerging targeted, disease-specific therapies. WHAT THIS PAPER ADDS Intelligent biomarker panel design can help expedite diagnosis in neurometabolic disorders. In Niemann-Pick type C disease, such a panel performed better than individual biomarkers. Biomarker panels are easy to implement and widely applicable to neurometabolic conditions.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Molecular Neurosciences, Developmental Neurosciences Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Neurology, Great Ormond Street Hospital for ChildrenLondonUK
| | - Ivan Doykov
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Justyna Spiewak
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Nikita Komarov
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | | | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Neurology, Great Ormond Street Hospital for ChildrenLondonUK
| | - Philippa B. Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Paul Gissen
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Department of Metabolic Medicine, Great Ormond Street Hospital for ChildrenLondonUK
| | - Wendy E. Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Programme, Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | | |
Collapse
|
97
|
Ho ML, Wirrell EC, Petropoulou K, Sakonju A, Chu D, Seratti G, Palasis S. Role of Electroencephalogram (EEG) and Magnetic Resonance Imaging (MRI) Findings in Early Recognition and Diagnosis of Neuronal Ceroid Lipofuscinosis Type 2 Disease. J Child Neurol 2022; 37:984-991. [PMID: 36184928 DOI: 10.1177/08830738221128773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuronal ceroid lipofuscinosis type 2 (CLN2) disease is a very rare neurodegenerative lysosomal storage disorder. Progression is rapid and irreversible, making early diagnosis crucial for timely treatment. A group of pediatric neurologists and neuroradiologists with expertise in CLN2 convened to discuss early electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings in CLN2 diagnosis. Of 18 CLN2 cases, 16 (88.9%) had background slowing and 16 (88.9%) had epileptiform discharges on initial EEG. Seven of 17 (41.2%) patients who received intermittent low-frequency photic stimulation had a photoparoxysmal response. Initial MRIs showed subtle cerebellar (n = 14, 77.8%) or cerebral (n = 9, 50.0%) atrophy, white matter abnormalities (n = 11, 61.1%), and basal ganglia T2 hypointensity (n = 6, 33.3%), which became more apparent on follow-up MRI. The recognition of even subtle cerebellar atrophy and white matter signal changes in children aged 2-5 years who present with language delay, new-onset seizures, and an EEG with epileptiform discharges and background slowing should prompt investigation for CLN2. Because these early signs are not unique to CLN2, genetic testing is essential early in the diagnostic journey.
Collapse
Affiliation(s)
- Mai-Lan Ho
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Ai Sakonju
- 12302SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dorna Chu
- 10926BioMarin Pharmaceutical Inc, Novato, CA, USA
| | | | | |
Collapse
|
98
|
Sakamoto M, Iwama K, Sasaki M, Ishiyama A, Komaki H, Saito T, Takeshita E, Shimizu-Motohashi Y, Haginoya K, Kobayashi T, Goto T, Tsuyusaki Y, Iai M, Kurosawa K, Osaka H, Tohyama J, Kobayashi Y, Okamoto N, Suzuki Y, Kumada S, Inoue K, Mashimo H, Arisaka A, Kuki I, Saijo H, Yokochi K, Kato M, Inaba Y, Gomi Y, Saitoh S, Shirai K, Morimoto M, Izumi Y, Watanabe Y, Nagamitsu SI, Sakai Y, Fukumura S, Muramatsu K, Ogata T, Yamada K, Ishigaki K, Hirasawa K, Shimoda K, Akasaka M, Kohashi K, Sakakibara T, Ikuno M, Sugino N, Yonekawa T, Gürsoy S, Cinleti T, Kim CA, Teik KW, Yan CM, Haniffa M, Ohba C, Ito S, Saitsu H, Saida K, Tsuchida N, Uchiyama Y, Koshimizu E, Fujita A, Hamanaka K, Misawa K, Miyatake S, Mizuguchi T, Miyake N, Matsumoto N. Genetic and clinical landscape of childhood cerebellar hypoplasia and atrophy. Genet Med 2022; 24:2453-2463. [PMID: 36305856 DOI: 10.1016/j.gim.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Cerebellar hypoplasia and atrophy (CBHA) in children is an extremely heterogeneous group of disorders, but few comprehensive genetic studies have been reported. Comprehensive genetic analysis of CBHA patients may help differentiating atrophy and hypoplasia and potentially improve their prognostic aspects. METHODS Patients with CBHA in 176 families were genetically examined using exome sequencing. Patients with disease-causing variants were clinically evaluated. RESULTS Disease-causing variants were identified in 96 of the 176 families (54.5%). After excluding 6 families, 48 patients from 42 families were categorized as having syndromic associations with CBHA, whereas the remaining 51 patients from 48 families had isolated CBHA. In 51 patients, 26 aberrant genes were identified, of which, 20 (76.9%) caused disease in 1 family each. The most prevalent genes were CACNA1A, ITPR1, and KIF1A. Of the 26 aberrant genes, 21 and 1 were functionally annotated to atrophy and hypoplasia, respectively. CBHA+S was more clinically severe than CBHA-S. Notably, ARG1 and FOLR1 variants were identified in 2 families, leading to medical treatments. CONCLUSION A wide genetic and clinical diversity of CBHA was revealed through exome sequencing in this cohort, which highlights the importance of comprehensive genetic analyses. Furthermore, molecular-based treatment was available for 2 families.
Collapse
Affiliation(s)
- Masamune Sakamoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuhiro Iwama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masayuki Sasaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akihiko Ishiyama
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Saito
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Eri Takeshita
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Tomoko Kobayashi
- Department of Pediatrics, Tohoku University Hospital, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tomohide Goto
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yu Tsuyusaki
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizue Iai
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hitoshi Osaka
- Department of Neurology, Kanagawa Children's Medical Center, Yokohama, Japan; Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Yu Kobayashi
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yume Suzuki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Inoue
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Atsuko Arisaka
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ichiro Kuki
- Department of Pediatric Neurology, Children's Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Harumi Saijo
- Department of Pediatrics, Tokyo Metropolitan Higashiyamato Medical Center for Developmental/Multiple Disabilities, Tokyo, Japan
| | - Kenji Yokochi
- Department of Pediatric Neurology, Seirei-Mikatahara General Hospital, Hamamatsu, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Inaba
- Division of Neurology, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Yuko Gomi
- Division of Rehabilitation, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Shirai
- Department of Pediatrics, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | | | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinobu Fukumura
- Department of Pediatrics, School of Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuhiro Muramatsu
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan; Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Tomomi Ogata
- Department of Pediatrics, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Keitaro Yamada
- Department of Pediatric Neurology, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Keiko Ishigaki
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Manami Akasaka
- Department of Pediatrics, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kosuke Kohashi
- Department of Pediatrics, Matsudo City General Hospital, Matsudo, Japan
| | | | - Masashi Ikuno
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Noriko Sugino
- Department of Neonatology, Mie Chuo Medical Center, National Hospital Organization, Tsu, Japan
| | - Takahiro Yonekawa
- Department of Pediatrics, Mie University School of Medicine, Mie, Japan
| | - Semra Gürsoy
- Department of Pediatric Genetics, S.B.Ü. Dr. Behçet Uz Children's Education and Research Hospital, Izmir, Turkey
| | - Tayfun Cinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Chong Ae Kim
- Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Keng Wee Teik
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chan Mei Yan
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muzhirah Haniffa
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Chihiro Ohba
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuuichi Ito
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
99
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
100
|
[Application of adeno-associated virus-mediated gene therapy in lysosomal storage diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:1281-1287. [PMID: 36398557 PMCID: PMC9678058 DOI: 10.7499/j.issn.1008-8830.2207055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lysosomal storage disorders (LSDs) are a group of single-gene inherited metabolic diseases caused by defects in lysosomal enzymes or function-related proteins. Enzyme replacement therapy is the main treatment method in clinical practice, but it has a poor effect in patients with neurological symptoms. With the rapid development of multi-omics, sequencing technology, and bioengineering, gene therapy has been applied in patients with LSDs. As one of the vectors of gene therapy, adeno-associated virus (AAV) has good prospects in the treatment of genetic and metabolic diseases. More and more studies have shown that AAV-mediated gene therapy is effective in LSDs. This article reviews the application of AAV-mediated gene therapy in LSDs.
Collapse
|