51
|
Interactions between Artificial Channel Protein, Water Molecules, and Ions Based on Theoretical Approaches. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contemporary techniques of molecular modeling allow for rational design of several specific classes of artificial proteins. Transmembrane channels are among these classes. A recent successful synthesis of self-assembling, highly symmetrical 12- or 16-helix channels by David Baker’s group prompted us to study interactions between one of these proteins, TMHC6, and low-molecular-weight components of the environment: water molecules and ions. To examine protein stability in a polar environment, molecular dynamics (MD) with classical force fields of the AMBER family was employed. Further characteristics of the chosen interactions were obtained using interaction energy calculations with usage of partially polarizable GFN-FF force field of Spicher and Grimme, symmetry-adapted perturbation theory (SAPT) and atoms in molecules (AIM) approaches for models of residues from the channel entry, crucial for interactions with water molecules and ions. The comparison of the interaction energy values between the gas phase and solvent reaction field gives the quantitative estimation of the strength of the interactions. The energy decomposition via the SAPT method showed that the electrostatics forces play a dominant role in the substructure stabilization. An application of the AIM theory enabled a description of the intermolecular hydrogen bonds and other noncovalent interactions.
Collapse
|
52
|
Pocheć M, Krupka KM, Panek JJ, Orzechowski K, Jezierska A. Intermolecular Interactions and Spectroscopic Signatures of the Hydrogen-Bonded System-n-Octanol in Experimental and Theoretical Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041225. [PMID: 35209010 PMCID: PMC8878718 DOI: 10.3390/molecules27041225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
n-Octanol is the object of experimental and theoretical study of spectroscopic signatures and intermolecular interactions. The FTIR measurements were carried out at 293 K for n-octanol and its deuterated form. Special attention was paid to the vibrational features associated with the O-H stretching and the isotope effect. Density Functional Theory (DFT) in its classical formulations was applied to develop static models describing intermolecular hydrogen bond (HB) and isotope effect in the gas phase and using solvent reaction field reproduced by Polarizable Continuum Model (PCM). The Atoms in Molecules (AIM) theory enabled electronic structure and molecular topology study. The Symmetry-Adapted Perturbation Theory (SAPT) was used for energy decomposition in the dimers of n-octanol. Finally, time-evolution methods, namely classical molecular dynamics (MD) and Car-Parrinello Molecular Dynamics (CPMD) were employed to shed light onto dynamical nature of liquid n-octanol with emphasis put on metric and vibrational features. As a reference, CPMD gas phase results were applied. Nuclear quantum effects were included using Path Integral Molecular Dynamics (PIMD) and a posteriori method by solving vibrational Schrödinger equation. The latter applied procedure allowed to study the deuterium isotope effect.
Collapse
|
53
|
Jezierska A, Panek JJ, Błaziak K, Raczyński K, Koll A. Exploring Intra- and Intermolecular Interactions in Selected N-Oxides-The Role of Hydrogen Bonds. Molecules 2022; 27:792. [PMID: 35164056 PMCID: PMC8846293 DOI: 10.3390/molecules27030792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Intra- and intermolecular interactions have been explored in selected N-oxide derivatives: 2-(N,N-dimethylamino-N-oxymethyl)-4,6-dimethylphenyl (1) and 5,5'-dibromo-3-diethylaminomethyl-2,2'-biphenol N-oxide (2). Both compounds possess intramolecular hydrogen bonding, which is classified as moderate in 1 and strong in 2, and resonance-assisted in both cases. Density Functional Theory (DFT) in its classical formulation as well as Time-Dependent extension (TD-DFT) were employed to study proton transfer phenomena. The simulations were performed in the gas phase and with implicit and explicit solvation models. The obtained structures of the studied N-oxides were compared with experimental data available. The proton reaction path was investigated using scan with an optimization method, and water molecule reorientation in the monohydrate of 1 was found upon the proton scan progress. It was found that spontaneous proton transfer phenomenon cannot occur in the electronic ground state of the compound 1. An opposite situation was noticed for the compound 2. The changes of nucleophilicity and electrophilicity upon the bridged proton migration were analyzed on the basis of Fukui functions in the case of 1. The interaction energy decomposition of dimers and microsolvation models was investigated using Symmetry-Adapted Perturbation Theory (SAPT). The simulations were performed in both phases to introduce polar environment influence on the interaction energies. The SAPT study showed rather minor role of induction in the formation of homodimers. However, it is worth noticing that the same induction term is responsible for the preference of water molecules' interaction with N-oxide hydrogen bond acceptor atoms in the microsolvation study. The Natural Bond Orbital (NBO) analysis was performed for the complexes with water to investigate the charge flow upon the polar environment introduction. Finally, the TD-DFT was applied for isolated molecules as well as for microsolvation models showing that the presence of solvent affects excited states, especially when the N-oxide acceptor atom is microsolvated.
Collapse
Affiliation(s)
- Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (J.J.P.); (K.R.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (J.J.P.); (K.R.)
| | - Kacper Błaziak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 01-224 Warsaw, Poland;
- Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 01-224 Warsaw, Poland
| | - Kamil Raczyński
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (J.J.P.); (K.R.)
| | - Aleksander Koll
- Non-Public Medical School in Wrocław, ul. Nowowiejska 69, 50-340 Wrocław, Poland;
| |
Collapse
|
54
|
Ibrahim MAA, Shehata MNI, Soliman MES, Moustafa MF, El-Mageed HRA, Moussa NAM. Unusual chalcogen⋯chalcogen interactions in like⋯like and unlike YCY⋯YCY complexes (Y = O, S, and Se). Phys Chem Chem Phys 2022; 24:3386-3399. [PMID: 35072679 DOI: 10.1039/d1cp02706a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chalcogen⋯chalcogen interactions were investigated within four types of like⋯like and unlike YCY⋯YCY complexes (where Y = O, S, or Se). A plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), surface electrostatic potential extrema, point-of-charge (PoC), quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI), and symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) calculations, were executed. The energetic findings revealed a preferential tendency of the studied chalcogen-bearing molecules to engage in type I, II, III, or IV chalcogen⋯chalcogen interactions. Notably, the selenium-bearing molecules exhibited the most potent ability to favorably participate in all the explored chalcogen⋯chalcogen interactions. Among like⋯like complexes, type IV interactions showed the most favorable negative binding energies, whereas type III interactions exhibited the weakest binding energies. Unexpectedly, oxygen-containing complexes within type IV interactions showed an alien pattern of binding energies that decreased along with an increase in the chalcogen atomic size level. QTAIM analysis provided a solo BCP, via chalcogen⋯chalcogen interactions, with no clues as to any secondary ones. SAPT-EDA outlined the domination of the explored interactions by the dispersion forces and indicated the pivotal shares of the electrostatic forces, except type III σ-hole⋯σ-hole and di-σ-hole interactions. These observations demonstrate in better detail all the types of chalcogen⋯chalcogen interactions, providing persuasive reasons for their more intensive use in versatile fields related to materials science and drug design.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Mohammed N I Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia.,Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - H R Abd El-Mageed
- Micro-Analysis, Environmental Research and Community Affairs Center (MAESC), Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nayra A M Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| |
Collapse
|
55
|
Camiruaga A, Usabiaga I, Calabrese C, Lamas I, Basterretxea FJ, Fernández JA. Exploring the Influence of Intermolecular Interactions in Prebiotic Chemistry Using Laser Spectroscopy and Calculations. Chemistry 2022; 28:e202103636. [PMID: 34854511 PMCID: PMC9299682 DOI: 10.1002/chem.202103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/09/2022]
Abstract
One of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4-aminopyrimidine. Using a combination of mass-resolved excitation spectroscopy and DFT calculations, we determined the structure of adenine-theobromine and 4-aminopyrimidine-theobromine dimers. The binding energy of these dimers is very close to the canonical adenine-thymine nucleobases. Likewise, the dimers are able to adopt Watson-Crick conformations. These findings seem to indicate that there were many options available to build the first versions of the informational polymers, which also had to compete with other molecules, such as 4-aminopyrimidine, which does not have a valid attaching point for a saccharide. For some reason, nature did not select the most strongly-bonded partners or if it did, such proto-bases were later replaced by the nowadays canonical CGAT.
Collapse
Affiliation(s)
- Ander Camiruaga
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
| | - Imanol Usabiaga
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
| | - Camilla Calabrese
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
- Instituto Biofisika (UPV/EHU-CSIC)University of the Basque Country (UPV/EHU)Barrio Sarriena S/N, Leioa48940Spain
| | - Iker Lamas
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
| | - Francisco J. Basterretxea
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
| | - José A. Fernández
- Department of Physical ChemistryFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)Barrio Sarriena, S/N, Leioa48940Spain
| |
Collapse
|
56
|
Tulsiyan KD, Jena S, Dutta J, Biswal HS. Hydrogen Bonding with Polonium. Phys Chem Chem Phys 2022; 24:17185-17194. [DOI: 10.1039/d2cp01852g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding (H-bonding) with heavier chalcogens such as polonium and tellurium is almost unexplored owing to their lower electronegativities, providing us an opportunity to delve into the uncharted territory of...
Collapse
|
57
|
Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 5: London Dispersion in an Extended Chemical Space. Phys Chem Chem Phys 2022; 24:14780-14793. [DOI: 10.1039/d2cp01602h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Non-Covalent Interactions Atlas (www.nciatlas.org) has been extended with two data sets of benchmark interaction energies in complexes dominated by London dispersion. The D1200 data set of equilibrium geometries provides...
Collapse
|
58
|
Rostkowski M, Schürner HKV, Sowińska A, Vasquez L, Przydacz M, Elsner M, Dybala-Defratyka A. Isotope Effects on the Vaporization of Organic Compounds from an Aqueous Solution-Insight from Experiment and Computations. J Phys Chem B 2021; 125:13868-13885. [PMID: 34908428 PMCID: PMC8724799 DOI: 10.1021/acs.jpcb.1c05574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An isotope fractionation
analysis of organic groundwater pollutants
can assess the remediation at contaminated sites yet needs to consider
physical processes as potentially confounding factors. This study
explores the predictability of water–air partitioning isotope
effects from experiments and computational predictions for benzene
and trimethylamine (both H-bond acceptors) as well as chloroform (H-bond
donor). A small, but significant, isotope fractionation of different
direction and magnitude was measured with ε = −0.12‰
± 0.07‰ (benzene), εC = 0.49‰
± 0.23‰ (triethylamine), and εH = 1.79‰
± 0.54‰ (chloroform) demonstrating that effects do not
correlate with expected hydrogen-bond functionalities. Computations
revealed that the overall isotope effect arises from contributions
of different nature and extent: a weakening of intramolecular vibrations
in the condensed phase plus additional vibrational modes from a complexation
with surrounding water molecules. Subtle changes in benzene contrast
with a stronger coupling between intra- and intermolecular modes in
the chloroform–water system and a very local vibrational response
with few atoms involved in a specific mode of triethylamine. An energy
decomposition analysis revealed that each system was affected differently
by electrostatics and dispersion, where dispersion was dominant for
benzene and electrostatics dominated for chloroform and triethylamine.
Interestingly, overall stabilization patterns in all studied systems
originated from contributions of dispersion rather than other energy
terms.
Collapse
Affiliation(s)
- Michał Rostkowski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Heide K V Schürner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martyna Przydacz
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
59
|
Three types of noncovalent interactions studied between pyrazine and XF. J Mol Model 2021; 28:15. [PMID: 34961885 DOI: 10.1007/s00894-021-05012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Three types noncovalent interactions (type I, II and III) between pyrazine (C4H4N2) and XF (X = F, Cl, Br, and I) have been discovered at the MP2/aug-cc-pVTZ level. TypeI is σ-hole interaction between the positive site on the halogen X of XF and the negative site on one of the pyrazine nitrogens. Type II is counterintuitive σ-hole interaction driven by polarization between the positive site on the halogen X of XF and a portion of the pyrazine ring. Type III is an interaction between the lateral regions of the halogen X of XF and the position of the pyrazine ring. Through comparing the calculated interaction energy, we can know that the type II and type III interactions are weaker than the corresponding type I interactions, and type III interactions are weaker than the corresponding type II interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the type I (σ-hole) interactions while the type III interactions are mainly dispersion energy. For the type II (counterintuitive σ-hole) interactions in C4H4N2-XF (X = F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF (X = Br and I) complexes, the electrostatic term, induction and dispersion play equally important role in the total attractive interaction. NBO analysis, AIM theory, and conceptual DFT are also being utilized.
Collapse
|
60
|
Robalo JR, Mendes de Oliveira D, Ben-Amotz D, Vila Verde A. Influence of Methylene Fluorination and Chain Length on the Hydration Shell Structure and Thermodynamics of Linear Diols. J Phys Chem B 2021; 125:13552-13564. [PMID: 34875166 DOI: 10.1021/acs.jpcb.1c08601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interplay between the local hydration shell structure, the length of hydrophobic solutes, and their identity (perfluorinated or not) remains poorly understood. We address this issue by combining Raman-multivariate curve resolution (Raman-MCR) spectroscopy, simulation, and quantum-mechanical calculations to quantify the thermodynamics and the first principle interactions behind the formation of defects in the hydration shell of alkyl-diol and perfluoroalkyl-diol chains. The hydration shell of the fluorinated diols contains substantially more defects than that of the nonfluorinated diols; these defects are water hydroxy groups that do not donate hydrogen bonds and which either point to the solute (radial-dangling OH) or not (nonradial-dangling OH). The number of radial-dangling OH defects per carbon decreases for longer chains and toward the interior of the fluorinated diols, mainly due to less favorable electrostatics and exchange interactions; nonradial-dangling OH defects per carbon increase with chain length. In contrast, the hydration shell of the nonfluorinated diols only contains radial-dangling defects, which become more abundant toward the center of the chain and for larger chains, predominantly because of more favorable dispersion interactions. These results have implications for how the folding of macromolecules, ligand binding to biomacromolecules, and chemical reactions at water-oil interfaces could be modified through the introduction of fluorinated groups or solvents.
Collapse
Affiliation(s)
- João R Robalo
- Department of Theory & Bio-systems, Max Planck Institute for Colloids and Interfaces, Science Park, Potsdam 14476, Germany
| | | | - Dor Ben-Amotz
- Purdue University, Department of Chemistry, West Lafayette, Indiana 47907, United States
| | - Ana Vila Verde
- University of Duisburg-Essen, Faculty of Physics, Lotharstrasse 1, 47057 Duisburg, Germany
| |
Collapse
|
61
|
Mráziková K, Šponer J, Mlýnský V, Auffinger P, Kruse H. Short-Range Imbalances in the AMBER Lennard-Jones Potential for (Deoxy)Ribose···Nucleobase Lone-Pair···π Contacts in Nucleic Acids. J Chem Inf Model 2021; 61:5644-5657. [PMID: 34738826 DOI: 10.1021/acs.jcim.1c01047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lone-pair···π (lp···π) (deoxy)ribose···nucleobase stacking is a recurring interaction in Z-DNA and RNAs that is characterized by sub-van der Waals lp···π contacts (<3.0 Å). It is a part of the structural signature of CpG Z-step motifs in Z-DNA and r(UNCG) tetraloops that are known to behave poorly in molecular dynamics (MD) simulations. Although the exact origin of the MD simulation issues remains unclear, a significant part of the problem might be due to an imbalanced description of nonbonded interactions, including the characteristic lp···π stacking. To gain insights into the links between lp···π stacking and MD, we present an in-depth comparison between accurate large-basis-set double-hybrid Kohn-Sham density functional theory calculations DSD-BLYP-D3/ma-def2-QZVPP (DHDF-D3) and data obtained with the nonbonded potential of the AMBER force field (AFF) for NpN Z-steps (N = G, A, C, and U). Among other differences, we found that the AFF overestimates the DHDF-D3 lp···π distances by ∼0.1-0.2 Å, while the deviation between the DHDF-D3 and AFF descriptions sharply increases in the short-range region of the interaction. Based on atom-in-molecule polarizabilities and symmetry-adapted perturbation theory analysis, we inferred that the DHDF-D3 versus AFF differences partly originate in identical nucleobase carbon atom Lennard-Jones (LJ) parameters despite the presence/absence of connected electron-withdrawing groups that lead to different effective volumes or vdW radii. Thus, to precisely model the very short CpG lp···π contact distances, we recommend revision of the nucleobase atom LJ parameters. Additionally, we suggest that the large discrepancy between DHDF-D3 and AFF short-range repulsive part of the interaction energy potential may significantly contribute to the poor performances of MD simulations of nucleic acid systems containing Z-steps. Understanding where, and if possible why, the point-charge-type effective potentials reach their limits is vital for developing next-generation FFs and for addressing specific issues in contemporary MD simulations.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27, 783 71 Olomouc-Holice, Czech Republic
| | - Pascal Auffinger
- Architecture and Reactivity of RNA, University of Strasbourg, Institute of Molecular and Cellular Biology of the CNRS, 67084 Strasbourg, France
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
62
|
Ibrahim MAA, Mohamed YAM, Abuelliel HAA, Rady ASM, Soliman MES, Ahmed MN, Mohamed LA, Moussa NAM. σ‐Hole Interactions of Tetrahedral Group IV–VIII Lewis Acid Centers with Lewis Bases: A Comparative Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202103092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Yasmeen A. M. Mohamed
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Hassan A. A. Abuelliel
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Al‐shimaa S. M. Rady
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Lab School of Health Sciences University of KwaZulu-Natal Westville, Durban 4000 South Africa
| | - Muhammad Naeem Ahmed
- Department of Chemistry The University of Azad Jammu and Kashmir Muzaffarabad 13100 Pakistan
| | - Lamiaa A. Mohamed
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory Chemistry Department Faculty of Science Minia University Minia 61519 Egypt
| |
Collapse
|
63
|
Sparrow ZM, Ernst BG, Joo PT, Lao KU, DiStasio RA. NENCI-2021. I. A large benchmark database of non-equilibrium non-covalent interactions emphasizing close intermolecular contacts. J Chem Phys 2021; 155:184303. [PMID: 34773949 DOI: 10.1063/5.0068862] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we present NENCI-2021, a benchmark database of ∼8000 Non-Equilibirum Non-Covalent Interaction energies for a large and diverse selection of intermolecular complexes of biological and chemical relevance. To meet the growing demand for large and high-quality quantum mechanical data in the chemical sciences, NENCI-2021 starts with the 101 molecular dimers in the widely used S66 and S101 databases and extends the scope of these works by (i) including 40 cation-π and anion-π complexes, a fundamentally important class of non-covalent interactions that are found throughout nature and pose a substantial challenge to theory, and (ii) systematically sampling all 141 intermolecular potential energy surfaces (PESs) by simultaneously varying the intermolecular distance and intermolecular angle in each dimer. Designed with an emphasis on close contacts, the complexes in NENCI-2021 were generated by sampling seven intermolecular distances along each PES (ranging from 0.7× to 1.1× the equilibrium separation) and nine intermolecular angles per distance (five for each ion-π complex), yielding an extensive database of 7763 benchmark intermolecular interaction energies (Eint) obtained at the coupled-cluster with singles, doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory. The Eint values in NENCI-2021 span a total of 225.3 kcal/mol, ranging from -38.5 to +186.8 kcal/mol, with a mean (median) Eint value of -1.06 kcal/mol (-2.39 kcal/mol). In addition, a wide range of intermolecular atom-pair distances are also present in NENCI-2021, where close intermolecular contacts involving atoms that are located within the so-called van der Waals envelope are prevalent-these interactions, in particular, pose an enormous challenge for molecular modeling and are observed in many important chemical and biological systems. A detailed symmetry-adapted perturbation theory (SAPT)-based energy decomposition analysis also confirms the diverse and comprehensive nature of the intermolecular binding motifs present in NENCI-2021, which now includes a significant number of primarily induction-bound dimers (e.g., cation-π complexes). NENCI-2021 thus spans all regions of the SAPT ternary diagram, thereby warranting a new four-category classification scheme that includes complexes primarily bound by electrostatics (3499), induction (700), dispersion (1372), or mixtures thereof (2192). A critical error analysis performed on a representative set of intermolecular complexes in NENCI-2021 demonstrates that the Eint values provided herein have an average error of ±0.1 kcal/mol, even for complexes with strongly repulsive Eint values, and maximum errors of ±0.2-0.3 kcal/mol (i.e., ∼±1.0 kJ/mol) for the most challenging cases. For these reasons, we expect that NENCI-2021 will play an important role in the testing, training, and development of next-generation classical and polarizable force fields, density functional theory approximations, wavefunction theory methods, and machine learning based intra- and inter-molecular potentials.
Collapse
Affiliation(s)
- Zachary M Sparrow
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Paul T Joo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ka Un Lao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
64
|
Ibrahim MAA, Kamel AAK, Soliman MES, Moustafa MF, El-Mageed HRA, Taha F, Mohamed LA, Moussa NAM. Effect of External Electric Field on Tetrel Bonding Interactions in (FTF 3···FH) Complexes (T = C, Si, Ge, and Sn). ACS OMEGA 2021; 6:25476-25485. [PMID: 34632205 PMCID: PMC8495869 DOI: 10.1021/acsomega.1c03461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
A quantum chemical study was accomplished on the σ-hole interactions of the barely explored group IV elements, for the first time, in the absence and presence of the positively and negatively directed external electric field (EEF). The analyses of molecular electrostatic potential addressed the occurrence of the σ-hole on all the inspected tetrel atoms, confirming their salient versatility to engage in σ-hole interactions. MP2 energetic findings disclosed the occurrence of favorable σ-hole interactions within the tetrel bonding complexes. The tetrel bonding interactions became stronger in the order of C < Si < Ge < Sn for F-T-F3···FH complexes with the largest interaction energy amounting to -19.43 kcal/mol for the optimized F-Sn-F3···FH complex under the influence of +0.020 au EEF. The interaction energy conspicuously evolved by boosting the magnitude of the positively directed EEF value and declining the negatively directed EEF one. The decomposition analysis for the interaction energies was also executed in terms of symmetry-adapted perturbation theory, illuminating the dominant electrostatic contribution to all the studied complexes' interactions except carbon-based interactions controlled by dispersion forces. The outcomes that emerged from the current work reported significantly how the direction and strength of the EEF affect the tetrel-bonding interactions, leading to further improvements in the forthcoming studies of supramolecular chemistry and materials science.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Afnan A. K. Kamel
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fouad Taha
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Lamiaa A. Mohamed
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
65
|
Naphthazarin Derivatives in the Light of Intra- and Intermolecular Forces. Molecules 2021; 26:molecules26185642. [PMID: 34577113 PMCID: PMC8468954 DOI: 10.3390/molecules26185642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller-Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers' stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm-1-1700 cm-1 and 2300 cm-1-3400 cm-1 in the gas phase and 600 cm-1-1800 cm-1 and 2200 cm-1-3400 cm-1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm-1-1700 cm-1 and 2300 cm-1-3300 cm-1 for the gas phase and one broad absorption region in the solid state between 700 cm-1 and 3100 cm-1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.
Collapse
|
66
|
Schaefer AJ, Ingman VM, Wheeler SE. SEQCROW: A ChimeraX bundle to facilitate quantum chemical applications to complex molecular systems. J Comput Chem 2021; 42:1750-1754. [PMID: 34109660 DOI: 10.1002/jcc.26700] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
We describe a bundle for UCSF ChimeraX called SEQCROW that provides advanced structure editing capabilities and quantum chemistry utilities designed for complex organic and organometallic compounds. SEQCROW includes graphical presets and bond editing tools that facilitate the generation of publication-quality molecular structure figures while also allowing users to build molecular structures quickly and efficiently by mapping new ligands onto existing organometallic complexes as well as adding rings and substituents. Other capabilities include the ability to visualize vibrational modes and simulated IR spectra, to compute and visualize molecular descriptors including percent buried volume, ligand cone angles, and Sterimol parameters, to process thermochemical corrections from quantum mechanical computations, to generate input files for ORCA, Psi4, and Gaussian, and to run and manage computational jobs.
Collapse
Affiliation(s)
| | - Victoria M Ingman
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Steven E Wheeler
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
67
|
Jing X, Zeng Y, Zhang X, Meng L, Li X. Competition and conversion between pnicogen bonds and hydrogen bonds involving prototype organophosphorus compounds. Phys Chem Chem Phys 2021; 23:18794-18805. [PMID: 34612418 DOI: 10.1039/d1cp00474c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio calculations have been performed to investigate the competition and conversion between the pnicogen bonds and hydrogen bonds in complexes containing prototype organophosphorus compounds RPO2 (R = CH3 and CH3O). The competition between the pnicogen bonds and hydrogen bonds is controlled by the magnitude of Vs,min and Vs,max in the prototype organophosphorus compounds. Monomeric methyl metaphosphate (CH3OPO2), with more positive π-holes, is more likely to form pnicogen bonds with different electron donors, such as NH3, H2O, HNC and HCCH. Methoxyphosphinidene oxide (trans- and cis-CH3OPO) is inclined to form hydrogen bonds with H2O, HNC and HCCH. Most of the pnicogen bonds have covalent or partially covalent character, while most of the hydrogen bonds exhibit the noncovalent characteristics of weak interactions. The mechanisms of three typical conversions between the pnicogen bond and the hydrogen bond have been investigated and the breakage and formation of the bonds along the reaction pathways have been analyzed using topological analysis of electron density. For the three studied conversion processes, the transformation between the hydrogen-bonded complex and pnicogen-bonded complex is achieved readily through several T-shape structure transition states.
Collapse
Affiliation(s)
- Xinyue Jing
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | | | | | | | | |
Collapse
|
68
|
Hapka M, Przybytek M, Pernal K. Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. J Chem Theory Comput 2021; 17:5538-5555. [PMID: 34517707 PMCID: PMC8444344 DOI: 10.1021/acs.jctc.1c00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [HapkaM.J. Chem. Theory Comput.2019, 15, 1016−102730525591; HapkaM.J. Chem. Theory Comput.2019, 15, 6712–672331670950]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H2 ··· H2 dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C2H4* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
69
|
Konrad M, Wenzel W. CONI-Net: Machine Learning of Separable Intermolecular Force Fields. J Chem Theory Comput 2021; 17:4996-5006. [PMID: 34247485 DOI: 10.1021/acs.jctc.1c00328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Noncovalent interactions (NCIs) play an essential role in soft matter and biomolecular simulations. The ab initio method symmetry-adapted perturbation theory allows a precise quantitative analysis of NCIs and offers an inherent energy decomposition, enabling a deeper understanding of the nature of intermolecular interactions. However, this method is limited to small systems, for instance, dimers of molecules. Here, we present a scale-bridging approach to systematically derive an intermolecular force field from ab initio data while preserving the energy decomposition of the underlying method. We apply the model in molecular dynamics simulations of several solvents and compare two predicted thermodynamic observables-mass density and enthalpy of vaporization-to experiments and established force fields. For a data set limited to hydrocarbons, we investigate the extrapolation capabilities to molecules absent from the training set. Overall, despite the affordable moderate quality of the reference ab initio data, we find promising results. With the straightforward data set generation procedure and the lack of target data in the fitting process, we have developed a method that enables the rapid development of predictive force fields with an extra dimension of insights into the balance of NCIs.
Collapse
Affiliation(s)
- Manuel Konrad
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
70
|
Jezierska A, Błaziak K, Klahm S, Lüchow A, Panek JJ. Non-Covalent Forces in Naphthazarin-Cooperativity or Competition in the Light of Theoretical Approaches. Int J Mol Sci 2021; 22:ijms22158033. [PMID: 34360798 PMCID: PMC8348774 DOI: 10.3390/ijms22158033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/27/2022] Open
Abstract
Non-covalent interactions responsible for molecular features and self-assembly in Naphthazarin C polymorph were investigated on the basis of diverse theoretical approaches: Density Functional Theory (DFT), Diffusion Quantum Monte Carlo (DQMC), Symmetry-Adapted Perturbation Theory (SAPT) and Car-Parrinello Molecular Dynamics (CPMD). The proton reaction paths in the intramolecular hydrogen bridges were studied. Two potential energy minima were found indicating that the proton transfer phenomena occur in the electronic ground state. Diffusion Quantum Monte Carlo (DQMC) and other levels of theory including Coupled Cluster (CC) employment enabled an accurate inspection of Potential Energy Surface (PES) and revealed the energy barrier for the proton transfer. The structure and reactivity evolution associated with the proton transfer were investigated using Harmonic Oscillator Model of Aromaticity - HOMA index, Fukui functions and Atoms In Molecules (AIM) theory. The energy partitioning in the studied dimers was carried out based on Symmetry-Adapted Perturbation Theory (SAPT) indicating that dispersive forces are dominant in the structure stabilization. The CPMD simulations were performed at 60 K and 300 K in vacuo and in the crystalline phase. The temperature influence on the bridged protons dynamics was studied and showed that the proton transfer phenomena were not observed at 60 K, but the frequent events were noticed at 300 K in both studied phases. The spectroscopic signatures derived from the CPMD were computed using Fourier transformation of autocorrelation function of atomic velocity for the whole molecule and bridged protons. The computed gas-phase IR spectra showed two regions with OH absorption that covers frequencies from 2500 cm−1 to 2800 cm−1 at 60 K and from 2350 cm−1 to 3250 cm−1 at 300 K for both bridged protons. In comparison, the solid state computed IR spectra revealed the environmental influence on the vibrational features. For each of them absorption regions were found between 2700–3100 cm−1 and 2400–2850 cm−1 at 60 K and 2300–3300 cm−1 and 2300–3200 cm−1 at 300 K respectively. Therefore, the CPMD study results indicated that there is a cooperation of intramolecular hydrogen bonds in Naphthazarin molecule.
Collapse
Affiliation(s)
- Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
- Correspondence: (A.J.); (K.B.)
| | - Kacper Błaziak
- Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 01-224 Warsaw, Poland
- Biological and Chemical Research Center, University of Warsaw, Żwirki i Wigury 101, 01-224 Warsaw, Poland
- Correspondence: (A.J.); (K.B.)
| | - Sebastian Klahm
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany; (S.K.); (A.L.)
| | - Arne Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany; (S.K.); (A.L.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| |
Collapse
|
71
|
Ibrahim MAA, Moussa NAM, Soliman MES, Moustafa MF, Al-Fahemi JH, El-Mageed HRA. On the Potentiality of X-T-X 3 Compounds (T = C, Si, and Ge, and X = F, Cl, and Br) as Tetrel- and Halogen-Bond Donors. ACS OMEGA 2021; 6:19330-19341. [PMID: 34337270 PMCID: PMC8320108 DOI: 10.1021/acsomega.1c03183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 05/08/2023]
Abstract
The versatility of the X-T-X3 compounds (where T = C, Si, and Ge, and X = F, Cl, and Br) to participate in tetrel- and halogen-bonding interactions was settled out, at the MP2/aug-cc-pVTZ level of theory, within a series of configurations for (X-T-X3)2 homodimers. The electrostatic potential computations ensured the remarkable ability of the investigated X-T-X3 monomers to participate in σ-hole halogen and tetrel interactions. The energetic findings significantly unveil the favorability of the tetrel···tetrel directional configuration with considerable negative binding energies over tetrel···halogen, type III halogen···halogen, and type II halogen···halogen analogs. Quantum theory of atoms in molecules and noncovalent interaction analyses were accomplished to disclose the nature of the tetrel- and halogen-bonding interactions within designed configurations, giving good correlations between the total electron densities and binding energies. Further insight into the binding energy physical meanings was invoked through using symmetry-adapted perturbation theory-based energy decomposition analysis, featuring the dispersion term as the most prominent force beyond the examined interactions. The theoretical results were supported by versatile crystal structures which were characterized by the same type of interactions. Presumably, the obtained findings would be considered as a solid underpinning for future supramolecular chemistry, materials science, and crystal engineering studies, as well as a fundamental linchpin for a better understanding of the biological activities of chemicals.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
72
|
Silva WGDP, van Wijngaarden J. Hydrogen bonding networks and cooperativity effects in the aqueous solvation of trimethylene oxide and sulfide rings by microwave spectroscopy and computational chemistry. J Chem Phys 2021; 155:034305. [PMID: 34293887 DOI: 10.1063/5.0056833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intermolecular interactions responsible for the microsolvation of the highly flexible trimethylene oxide (TMO) and trimethylene sulfide (TMS) rings with one and two water (w) molecules were investigated using rotational spectroscopy (8-22 GHz) and quantum chemical calculations. The observed patterns of transitions are consistent with the most stable geometries of the TMO-w, TMO-(w)2, and TMS-w complexes at the B2PLYP-D3(BJ)/aug-cc-pVTZ level and were confirmed using spectra of the 18O isotopologue. Due to its effectively planar backbone, TMO offers one unique binding site for solvation, while water can bind to the puckered TMS ring in either an axial or equatorial site of the heteroatom. In all clusters, the first water molecule binds in the σv symmetry plane of the ring monomer and serves as a hydrogen bond donor to the heteroatom. The second water molecule is predicted to form a cooperative hydrogen bonding network between the three moieties. Secondary C-H⋯O interactions are a key stabilizing influence in trimers and also drive the preferred binding site in the TMS clusters with the axial binding site preferred in TMS-w and the equatorial form calculated to be more stable in the dihydrate. Using an energy partition scheme from the symmetry-adapted perturbation theory for the O, S, and Se containing mono- and dihydrates, the intermolecular interactions are revealed to be mainly electrostatic, but the dispersive character of the contacts is enhanced with the increasing size of the ring's heteroatom due to the key role of longer-range secondary interactions.
Collapse
Affiliation(s)
- Weslley G D P Silva
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
73
|
Schriber JB, Sirianni DA, Smith DGA, Burns LA, Sitkoff D, Cheney DL, Sherrill CD. Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory. J Chem Phys 2021; 154:234107. [PMID: 34241276 DOI: 10.1063/5.0049745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) has become an invaluable tool for studying the fundamental nature of non-covalent interactions by directly computing the electrostatics, exchange (steric) repulsion, induction (polarization), and London dispersion contributions to the interaction energy using quantum mechanics. Further application of SAPT is primarily limited by its computational expense, where even its most affordable variant (SAPT0) scales as the fifth power of system size [O(N5)] due to the dispersion terms. The algorithmic scaling of SAPT0 is reduced from O(N5)→O(N4) by replacing these terms with the empirical D3 dispersion correction of Grimme and co-workers, forming a method that may be termed SAPT0-D3. Here, we optimize the damping parameters for the -D3 terms in SAPT0-D3 using a much larger training set than has previously been considered, namely, 8299 interaction energies computed at the complete-basis-set limit of coupled cluster through perturbative triples [CCSD(T)/CBS]. Perhaps surprisingly, with only three fitted parameters, SAPT0-D3 improves on the accuracy of SAPT0, reducing mean absolute errors from 0.61 to 0.49 kcal mol-1 over the full set of complexes. Additionally, SAPT0-D3 exhibits a nearly 2.5× speedup over conventional SAPT0 for systems with ∼300 atoms and is applied here to systems with up to 459 atoms. Finally, we have also implemented a functional group partitioning of the approach (F-SAPT0-D3) and applied it to determine important contacts in the binding of salbutamol to G-protein coupled β1-adrenergic receptor in both active and inactive forms. SAPT0-D3 capabilities have been added to the open-source Psi4 software.
Collapse
Affiliation(s)
- Jeffrey B Schriber
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Dominic A Sirianni
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Doree Sitkoff
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - Daniel L Cheney
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
74
|
Raczyński K, Pihut A, Panek JJ, Jezierska A. Competition of Intra- and Intermolecular Forces in Anthraquinone and Its Selected Derivatives. Molecules 2021; 26:3448. [PMID: 34204133 PMCID: PMC8201066 DOI: 10.3390/molecules26113448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Intra- and intermolecular forces competition was investigated in the 9,10-anthraquinone (1) and its derivatives both in vacuo and in the crystalline phase. The 1,8-dihydroxy-9,10-anthraquinone (2) and 1,8-dinitro-4,5-dihydroxy-anthraquinone (3) contain Resonance-Assisted Hydrogen Bonds (RAHBs). The intramolecular hydrogen bonds properties were studied in the electronic ground and excited states employing Møller-Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT) method in its classical formulation as well as its time-dependent extension (TD-DFT). The proton potential functions were obtained via scanning the OH distance and the dihedral angle related to the OH group rotation. The topological analysis was carried out on the basis of theories of Atoms in Molecules (AIM-molecular topology, properties of critical points, AIM charges) and Electron Localization Function (ELF-2D maps showing bonding patterns, calculation of electron populations in the hydrogen bonds). The Symmetry-Adapted Perturbation Theory (SAPT) was applied for the energy decomposition in the dimers. Finally, Car-Parrinello molecular dynamics (CPMD) simulations were performed to shed light onto bridge protons dynamics upon environmental influence. The vibrational features of the OH stretching were revealed using Fourier transformation of the autocorrelation function of atomic velocity. It was found that the presence of OH and NO2 substituents influenced the geometric and electronic structure of the anthraquinone moiety. The AIM and ELF analyses showed that the quantitative differences between hydrogen bonds properties could be neglected. The bridged protons are localized on the donor side in the electronic ground state, but the Excited-State Intramolecular Proton Transfer (ESIPT) was noticed as a result of the TD-DFT calculations. The hierarchy of interactions determined by SAPT method indicated that weak hydrogen bonds play modifying role in the organization of these crystal structures, but primary ordering factor is dispersion. The CPMD crystalline phase results indicated bridged proton-sharing in the compound 2.
Collapse
Affiliation(s)
| | | | | | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.R.); (A.P.); (J.J.P.)
| |
Collapse
|
75
|
On the nature of inter- and intramolecular interactions involving benzo[h]quinoline and 10-hydroxybenzo[h]quinoline: Electronic ground state vs excited state study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
76
|
Solel E, Ruth M, Schreiner PR. London Dispersion Helps Refine Steric A-Values: The Halogens. J Org Chem 2021; 86:7701-7713. [PMID: 33988377 DOI: 10.1021/acs.joc.1c00767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogens are rarely considered as dispersion energy donors for organic reaction design. Here, we re-examine one of the textbook examples for assessing steric hindrance, the A-value, and demonstrate that even in this system, halogens cannot be treated solely as classic repulsive hard spheres. A significant part of the steric demand of the halogens is compensated by attractive London dispersion (LD) interactions, explaining the experimental lack of a clear trend when going down the halogens' row. Beyond monohalogenated cyclohexanes, dihalo- and perhalocyclohexanes also show significant LD interactions. We also explored several other small organic systems containing halogens. Our findings show that organic chemists should treat halogens as possible sources of LD interactions in reaction design, as these atoms can change the landscape of the potential energy surface and reverse trends of conformer stabilities and reaction selectivities.
Collapse
Affiliation(s)
- Ephrath Solel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marcel Ruth
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
77
|
Towne J, Liang X, Kontogeorgis GM. Application of Quantum Chemistry Insights to the Prediction of Phase Equilibria in Associating Systems. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John Towne
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kongens Lyngby, Denmark
| | - Xiaodong Liang
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kongens Lyngby, Denmark
| | - Georgios M. Kontogeorgis
- Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
78
|
Silva WGDP, van Wijngaarden J. Characterization of Large-Amplitude Motions and Hydrogen Bonding Interactions in the Thiophene–Water Complex by Rotational Spectroscopy. J Phys Chem A 2021; 125:3425-3431. [DOI: 10.1021/acs.jpca.1c02086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Structure-Property Relationship in Selected Naphtho- and Anthra-Quinone Derivatives on the Basis of Density Functional Theory and Car–Parrinello Molecular Dynamics. Symmetry (Basel) 2021. [DOI: 10.3390/sym13040564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intra- and inter-molecular interactions were studied in 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone and 1,4-dihydroxy-anthraquinone to shed more light on the molecular assembly phenomena. The electronic ground and excited states features of the compounds were investigated to find structure-property dependencies. The theoretical study was carried out on the basis of Density Functional Theory (DFT), its Time-Dependent (TD-DFT) extension, and using Car–Parrinello Molecular Dynamics (CPMD). In order to show how the environmental effects modulate the physico-chemical properties, the simulations were performed in vacuo, with the solvent reaction field (Polarizable Continuum Model (PCM) and water as a solvent) and crystalline phase. The intramolecular hydrogen bonds and the bridged proton dynamics were analyzed in detail. The aromatic rings and electronic structure changes were estimated using the Harmonic Oscillator Model of Aromaticity (HOMA) and Atoms in Molecules (AIM) theory. The Symmetry-Adapted Perturbation Theory (SAPT) was employed for interaction energy decomposition in the studied dimers and trimers. It was found that the presence of a polar solvent decreased the energy barrier for the bridged proton transfer. However, it did not significantly affect the aromaticity and electronic structure. The SAPT results showed that the mutual polarization of the monomers in the dimer was weak and that the dispersion was responsible for most of the intermolecular attraction. The intermolecular hydrogen bonds seem to be much weaker than the intramolecular bridges. The TD-DFT results confirmed that the electronic excitations do not play any significant role in the intramolecular proton transfer. The CPMD results indicated that the protons are very labile in the hydrogen bridges. Short proton transfer and proton-sharing events were observed, and a correlation between them in the twin bridges was noticed, especially for the first investigated compound.
Collapse
|
80
|
Firme CL. Local potential energy density model (LPE): Applications and limitations to quantify intra/intermolecular interactions. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Zhang Z, Vögele J, Mráziková K, Kruse H, Cang X, Wöhnert J, Krepl M, Šponer J. Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments. J Phys Chem B 2021; 125:825-840. [PMID: 33467852 DOI: 10.1021/acs.jpcb.0c10192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphorothioates (PTs) are important chemical modifications of the RNA backbone where a single nonbridging oxygen of the phosphate is replaced with a sulfur atom. PT can stabilize RNAs by protecting them from hydrolysis and is commonly used as a tool to explore their function. It is, however, unclear what basic physical effects PT has on RNA stability and electronic structure. Here, we present molecular dynamics (MD) simulations, quantum mechanical (QM) calculations, and NMR spectroscopy measurements, exploring the effects of PT modifications in the structural context of the neomycin-sensing riboswitch (NSR). The NSR is the smallest biologically functional riboswitch with a well-defined structure stabilized by a U-turn motif. Three of the signature interactions of the U-turn: an H-bond, an anion-π interaction, and a potassium binding site; are formed by RNA phosphates, making the NSR an ideal model for studying how PT affects RNA structure and dynamics. By comparing with high-level QM calculations, we reveal the distinct physical properties of the individual interactions facilitated by the PT. The sulfur substitution, besides weakening the direct H-bond interaction, reduces the directionality of H-bonding while increasing its dispersion and induction components. It also reduces the induction and increases the dispersion component of the anion-π stacking. The sulfur force-field parameters commonly employed in the literature do not reflect these distinctions, leading to the unsatisfactory description of PT in simulations of the NSR. We show that it is not possible to accurately describe the PT interactions using one universal set of van der Waals sulfur parameters and provide suggestions for improving the force-field performance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Klaudia Mráziková
- Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.,Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Xiaohui Cang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
82
|
Schümann JM, Wagner JP, Eckhardt AK, Quanz H, Schreiner PR. Intramolecular London Dispersion Interactions Do Not Cancel in Solution. J Am Chem Soc 2021; 143:41-45. [PMID: 33320651 DOI: 10.1021/jacs.0c09597] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present a comprehensive experimental study of a di-t-butyl-substituted cyclooctatetraene-based molecular balance to measure the effect of 16 different solvents on the equilibrium of folded versus unfolded isomers. In the folded 1,6-isomer, the two t-butyl groups are in close proximity (H···H distance ≈ 2.5 Å), but they are far apart in the unfolded 1,4-isomer (H···H distance ≈ 7 Å). We determined the relative strengths of these noncovalent intramolecular σ-σ interactions via temperature-dependent nuclear magnetic resonance measurements. The origins of the interactions were elucidated with energy decomposition analysis at the density functional and ab initio levels of theory, pinpointing the predominance of London dispersion interactions enthalpically favoring the folded state in any solvent measured.
Collapse
Affiliation(s)
- Jan M Schümann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - J Philipp Wagner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik Quanz
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
83
|
Vennelakanti V, Qi HW, Mehmood R, Kulik HJ. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci 2021; 12:1147-1162. [PMID: 35382134 PMCID: PMC8908278 DOI: 10.1039/d0sc05084a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrogen bonds (HBs) play an essential role in the structure and catalytic action of enzymes, but a complete understanding of HBs in proteins challenges the resolution of modern structural (i.e., X-ray diffraction) techniques and mandates computationally demanding electronic structure methods from correlated wavefunction theory for predictive accuracy. Numerous amino acid sidechains contain functional groups (e.g., hydroxyls in Ser/Thr or Tyr and amides in Asn/Gln) that can act as either HB acceptors or donors (HBA/HBD) and even form simultaneous, ambifunctional HB interactions. To understand the relative energetic benefit of each interaction, we characterize the potential energy surfaces of representative model systems with accurate coupled cluster theory calculations. To reveal the relationship of these energetics to the balance of these interactions in proteins, we curate a set of 4000 HBs, of which >500 are ambifunctional HBs, in high-resolution protein structures. We show that our model systems accurately predict the favored HB structural properties. Differences are apparent in HBA/HBD preference for aromatic Tyr versus aliphatic Ser/Thr hydroxyls because Tyr forms significantly stronger O–H⋯O HBs than N–H⋯O HBs in contrast to comparable strengths of the two for Ser/Thr. Despite this residue-specific distinction, all models of residue pairs indicate an energetic benefit for simultaneous HBA and HBD interactions in an ambifunctional HB. Although the stabilization is less than the additive maximum due both to geometric constraints and many-body electronic effects, a wide range of ambifunctional HB geometries are more favorable than any single HB interaction. Correlated wavefunction theory predicts and high-resolution crystal structure analysis confirms the important, stabilizing effect of simultaneous hydrogen bond donor and acceptor interactions in proteins.![]()
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Helena W. Qi
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Rimsha Mehmood
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
84
|
Silva WGDP, Poonia T, van Wijngaarden J. Exploring the non-covalent interactions behind the formation of amine–water complexes: the case of N-allylmethylamine monohydrate. Phys Chem Chem Phys 2021; 23:7368-7375. [DOI: 10.1039/d1cp00420d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational spectroscopy and quantum chemical studies reveal the effects of hydrogen bonding with water on the conformer equilibrium of N-allylmethylamine.
Collapse
Affiliation(s)
| | - Tamanna Poonia
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
| | | |
Collapse
|
85
|
Ismail TM, Mohan N, Sajith PK. Theoretical study of hydrogen bonding interactions in substituted nitroxide radicals. NEW J CHEM 2021. [DOI: 10.1039/d0nj05362g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interaction energy (Eint) of hydrogen bonded complexes of nitroxide radicals can be assessed in terms of the deepest minimum of molecular electrostatic potential (Vmin).
Collapse
Affiliation(s)
| | - Neetha Mohan
- Department of Chemistry
- Christopher Ingold Building
- University College London (UCL)
- London WC1H 0AJ
- UK
| | - P. K. Sajith
- Department of Chemistry
- Farook College
- Kozhikode
- India
| |
Collapse
|
86
|
Kitzmiller NL, Wolf ME, Turney JM, Schaefer HF. The HOX⋯SO 2 (X=F, Cl, Br, I) Binary Complexes: Implications for Atmospheric Chemistry. Chemphyschem 2020; 22:112-126. [PMID: 33090675 DOI: 10.1002/cphc.202000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2 binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug-cc-pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug-cc-pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug-cc-pwCVDZ-PP pseudopotential. 27 HOX⋯SO2 complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2 complexes in this study ranged from 1.35 to 3.81 kcal mol-1 . The single-interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol-1 , while the single-interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol-1 , indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2 which may guide further research of related systems.
Collapse
Affiliation(s)
- Nathaniel L Kitzmiller
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Mark E Wolf
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
87
|
Symmetry/Asymmetry of the NHN Hydrogen Bond in Protonated 1,8-Bis(dimethylamino)naphthalene. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Experimental and theoretical results are presented based on vibrational spectra and motional dynamics of 1,8-bis(dimethylamino)naphthalene (DMAN) and its protonated forms (DMANH+ and the DMANH+ HSO4− complex). The studies of these compounds have been performed in the gas phase and solid-state. Spectroscopic investigations were carried out by infrared spectroscopy (IR), Raman, and incoherent inelastic neutron scattering (IINS) experimental methods. Density functional theory (DFT) and Car–Parrinello molecular dynamics (CPMD) methods were applied to support our experimental findings. The fundamental investigations of hydrogen bridge vibrations were accomplished on the basis of isotopic substitutions (NH → ND). Special attention was paid to the bridged proton dynamics in the DMANH+ complex, which was found to be affected by interactions with the HSO4− anion.
Collapse
|
88
|
Absolute ion hydration free energy scale and the surface potential of water via quantum simulation. Proc Natl Acad Sci U S A 2020; 117:30151-30158. [PMID: 33203676 DOI: 10.1073/pnas.2017214117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With a goal of determining an absolute free energy scale for ion hydration, quasi-chemical theory and ab initio quantum mechanical simulations are employed to obtain an accurate value for the bulk hydration free energy of the Na+ ion. The free energy is partitioned into three parts: 1) the inner-shell or chemical contribution that includes direct interactions of the ion with nearby waters, 2) the packing free energy that is the work to produce a cavity of size λ in water, and 3) the long-range contribution that involves all interactions outside the inner shell. The interfacial potential contribution to the free energy resides in the long-range term. By averaging cation and anion data for that contribution, cumulant terms of all odd orders in the electrostatic potential are removed. The computed total is then the bulk hydration free energy. Comparison with the experimentally derived real hydration free energy produces an effective surface potential of water in the range -0.4 to -0.5 V. The result is consistent with a variety of experiments concerning acid-base chemistry, ion distributions near hydrophobic interfaces, and electric fields near the surface of water droplets.
Collapse
|
89
|
Ibrahim MAA, Rady ASM, Al‐Fahemi JH, Telb EMZ, Ahmed SA, Shawky AM, Moussa NAM. ±
π‐Hole Interactions: A Comparative Investigation Based on Boron‐Containing Molecules. ChemistrySelect 2020. [DOI: 10.1002/slct.202003231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Al‐shimaa S. M. Rady
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Jabir H. Al‐Fahemi
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Ebtisam M. Z. Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| | - Saleh A. Ahmed
- Chemistry Department, Faculty of Applied Sciences Umm Al-Qura University Makkah 21955 Saudi Arabia
- Chemistry Department, Faculty of Science Assiut University Assiut 71519 Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU) Umm Al-Qura University Makkah 21955 Saudi Arabia
- Central Laboratory for Micro-analysis Minia University Minia 61519 Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science Minia University Minia 61519 Egypt
| |
Collapse
|
90
|
Chojecki M, Rutkowska-Zbik D, Korona T. Description of Chiral Complexes within Functional-Group Symmetry-Adapted Perturbation Theory-The Case of (S/R)-Carvone with Derivatives of (-)-Menthol. J Phys Chem A 2020; 124:7735-7748. [PMID: 32856904 PMCID: PMC7520888 DOI: 10.1021/acs.jpca.0c06266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Indexed: 11/29/2022]
Abstract
Symmetry-adapted perturbation theory (SAPT) and functional-group SAPT (F-SAPT) are applied to examine differences in interaction energies of diastereoisomeric complexes of two chiral molecules of natural origin: (S/R)-carvone with (-)-menthol. The study is extended by including derivatives of menthol with its hydroxy group exchanged by another functional group, thus examining the substituent effect of the interaction and the interaction differences between diastereoisomers. The partitioning of the interaction energy into functional-group components allows one to explain this phenomenon by the mutual cancellation of attractive and repulsive interactions between functional groups. In some cases, one can identify dominant chiral interactions between groups of atoms of carvone and menthol derivatives, while in many other instances, no major interaction can be distinguished and the net chiral difference results from subtle near cancellation of several smaller terms. Our results indicate that the F-SAPT method can be faithfully utilized for such analyses.
Collapse
Affiliation(s)
- Michał Chojecki
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Dorota Rutkowska-Zbik
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland
| | - Tatiana Korona
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
91
|
Řezáč J. Non-Covalent Interactions Atlas Benchmark Data Sets 2: Hydrogen Bonding in an Extended Chemical Space. J Chem Theory Comput 2020; 16:6305-6316. [DOI: 10.1021/acs.jctc.0c00715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Řezáč
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| |
Collapse
|
92
|
Uchida M, Shimizu T, Shibutani R, Matsumoto Y, Ishikawa H. A comprehensive infrared spectroscopic and theoretical study on phenol-ethyldimethylsilane dihydrogen-bonded clusters in the S 0 and S 1 states. J Chem Phys 2020; 153:104305. [PMID: 32933300 DOI: 10.1063/5.0019755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate microscopic characters of Si-H⋯H-O type dihydrogen bonds, we observed OH and SiH stretch bands in both the S0 and S1 states of phenol-ethyldimethylsilane (PhOH-EDMS) clusters by infrared (IR)-ultraviolet (UV) and UV-IR double resonance spectroscopies. Density functional theory (DFT) calculations and energy decomposition analysis were also performed. Structures of two isomers identified were unambiguously determined through the analysis of IR spectra and DFT calculations. To discuss the strength of dihydrogen bond in various systems, we performed theoretical calculations on clusters of EDMS with several acidic molecules in addition to PhOH. It was revealed that charge-transfer interaction energies from a bonding σ orbital of SiH bond to an anti-bonding σ* orbital of OH bond well reflect strengths of dihydrogen bonds. Additionally, it was found that the red shift of SiH stretch frequencies can be used as a crude measure of the strength of dihydrogen bonds. Relationship between the red shifts of OH/SiH stretch frequencies and various electrostatic components of the interaction energy was examined. In the S1 state, large increases in red shifts were observed for both the OH and SiH stretch frequencies. Since the EDMS moiety is not associated with the electronic excitation in a cluster, the strength of dihydrogen bonds in the S1 and S0 states was able to be directly compared based on the red shifts of the SiH stretch bands. A significant increase in the red shift of SiH stretch frequency indicates a strengthening of the dihydrogen bonds during the electronic excitation of the PhOH moiety.
Collapse
Affiliation(s)
- Masaaki Uchida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Takutoshi Shimizu
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Ryo Shibutani
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Yoshiteru Matsumoto
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Haruki Ishikawa
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| |
Collapse
|
93
|
Firme CL. Local potential energy: A novel QTAIM tool to quantify the binding energy of classical hydrogen bonds. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
94
|
Juanes M, Usabiaga I, León I, Evangelisti L, Fernández JA, Lesarri A. The Six Isomers of the Cyclohexanol Dimer: A Delicate Test for Dispersion Models. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marcos Juanes
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
| | - Imanol Usabiaga
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
- Instituto Biofisika (CSIC, UPV/EHU) 48940 Leioa Spain
| | - Iker León
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
| | - Luca Evangelisti
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | - José A. Fernández
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
| |
Collapse
|
95
|
Alkorta I, Hill JG, Legon AC. An ab initio investigation of alkali-metal non-covalent bonds BLiR and BNaR (R = F, H or CH 3) formed with simple Lewis bases B: the relative inductive effects of F, H and CH 3. Phys Chem Chem Phys 2020; 22:16421-16430. [PMID: 32658222 DOI: 10.1039/d0cp02697b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alkali-metal bonds formed by simple molecules LiR and NaR (R = F, H or CH3) with each of the six Lewis bases B = OC, HCN, H2O, H3N, H2S and H3P were investigated by ab initio calculations at the CCSD(T)/AVTZ and CCSD(T)/awCVTZ levels of theory with the aim of characterising this type of non-covalent interaction. In some complexes, two minima were discovered, especially for those involving the NaR. The higher-energy minimum (referred to as Type I) for a given B was found to have geometry that is isomorphous with that of the corresponding hydrogen-bonded analogue BHF. The lower-energy minimum (when two were present) showed evidence of a significant secondary interaction of R with the main electrophilic region of B (Type II complexes). Energies DCBSe for dissociation of the complexes into separate components were found to be directly proportional to the intermolecular stretching force constant kσ The value of DCBSe could be partitioned into a nucleophilicity of B and an electrophilicity of LiR or NaR, with the order ELiH ⪆ ELiF = ELiCH3 for the LiR and ENaF > ENaH ≈ ENaCH3 for the NaR. For a given B, the order of the electrophilicities is ELiR > ENaR, which presumably reflects the fact that Li+ is smaller than Na+ and can approach the Lewis base more closely. A SAPT analysis revealed that the complexes BLiR and BNaR have larger electrostatic contributions to De than do the hydrogen- and halogen-bonded counterparts BHCl and BClF.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - J Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | - Anthony C Legon
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK.
| |
Collapse
|
96
|
Microsolvation of Histidine—A Theoretical Study of Intermolecular Interactions Based on AIM and SAPT Approaches. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Histidine is unique among amino acids because of its rich tautomeric properties. It participates in essential enzymatic centers, such as catalytic triads. The main aim of the study is the modeling of the change of molecular properties between the gas phase and solution using microsolvation models. We investigate histidine in its three protonation states, microsolvated with 1:6 water molecules. These clusters are studied computationally, in the gas phase and with water as a solvent (Polarizable Continuum Model, PCM) within the Density Functional Theory (DFT) framework. The structural analysis reveals the presence of intra- and intermolecular hydrogen bonds. The Atoms-in-Molecules (AIM) theory is employed to determine the impact of solvation on the charge flow within the histidine, with emphasis on the similarity of the two imidazole nitrogen atoms—topologically not equivalent, they are revealed as electronically similar due to the heterocyclic ring aromaticity. Finally, the Symmetry-Adapted Perturbation Theory (SAPT) is used to examine the stability of the microsolvation clusters. While electrostatic and exchange terms dominate in magnitude over polarization and dispersion, the sum of electrostatic and exchange term is close to zero. This makes polarization the factor governing the actual interaction energy. The most important finding of this study is that even with microsolvation, the polarization induced by the presence of implicit solvent is still significant. Therefore, we recommend combined approaches, mixing explicit water molecules with implicit models.
Collapse
|
97
|
Blagojević Filipović JP, Hall MB, Zarić SD. Stacking interactions of resonance-assisted hydrogen-bridged rings and C 6-aromatic rings. Phys Chem Chem Phys 2020; 22:13721-13728. [PMID: 32529195 DOI: 10.1039/d0cp01624a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stacking interactions between six-membered resonance-assisted hydrogen-bridged (RAHB) rings and C6-aromatic rings were systematically studied by analyzing crystal structures in the Cambridge Structural Database (CSD). The interaction energies were calculated by quantum-chemical methods. Although the interactions are stronger than benzene/benzene stacking interactions (-2.7 kcal mol-1), the strongest calculated RAHB/benzene stacking interaction (-3.7 kcal mol-1) is significantly weaker than the strongest calculated RAHB/RAHB stacking interaction (-4.7 kcal mol-1), but for a particular composition of RAHB rings, RAHB/benzene stacking interactions can be weaker or stronger than the corresponding RAHB/RAHB stacking interactions. They are also weaker than the strongest calculated stacking interaction between five-membered saturated hydrogen-bridged rings and benzene (-4.4 kcal mol-1) and between two five-membered saturated hydrogen-bridged rings (-4.9 kcal mol-1). SAPT energy decomposition analyses show that the strongest attractive term in RAHB/benzene stacking interactions is dispersion, however, it is mostly canceled by a repulsive exchange term; hence the geometries of the most stable structures are determined by an electrostatic term.
Collapse
Affiliation(s)
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Snežana D Zarić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
98
|
Juanes M, Usabiaga I, León I, Evangelisti L, Fernández JA, Lesarri A. The Six Isomers of the Cyclohexanol Dimer: A Delicate Test for Dispersion Models. Angew Chem Int Ed Engl 2020; 59:14081-14085. [DOI: 10.1002/anie.202005063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Marcos Juanes
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
| | - Imanol Usabiaga
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
- Instituto Biofisika (CSIC, UPV/EHU) 48940 Leioa Spain
| | - Iker León
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
| | - Luca Evangelisti
- Dipartimento di Chimica “G. Ciamician” Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | - José A. Fernández
- Departamento de Química Física Universidad del País Vasco Ap. 644 48080 Bilbao Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica—I.U. CINQUIMA Universidad de Valladolid Paseo de Belén, 7 47011 Valladolid Spain
| |
Collapse
|
99
|
Kaczmarek-Kędziera A. Gas Phase Computational Study of Diclofenac Adsorption on Chitosan Materials. Molecules 2020; 25:molecules25112549. [PMID: 32486148 PMCID: PMC7321203 DOI: 10.3390/molecules25112549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental pollution with non-steroidal anti-inflammatory drugs and their metabolites exposes living organisms on their long-lasting, damaging influence. Hence, the ways of non-steroidal anti-inflammatory drugs (NSAIDs) removal from soils and wastewater is sought for. Among the potential adsorbents, biopolymers are employed for their good availability, biodegradability and low costs. The first available theoretical modeling study of the interactions of diclofenac with models of pristine chitosan and its modified chains is presented here. Supermolecular interaction energy in chitosan:drug complexes is compared with the the mutual attraction of the chitosan dimers. Supermolecular interaction energy for the chitosan-diclofenac complexes is significantly lower than the mutual interaction between two chitosan chains, suggesting that the diclofenac molecule will encounter problems when penetrating into the chitosan material. However, its surface adsorption is feasible due to a large number of hydrogen bond donors and acceptors both in biopolymer and in diclofenac. Modification of chitosan material introducing long-distanced amino groups significantly influences the intramolecular interactions within a single polymer chain, thus blocking the access of diclofenac to the biopolymer backbone. The strongest attraction between two chitosan chains with two long-distanced amino groups can exceed 120 kcal/mol, while the modified chitosan:diclofenac interaction remains of the order of 20 to 40 kcal/mol.
Collapse
Affiliation(s)
- Anna Kaczmarek-Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
100
|
Garcia J, Podeszwa R, Szalewicz K. SAPT codes for calculations of intermolecular interaction energies. J Chem Phys 2020; 152:184109. [PMID: 32414261 DOI: 10.1063/5.0005093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available. SAPT is the preferred approach for generating such surfaces since it is seamlessly connected to the asymptotic expansion of interaction energy. SAPT2020 includes codes for automatic development of such surfaces, enabling generation of complete dimer surfaces with a rigid monomer approximation for dimers containing about one hundred atoms. These codes can also be used to obtain surfaces including internal degrees of freedom of monomers.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia at Katowice, Szkolna 9, Katowice, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|