51
|
Iron Deficiency - Not Only a Premenopausal Topic After Bariatric Surgery? Obes Surg 2021; 31:3242-3250. [PMID: 33821393 PMCID: PMC8175328 DOI: 10.1007/s11695-021-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/11/2022]
Abstract
Purpose In our centre, specialized high dose multivitamin supplementation designed to meet the needs of patients after gastric bypass surgery is routinely recommended in the early postoperative period. The aim of the present study was to analyse whether iron supplementation prescribed in clinical practice is sufficient in both sexes and whether multivitamin supplementation standardized for women might potentially lead to iron overload in men. Materials/Methods This was a retrospective study covering the period up to 36 months after bariatric surgery. Three groups were compared (men, premenopausal and postmenopausal women). The iron status was evaluated employing serum ferritin concentrations. Results A total of 283 patients who had at least one follow-up visit between January 2015 and April 2018 at a specialized academic outpatient centre were included (71 men, 130 premenopausal women, 82 postmenopausal women). Thirty-six months after surgery, 33.3%, 68.4% and 54.5% of the men, pre- and postmenopausal women, respectively, were iron deficient. The preoperative prevalence of excess ferritin levels was 13.7% in premenopausal, 3.0% in postmenopausal women, 5.7% in men and declined in the following months. Conclusion Iron deficiency is very common after gastric bypass surgery, and even high dosages of multivitamin and mineral supplements might not be sufficient to prevent the development of iron deficiency. Men, pre- and postmenopausal women differ in their prevalence of iron deficiency which demands adapted iron dosage regimens based on the sex and the age. Iron overload is rare in all observed groups and highest in premenopausal women. Graphical abstract ![]()
Collapse
|
52
|
Wáng YXJ. Physiological variation of liver iron concentration may not be dominantly responsible for the liver T1rho variations associated with age and gender. Quant Imaging Med Surg 2021; 11:1668-1673. [PMID: 33816199 DOI: 10.21037/qims-20-1250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
53
|
Festus OO, Agbebaku SO, Idonije BO, Oluba OM. Comparison of Serum Iron, Zinc, and Selenium Levels in Premenopausal and Postmenopausal Women in Ekpoma, Nigeria: A Descriptive Study. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2020. [DOI: 10.34172/ajmb.2020.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Estrogen deficiency following menopause creates an imbalance in plasma micronutrient resulting in several degenerative pathological conditions, including hypertension, cardiovascular disease, osteoporosis, etc. Objectives: The present study was designed to compare zinc (Zn), iron (Fe), and selenium (Se) concentrations between premenopausal and postmenopausal women. Methods: In this descriptive study a total of 200 participants were classified into two groups of postmenopausal (age range: 46-75 years, served as experimental) and premenopausal (age range: 30-45 years, served as control). Each group consisted of 100 subjects. After obtaining informed consent from all participants, blood samples were collected from the antecubital fossa vein of each participant by venipuncture. The concentrations of Fe, Zn, and Se in each blood sample were determined using Atomic Absorption Spectrophotometer. Results: No significant difference (P>0.05) was observed in serum Fe (114.24 ± 26.79 µg/dL), Zn (83.11 ± 20.45 µg/dL), and Se (41.99 ± 9.78 µg/dL) levels between the control and experimental groups. However, serum Fe and Zn showed progressive significant (P=0.04, 0.03, respectively) increase with increasing postmenopausal age. Conversely, serum Se concentration decreased significantly (P=0.03) with increasing menopausal age. Conclusion: Although no significant difference was observed in serum levels of Fe, Zn, and Se between pre- and post-menopausal women, the progressive significant increase in the serum Fe and Zn levels as well as significant decrease in serum Se level with advancing post-menopausal age portend a great risk.
Collapse
Affiliation(s)
- Oloruntoba O. Festus
- Department of Medical Laboratory Science, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Solomon O. Agbebaku
- Department of Chemical Pathology, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Blessing O. Idonije
- Department of Medical Biochemistry, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | - Olarewaju M. Oluba
- Department of Biochemistry, Food Safety & Toxicology Research Unit, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
54
|
Alfaro-Magallanes VM, Benito PJ, Rael B, Barba-Moreno L, Romero-Parra N, Cupeiro R, Swinkels DW, Laarakkers CM, Peinado AB, on behalf of the IronFEMME Study Group. Menopause Delays the Typical Recovery of Pre-Exercise Hepcidin Levels after High-Intensity Interval Running Exercise in Endurance-Trained Women. Nutrients 2020; 12:nu12123866. [PMID: 33348847 PMCID: PMC7766833 DOI: 10.3390/nu12123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Menopause commonly presents the gradual accumulation of iron in the body over the years, which is a risk factor for diseases such as cancer, osteoporosis, or cardiovascular diseases. Running exercise is known to acutely increase hepcidin levels, which reduces iron absorption and recycling. As this fact has not been studied in postmenopausal women, this study investigated the hepcidin response to running exercise in this population. Thirteen endurance-trained postmenopausal women (age: 51.5 ± 3.89 years; height: 161.8 ± 4.9 cm; body mass: 55.9 ± 3.6 kg; body fat: 24.7 ± 4.2%; peak oxygen consumption: 42.4 ± 4.0 mL·min-1·kg-1) performed a high-intensity interval running protocol, which consisted of 8 × 3 min bouts at 85% of the maximal aerobic speed with 90-second recovery. Blood samples were collected pre-exercise, 0, 3, and 24 hours post-exercise. As expected, hepcidin exhibited higher values at 3 hours post-exercise (3.69 ± 3.38 nmol/L), but also at 24 hours post-exercise (3.25 ± 3.61 nmol/L), in comparison with pre-exercise (1.77 ± 1.74 nmol/L; p = 0.023 and p = 0.020, respectively) and 0 hour post-exercise (2.05 ± 2.00 nmol/L; p = 0.021 and p = 0.032, respectively) concentrations. These differences were preceded by a significant increment of interleukin-6 at 0 hour post-exercise (3.41 ± 1.60 pg/mL) compared to pre-exercise (1.65 ± 0.48 pg/m, p = 0.003), 3 hours (1.50 ± 0.00 pg/mL, p = 0.002) and 24 hours post-exercise (1.52 ± 0.07 pg/mL, p = 0.001). Hepcidin peaked at 3 hours post-exercise as the literature described for premenopausal women but does not seem to be fully recovered to pre-exercise levels within 24 hours post-exercise, as it would be expected. This suggests a slower recovery of basal hepcidin levels in postmenopausal women, suggesting interesting applications in order to modify iron homeostasis as appropriate, such as the prevention of iron accumulation or proper timing of iron supplementation.
Collapse
Affiliation(s)
- Víctor M. Alfaro-Magallanes
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Pedro J. Benito
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
- Correspondence: ; Tel.: +34-910-677-866
| | - Beatriz Rael
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Laura Barba-Moreno
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | - Dorine W. Swinkels
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Coby M. Laarakkers
- Translational Metabolic Laboratory (TML 830), Medical Center, Department of Laboratory Medicine, Radboud University, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; (D.W.S.); (C.M.L.)
- Hepcidinanalysis.com, Geert Grooteplein 10 (830), 6525 GA Nijmegen, The Netherlands
| | - Ana B. Peinado
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (V.M.A.-M.); (B.R.); (L.B.-M.); (N.R.-P.); (R.C.); (A.B.P.)
| | | |
Collapse
|
55
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, Xu L, Wang L, Zhou J. Targeting ferroptosis in breast cancer. Biomark Res 2020; 8:58. [PMID: 33292585 PMCID: PMC7643412 DOI: 10.1186/s40364-020-00230-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a recently discovered distinct type of regulated cell death caused by the accumulation of lipid-based ROS. Metabolism and expression of specific genes affect the occurrence of ferroptosis, making it a promising therapeutic target to manage cancer. Here, we describe the current status of ferroptosis studies in breast cancer and trace the key regulators of ferroptosis back to previous studies. We also compare ferroptosis to common regulated cell death patterns and discuss the sensitivity to ferroptosis in different subtypes of breast cancer. We propose that viewing ferroptosis-related studies from a historical angle will accelerate the development of ferroptosis-based biomarkers and therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Dengdi Hu
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Wenying Zhuo
- Cixi People’s Hospital Medical and Health Group, 315300 Ningbo, Zhejiang China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310000 Zhejiang China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, 310000 Hangzhou, Zhejiang China
| |
Collapse
|
56
|
Burton LH, Radakovich LB, Marolf AJ, Santangelo KS. Systemic iron overload exacerbates osteoarthritis in the strain 13 guinea pig. Osteoarthritis Cartilage 2020; 28:1265-1275. [PMID: 32629162 PMCID: PMC7484276 DOI: 10.1016/j.joca.2020.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Iron is emerging as a key player in aging-associated diseases due to its propensity for driving free radical formation. Studies examining the role of iron in the pathogenesis of primary osteoarthritis (OA) are limited. Our objective was to establish a direct relationship between excess iron and OA by administering iron dextran to a guinea pig strain with decreased propensity for developing this disease. DESIGN Twenty, 12-week-old Strain 13 guinea pigs received either iron dextran or dextran control intraperitoneally once weekly for 4 weeks; termination occurred at 16 weeks of age. Iron levels were determined systemically (serum and liver) and within diarthrodial joints [femoral head articular cartilage and infrapatellar fat pads (IFPs) of knee joints]. One knee was collected to score structural changes associated with OA via microcomputed tomography (microCT) and histology using published grading schemes. Articular cartilage and IFPs were harvested from contralateral knees for gene expression analyses. RESULTS Iron overload was confirmed systemically via increased serum iron and liver iron concentration. Articular cartilage and IFPs in the iron dextran group also had higher levels of iron. Excess iron worsened knee OA using both microCT and histologic scoring systems. Gene analyses revealed that exogenous iron altered the expression of iron trafficking proteins, select cytokines, and structural components of cartilage. CONCLUSION These results demonstrate that systemic iron overload caused cellular iron accumulation in the knee joint. This excess iron is associated with increased expression of local inflammatory mediators and early onset and progression of knee joint OA in Strain 13 animals.
Collapse
Affiliation(s)
- Lindsey H. Burton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren B. Radakovich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Angela J. Marolf
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
57
|
Grubić Kezele T, Ćurko-Cofek B. Age-Related Changes and Sex-Related Differences in Brain Iron Metabolism. Nutrients 2020; 12:E2601. [PMID: 32867052 PMCID: PMC7551829 DOI: 10.3390/nu12092601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Iron is an essential element that participates in numerous cellular processes. Any disruption of iron homeostasis leads to either iron deficiency or iron overload, which can be detrimental for humans' health, especially in elderly. Each of these changes contributes to the faster development of many neurological disorders or stimulates progression of already present diseases. Age-related cellular and molecular alterations in iron metabolism can also lead to iron dyshomeostasis and deposition. Iron deposits can contribute to the development of inflammation, abnormal protein aggregation, and degeneration in the central nervous system (CNS), leading to the progressive decline in cognitive processes, contributing to pathophysiology of stroke and dysfunctions of body metabolism. Besides, since iron plays an important role in both neuroprotection and neurodegeneration, dietary iron homeostasis should be considered with caution. Recently, there has been increased interest in sex-related differences in iron metabolism and iron homeostasis. These differences have not yet been fully elucidated. In this review we will discuss the latest discoveries in iron metabolism, age-related changes, along with the sex differences in iron content in serum and brain, within the healthy aging population and in neurological disorders such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke.
Collapse
Affiliation(s)
- Tanja Grubić Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
58
|
Barton JC, Wiener HH, Acton RT, Adams PC, Eckfeldt JH, Gordeuk VR, Harris EL, McLaren CE, Harrison H, McLaren GD, Reboussin DM. Prevalence of iron deficiency in 62,685 women of seven race/ethnicity groups: The HEIRS Study. PLoS One 2020; 15:e0232125. [PMID: 32324809 PMCID: PMC7179917 DOI: 10.1371/journal.pone.0232125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Few cross-sectional studies report iron deficiency (ID) prevalence in women of different race/ethnicity and ages in US or Canada. MATERIALS AND METHODS We evaluated screening observations on women who participated between 2001-2003 in a cross-sectional, primary care-based sample of adults ages ≥25 y whose observations were complete: race/ethnicity; age; transferrin saturation; serum ferritin; and HFE p.C282Y and p.H63D alleles. We defined ID using a stringent criterion: combined transferrin saturation <10% and serum ferritin <33.7 pmol/L (<15 μg/L). We compared ID prevalence in women of different race/ethnicity subgrouped by age and determined associations of p.C282Y and p.H63D to ID overall, and to ID in women ages 25-44 y with or without self-reported pregnancy. RESULTS These 62,685 women included 27,079 whites, 17,272 blacks, 8,566 Hispanics, 7,615 Asians, 449 Pacific Islanders, 441 Native Americans, and 1,263 participants of other race/ethnicity. Proportions of women with ID were higher in Hispanics and blacks than whites and Asians. Prevalence of ID was significantly greater in women ages 25-54 y of all race/ethnicity groups than women ages ≥55 y of corresponding race/ethnicity. In women ages ≥55 y, ID prevalence did not differ significantly across race/ethnicity. p.C282Y and p.H63D prevalence did not differ significantly in women with or without ID, regardless of race/ethnicity, age subgroup, or pregnancy. CONCLUSIONS ID prevalence was greater in Hispanic and black than white and Asian women ages 25-54 y. p.C282Y and p.H63D prevalence did not differ significantly in women with or without ID, regardless of race/ethnicity, age subgroup, or pregnancy.
Collapse
Affiliation(s)
- James C. Barton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA and Southern Iron Disorders Center, Birmingham, AL, United States of America
| | - Howard H. Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ronald T. Acton
- USA and Southern Iron Disorders Center, Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Paul C. Adams
- Department of Medicine, London Health Sciences Centre, London, ONT, Canada
| | - John H. Eckfeldt
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Emily L. Harris
- Division of Cancer Control and Population Sciences, Epidemiology and Genomics Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Christine E. McLaren
- Department of Epidemiology, University of California, Irvine, CA, United States of America
| | - Helen Harrison
- The Western-Fanshawe Collaborative BScN Program, Fanshawe College, London, ONT, Canada
| | - Gordon D. McLaren
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA, USA and Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA, United States of America
| | - David M. Reboussin
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
59
|
Enhanced insulin signaling and its downstream effects in iron-overloaded primary hepatocytes from hepcidin knock-out mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118621. [DOI: 10.1016/j.bbamcr.2019.118621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/08/2019] [Accepted: 12/03/2019] [Indexed: 12/22/2022]
|
60
|
Jiang L, Wang K, Lo K, Zhong Y, Yang A, Fang X, Akezhuoli H, Song Z, Chen L, An P, Xu M, Min J, Wang F. Sex-Specific Association of Circulating Ferritin Level and Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Studies. J Clin Endocrinol Metab 2019; 104:4539-4551. [PMID: 31074789 DOI: 10.1210/jc.2019-00495] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
CONTEXT Although the role of iron in the development of type 2 diabetes (T2D) has long been a concern, prospective studies directly linking body iron stores to T2D risk in a sex-dependent context have been inconsistent. OBJECTIVE A systematic meta-analysis was conducted to explore the sex-specific association of circulating ferritin with T2D risk. DATA SOURCES We searched PubMed, Web of Science, and EMBASE databases to identify available prospective studies through 1 August 2018. RESULTS Fifteen prospective studies comprising 77,352 participants and 18,404 patients with T2D, aged 20 to 80 years, and with ∼3 to 17 years of follow-up were identified. For each 100-μg/L increment in ferritin levels of overall participants, T2D risk increased by 22% (RR, 1.22; 95% CI, 1.14 to 1.31). Of note, major heterogeneities by sex were identified, with increased ferritin level having an apparently greater effect on T2D risk in women (RR, 1.53; 95% CI, 1.29 to 1.82) than in men (RR, 1.21; 95% CI, 1.15 to 1.27) after exclusion of a study with high heterogeneity (41,512 men and 6974 women for sex-specific analyses; P = 0.020 for sex difference). Further nonlinear analysis between circulating ferritin and T2D risk also showed sex-dimorphic association in that the T2D risk of women was twice as strong in magnitude as that of men at the same ferritin level. CONCLUSIONS Greater circulating ferritin levels were independently associated with increased T2D risk, which appeared stronger among women than men. Our findings provide prospective evidence for further testing of the utility of ferritin levels in predicting T2D risk in a sex-specific manner.
Collapse
Affiliation(s)
- Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- The First Affiliated Hospital, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kenneth Lo
- Departments of Cardiology and Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Global Cardiometabolic Health, Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Yueyang Zhong
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Aimin Yang
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Kong Kong SAR, China
| | - Xuexian Fang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hailati Akezhuoli
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyun Chen
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
- The First Affiliated Hospital, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
61
|
INVESTIGATION OF FACTORS POTENTIALLY ASSOCIATED WITH SERUM FERRITIN CONCENTRATIONS IN THE BLACK RHINOCEROS ( DICEROS BICORNIS) USING A VALIDATED RHINOCEROS-SPECIFIC ASSAY. J Zoo Wildl Med 2019; 49:297-306. [PMID: 29900786 DOI: 10.1638/2017-0131.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron overload disorder (IOD) can lead to organ dysfunction and may exacerbate other diseases in the critically endangered black rhinoceros ( Diceros bicornis). It is important to develop methods for monitoring the progression of iron storage (hemosiderosis), diagnosing the disease, and evaluating treatments in this species. Traditionally, an equine enzyme immunoassay (EIA) was used to measure rhinoceros ferritin, a serum protein correlated to iron stores. The goal of this study was to validate a rhinoceros-specific assay and investigate factors potentially associated with ferritin concentrations in black rhinoceros. A ferritin EIA developed for Sumatran rhinoceros was validated for black rhinoceros via Western blot analysis of liver ferritin and confirmed parallelism of serum samples to the EIA standard curve and used to analyze serum samples ( n = 943) collected from 36 black rhinoceros (<1-33 yr) at 14 U.S. institutions. Mean (±SEM) serum ferritin concentration was 6,738 ± 518 ng/ml (range: 85-168,451 ng/ml). Concentrations differed among individuals with eastern black rhinoceros (7,444 ± 1,130 ng/ml) having a higher mean ferritin than southern black rhinoceros (6,317 ± 505 ng/ml; P < 0.05) and higher mean values in wild-born (11,110 ± 1,111 ng/ml) than captive-born individuals (3,487 ± 293 ng/ml; P < 0.05). Ferritin concentrations did not differ between young rhinoceros (<5 yr old; 2,163 ± 254 ng/ml) and adults (7,623 ± 610 ng/ml) and were not correlated with age ( r = 0.143) or time in captivity ( r = 0.146, wild born; r = 0.104, all animals). Ferritin concentration was not impacted by sex (female: 2,086 ± 190 ng/ml; male: 8,684 ± 717 ng/ml), date, month, or season of collection ( P > 0.05). Data indicate ferritin concentrations are variable and not necessarily associated with IOD; ferritin is not recommended for diagnosing or monitoring IOD in black rhinoceros.
Collapse
|
62
|
Wagner A, Alan B, Yilmaz D, Ahmad M, Liu P, Tangudu NK, Tuckermann JP, Vujic Spasic M. Despite Genetic Iron Overload, Hfe-Hemochromatosis Mice Do Not Show Bone Loss. JBMR Plus 2019; 3:e10206. [PMID: 31667458 PMCID: PMC6808227 DOI: 10.1002/jbm4.10206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent genetic iron overload disorders in Caucasians is caused by mutations in the HFE gene. Both HFE patients and Hfe‐mouse models develop a progressive accumulation of iron in the parenchymal cells of various tissues, eventually resulting in liver cirrhosis, hepatocellular carcinoma, cardiomyopathies, hypogonadism, and other pathologies. Clinical data and preclinical models have brought considerable attention to the correlation between iron overload and the development of osteoporosis in HFE/Hfe hemochromatosis. Our study critically challenges this concept. We show that systemic iron overload, at the degree present in Hfe−/− mice, does not associate with the microarchitecture impairment of long bones, thus excluding a negative effect of iron overload on bone integrity. We further reveal that Hfe actions in osteoblasts and osteoclasts are dispensable for the maintenance of bone and iron homeostasis in mice under steady‐state conditions. We conclude that, despite systemic iron overload, Hfe−/− mice present normal physiological bone homeostasis. © 2019 The Authors. JBMR Plus in published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alessa Wagner
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | - Betül Alan
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | - Dilay Yilmaz
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | - Peng Liu
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | | | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, University of Ulm Ulm Germany
| |
Collapse
|
63
|
Doan TT, Koo BB, Ogilvie RP, Redline S, Lutsey PL. Restless legs syndrome and periodic limb movements during sleep in the Multi-Ethnic Study of Atherosclerosis. Sleep 2019; 41:5026504. [PMID: 29860522 DOI: 10.1093/sleep/zsy106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Indexed: 01/24/2023] Open
Abstract
Study Objectives To investigate the prevalence of concurrent periodic limb movements during sleep (PLMS) and restless leg syndrome (RLS), as well as the prevalence of PLMS and RLS separately. Additionally, we document these prevalences by age, race/ethnicity, sex, and obesity status. Methods Cross-sectional data from 2041 Multi-Ethnic Study of Atherosclerosis (MESA) Sleep ancillary study participants were used. PLMS (>15 periodic limb movements per hour of sleep) was measured by polysomnography. RLS symptoms were assessed using the 2009 International Restless Legs Syndrome Study Group clinical criteria. Results The prevalence of RLS with PLMS was 6.7%, RLS alone 16.1%, and PLMS alone 21.2%. RLS with PLMS was prevalent in 7.0% of whites, 4.9% of blacks, 10.1% of Hispanics, and 3.3% of Chinese-Americans. In adjusted models, odds of RLS with PLMS was higher for those older than 67 years versus those younger (odds ratio [OR] [95% confidence interval [CI]] = 1.62 [1.09-2.40]). Relative to white participants, the prevalence of RLS with PLMS tended to be lower among blacks (0.56 [0.32-0.96]). The prevalence of concurrent RLS and PLMS did not statistically differ by sex or obesity status. RLS alone was more common in women. Conclusions Approximately 7% of our sample had RLS with PLMS ("electro-clinical RLS"). This condition was more common among older individuals, did not vary by sex, and was less common among blacks. The findings provide some of the first information about the prevalence of concurrent RLS and PLMS in a community-based sample and show distinct sex and race associations for RLS versus electro-clinical RLS.
Collapse
Affiliation(s)
- Thu T Doan
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Brian B Koo
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Neurology, Connecticut Veterans Affairs Health System, West Haven, CT
| | - Rachel P Ogilvie
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Susan Redline
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Boston, MA
| | - Pamela L Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
64
|
Verma S, Prescott R, Cherayil BJ. The commensal bacterium Bacteroides fragilis down-regulates ferroportin expression and alters iron homeostasis in macrophages. J Leukoc Biol 2019; 106:1079-1088. [PMID: 31166618 DOI: 10.1002/jlb.2a1018-408rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal microbiota has several effects on host physiology. Previous work from our laboratory demonstrated that the microbiota influences systemic iron homeostasis in mouse colitis models by altering inflammation-induced expression of the iron-regulating hormone hepcidin. In the present study, we examined the impact of the gut commensal bacterium Bacteroides fragilis on the expression of the iron exporter ferroportin, the target of hepcidin action, in macrophages, the cell type that plays a pivotal role in iron recycling. Mouse bone marrow-derived macrophages were exposed to B. fragilis and were analyzed by quantitative real-time polymerase chain reaction and Western blotting. We found that B. fragilis down-regulated ferroportin transcription independently of bacterial viability. Medium conditioned by the bacteria also reduced ferroportin expression, indicating the involvement of soluble factors, possibly Toll-like receptor ligands. Consistent with this idea, several of these ligands were able to down-regulate ferroportin. The B. fragilis-induced decrease in ferroportin was functionally important since it produced a significant increase in intracellular iron concentrations that prevented the effects of the iron chelator deferoxamine on Salmonella-induced IL-6 and IL-1β production. Our results thus reveal that B. fragilis can influence macrophage iron handling and inflammatory responses by modulating ferroportin expression.
Collapse
Affiliation(s)
- Smriti Verma
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel Prescott
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bobby J Cherayil
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
65
|
Holzknecht E, Hochleitner M, Wenning GK, Högl B, Stefani A. Gender differences in clinical, laboratory and polysomnographic features of restless legs syndrome. J Sleep Res 2019; 29:e12875. [PMID: 31162763 PMCID: PMC7317508 DOI: 10.1111/jsr.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Restless legs syndrome is a common neurological disorder with a clear female predominance. This study aims to evaluate gender differences in clinical, laboratory and polysomnographic features in patients with restless legs syndrome. For this retrospective analysis, 42 women and 42 men from the Innsbruck RLS database matched by age and therapy were included. Demographic data as well as different severity scales (IRLS, RLS‐6 and CGI) were evaluated. Laboratory parameters included several indicators of serum iron status. In all patients, polysomnography was performed according to the AASM guidelines, and periodic leg movements during sleep were scored according to the AASM criteria. IRLS, RLS‐6 and CGI revealed more severe symptoms in women (IRLS median [range]: 17.5 [0–35] versus 13.5 [0–32], p = 0.028; RLS‐6 median [range]: 18 [0–39] versus 12 [1–42], p = 0.014). Women had lower serum ferritin levels than men (median [range] in μg L−1: 74 [9–346] versus 167 [15–389], p < 0.001). Twenty‐two women and eight men (53.7% versus 22.2%, p = 0.003) had ferritin values below 75 μg L−1. Periodic leg movements during sleep indices were significantly lower in women than in men (median [range] in number per hr: 11.4 [0–62.5] versus 40 [0–154], p = 0.004, and 12.6 [0–58.5] versus 40 [0.5–208], p = 0.002, for night I and night II, respectively). Restless legs syndrome severity as measured by validated scales was worse in women, while periodic leg movements during sleep indices were higher in men. These results suggest a possible gender difference in phenotypical presentation of restless legs syndrome, manifesting with predominantly sensory symptoms in women and predominantly motor symptoms in men.
Collapse
Affiliation(s)
- Evi Holzknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
66
|
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension. Antioxidants (Basel) 2019; 8:antiox8050135. [PMID: 31100969 PMCID: PMC6562572 DOI: 10.3390/antiox8050135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology.
Collapse
|
67
|
Son R, Fujimaru T, Kimura T, Taki F, Futatsuyama M, Nagahama M, Nakayama M, Komatsu Y. Association between serum ferritin levels and clinical outcomes in maintenance hemodialysis patients: a retrospective single-center cohort study. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0212-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
68
|
McLaren CE, Chen WP, Bertalli NA, Delatycki MB, Giles GG, English DR, Hopper JL, Allen KJ, Gurrin LC. Bivariate mixture models for the joint distribution of repeated serum ferritin and transferrin saturation measured 12 years apart in a cohort of healthy middle-aged Australians. PLoS One 2019; 14:e0214196. [PMID: 30913256 PMCID: PMC6435128 DOI: 10.1371/journal.pone.0214196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/10/2019] [Indexed: 11/25/2022] Open
Abstract
Homozygosity for the p.C282Y substitution in the HFE protein encoded by the hemochromatosis gene on chromosome 6p (HFE) is a common genetic trait that increases susceptibility to iron overload. McLaren et al. used bivariate mixture modeling to analyze the joint population distribution of transferrin saturation (TS) and serum ferritin concentration (SF) measured for participants in the Hemochromatosis and Iron Overload Screening (HEIRS) Study. They identified four components (C1, C2, C3, and C4) with successively increasing means for TS and SF. They demonstrated that bivariate mixture modeling in TS and SF reflect the genetic locus of HFE and may isolate p.C282Y homozygotes from the general population. In the current study we used data from the another large cohort, the Australian HealthIron study of genetic and environmental modifiers of hereditary hemochromatosis, to validate the component analysis approach, to examine stability of component proportions over time and to determine if TS and SF values from an individual move between components at baseline and follow-up. Because sampling fractions from each p.C282Y / p.H63D genotype stratum are not equal, we used frequency weights based on the inverse of the probability of selection for invitation to participate. In the weighted female analytic cohorts, C4 captured most of C282Y homozygotes, and C2 was the largest component. We identified four components from the weighted male analytic cohort and C4 captured most of p.C282Y homozygotes. The bivariate mixture modeling approach suggested that the model is transferable from one white population to another, although estimated means within components may differ.
Collapse
Affiliation(s)
- Christine E McLaren
- Department of Epidemiology, University of California, Irvine, California, United States of America
| | - Wen-Pin Chen
- Chao Family Comprehensive Cancer Center, Orange, California, United States of America
| | - Nadine A Bertalli
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Martin B Delatycki
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Australia
- Victorian Clinical Genetics Services, Melbourne, Australia
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Katrina J Allen
- Murdoch Childrens Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Australia
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Lyle C Gurrin
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
69
|
Segrestin B, Moreno-Navarrete JM, Seyssel K, Alligier M, Meugnier E, Nazare JA, Vidal H, Fernandez-Real JM, Laville M. Adipose Tissue Expansion by Overfeeding Healthy Men Alters Iron Gene Expression. J Clin Endocrinol Metab 2019; 104:688-696. [PMID: 30260393 DOI: 10.1210/jc.2018-01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/20/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Iron overload has been associated with greater adipose tissue (AT) depots. We retrospectively studied the potential interactions between iron and AT during an experimental overfeeding in participants without obesity. METHODS Twenty-six participants (mean body mass index ± SD, 24.7 ± 3.1 kg/m2) underwent a 56-day overfeeding (+760 kcal/d). Serum iron biomarkers (ELISA), subcutaneous AT (SAT) gene expression, and abdominal AT distribution assessed by MRI were analyzed at the beginning and the end of the intervention. RESULTS Before intervention: SAT mRNA expression of the iron transporter transferrin (Tf) was positively correlated with the expression of genes related to lipogenesis (lipin 1, ACSL1) and lipid storage (SCD). SAT expression of the ferritin light chain (FTL) gene, encoding ferritin (FT), an intracellular iron storage protein, was negatively correlated to SREBF1, a gene related to lipogenesis. Serum FT (mean, 92 ± 57 ng/mL) was negatively correlated with the expression of SAT genes linked to lipid storage (SCD, DGAT2) and to lipogenesis (SREBF1, ACSL1). After intervention: Overfeeding led to a 2.3 ± 1.3-kg weight gain. In parallel to increased expression of lipid storage-related genes (mitoNEET, SCD, DGAT2, SREBF1), SAT Tf, SLC40A1 (encoding ferroportin 1, a membrane iron export channel) and hephaestin mRNA levels increased, whereas SAT FTL mRNA decreased, suggesting increased AT iron requirement. Serum FT decreased to 67 ± 43 ng/mL. However, no significant associations between serum iron biomarkers and AT distribution or expansion were observed. CONCLUSION In healthy men, iron metabolism gene expression in SAT is associated with lipid storage and lipogenesis genes expression and is modulated during a 56-day overfeeding diet.
Collapse
Affiliation(s)
- Berenice Segrestin
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Eating Disorder Unit, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Kevin Seyssel
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Maud Alligier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| | - Emmanuelle Meugnier
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Julie-Anne Nazare
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
| | - José Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Girona Biomedical Research Institute, Hospital Universitari de Girona Dr Josep Trueta, Departament de Medicina, Universitat de Girona, CIBER Fisiopatologia de la Obesidad y Nutricion, Girona, Spain
| | - Martine Laville
- Univ-Lyon, CarMeN Laboratory, and Centre de Recherche en Nutrition Humaine Rhône-Alpes, Université Claude Bernard Lyon1, Pierre Benite, France
- Endocrinology, Diabetes, and Nutrition Department, Groupe Hospitalier Sud, Hospices Civils de Lyon, Pierre Benite, France
- F-CRIN/FORCE Network, Pierre Bénite, France
| |
Collapse
|
70
|
Kim TJ, Jun JS, Kim KT, MD TW, Park BS, Lim JA, Byun JI, Sunwoo JS, Shin JW, Jung KY. Clinical Characteristics and Efficacy of Iron Treatment for Restless Legs Syndrome Patients
with Very Low Ferritin Levels. SLEEP MEDICINE RESEARCH 2018. [DOI: 10.17241/smr.2018.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Measurement of liver iron by magnetic resonance imaging in the UK Biobank population. PLoS One 2018; 13:e0209340. [PMID: 30576354 PMCID: PMC6303057 DOI: 10.1371/journal.pone.0209340] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
The burden of liver disease continues to increase in the UK, with liver cirrhosis reported to be the third most common cause of premature death. Iron overload, a condition that impacts liver health, was traditionally associated with genetic disorders such as hereditary haemochromatosis, however, it is now increasingly associated with obesity, type-2 diabetes and non-alcoholic fatty liver disease. The aim of this study was to assess the prevalence of elevated levels of liver iron within the UK Biobank imaging study in a cohort of 9108 individuals. Magnetic resonance imaging (MRI) was undertaken at the UK Biobank imaging centre, acquiring a multi-echo spoiled gradient-echo single-breath-hold MRI sequence from the liver. All images were analysed for liver iron and fat (expressed as proton density fat fraction or PDFF) content using LiverMultiScan. Liver iron was measured in 97.3% of the cohort. The mean liver iron content was 1.32 ± 0.32 mg/g while the median was 1.25 mg/g (min: 0.85 max: 6.44 mg/g). Overall 4.82% of the population were defined as having elevated liver iron, above commonly accepted 1.8 mg/g threshold based on biochemical iron measurements in liver specimens obtained by biopsy. Further analysis using univariate models showed elevated liver iron to be related to male sex (p<10−16, r2 = 0.008), increasing age (p<10−16, r2 = 0.013), and red meat intake (p<10−16, r2 = 0.008). Elevated liver fat (>5.6% PDFF) was associated with a slight increase in prevalence of elevated liver iron (4.4% vs 6.3%, p = 0.0007). This study shows that population studies including measurement of liver iron concentration are feasible, which may in future be used to better inform patient stratification and treatment.
Collapse
|
72
|
Jelani QUA, Harchandani B, Cable RG, Guo Y, Zhong H, Hilbert T, Newman JD, Katz SD. Effects of serial phlebotomy on vascular endothelial function: Results of a prospective double-blind randomized study. Cardiovasc Ther 2018; 36:e12470. [PMID: 30341986 DOI: 10.1111/1755-5922.12470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Blood donation has been proposed as a potential therapy to reduce risk of cardiovascular disease, but the effects of phlebotomy on vascular function in human subjects have not been well characterized. AIMS We conducted a prospective randomized double-blind study to determine the effects of serial phlebotomy on vascular endothelial function in the brachial artery. Eighty-four iron-replete, non-anemic subjects were randomly assigned to one of three study treatment groups: (a) four serial phlebotomy procedures each followed by intravenous infusion of placebo normal saline; (b) four serial phlebotomy procedures each followed by intravenous infusion to replete lost iron; and (c) four serial sham phlebotomy procedures each followed by intravenous infusion of placebo normal saline. Assigned phlebotomy procedures were conducted at 56-day intervals. We measured brachial artery reactivity (BAR, %) in response to transient oxidative stress induced by oral methionine with high-resolution duplex ultrasound imaging before and one week after the fourth study phlebotomy. RESULTS Before phlebotomy, oral methionine decreased BAR by -2.04% (95% CI -2.58%, -1.50%), P < 0.001) with no significant difference between groups (P = 0.42). After phlebotomy, the BAR response to oral methionine did not significantly change between groups (P = 0.53). Brachial artery nitroglycerin-mediated dilation did not change in response to phlebotomy. CONCLUSIONS Four serial phlebotomy procedures over six months with or without intravenous iron supplementation did not alter vascular endothelial function in the brachial artery when compared with sham phlebotomy.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Jelani
- Department of Medicine, New York University School of Medicine, New York University Langone Medical Center, New York City, New York
| | - Bhisham Harchandani
- Department of Medicine, New York University School of Medicine, New York University Langone Medical Center, New York City, New York
| | | | - Yu Guo
- Department of Population Health, New York University Langone Medical Center, New York City, New York
| | - Hua Zhong
- Department of Population Health, New York University Langone Medical Center, New York City, New York
| | - Timothy Hilbert
- Department of Medicine, New York University School of Medicine, New York University Langone Medical Center, New York City, New York
| | - Jonathan D Newman
- Department of Medicine, New York University School of Medicine, New York University Langone Medical Center, New York City, New York
| | - Stuart D Katz
- Department of Medicine, New York University School of Medicine, New York University Langone Medical Center, New York City, New York
| |
Collapse
|
73
|
Balogh E, Paragh G, Jeney V. Influence of Iron on Bone Homeostasis. Pharmaceuticals (Basel) 2018; 11:ph11040107. [PMID: 30340370 PMCID: PMC6316285 DOI: 10.3390/ph11040107] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Bone homeostasis is a complex process, wherein osteoclasts resorb bone and osteoblasts produce new bone tissue. For the maintenance of skeletal integrity, this sequence has to be tightly regulated and orchestrated. Iron overload as well as iron deficiency disrupt the delicate balance between bone destruction and production, via influencing osteoclast and osteoblast differentiation as well as activity. Iron overload as well as iron deficiency are accompanied by weakened bones, suggesting that balanced bone homeostasis requires optimal-not too low, not too high-iron levels. The goal of this review is to summarize our current knowledge about how imbalanced iron influence skeletal health. Better understanding of this complex process may help the development of novel therapeutic approaches to deal with the pathologic effects of altered iron levels on bone.
Collapse
Affiliation(s)
- Enikő Balogh
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| | - Viktória Jeney
- Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary.
| |
Collapse
|
74
|
Tanaka YK, Hirata T. Stable Isotope Composition of Metal Elements in Biological Samples as Tracers for Element Metabolism. ANAL SCI 2018; 34:645-655. [PMID: 29887552 DOI: 10.2116/analsci.18sbr02] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Stable isotope composition varies due to different reactivity or mobility among the isotopes. Various pioneering studies revealed that isotope fractionation is common for many elements, and it is now widely recognized that the stable isotope compositions of biometals can be used as new tracers for element metabolism. In this review, we summarize the recently published isotope compositions of iron (Fe), copper (Cu), zinc (Zn), and calcium (Ca) in various biological samples, including tissues from plants, animals, and humans. Discussions were carried out with respect to age, sex, organ, and the presence or absence of particular diseases for animals and humans. For Fe and Cu isotopes, changes in oxidation states generate large isotopic fractionation through the metabolism of those elements. Isotope composition of Zn greatly fractionates among tissues even without changes in oxidation state. Isotopic composition of Ca is a powerful tracer for the metabolism of Ca in bones. The review results suggest that the stable isotope compositions of the biometals can be used as effective markers for diagnostics of various kinds of diseases related to metabolic disorders.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Geochemical Research Center, The University of Tokyo
| | | |
Collapse
|
75
|
Serum ferritin levels are associated with insulin resistance in Chinese men and post-menopausal women: the Shanghai Changfeng study. Br J Nutr 2018; 120:863-871. [PMID: 30189905 DOI: 10.1017/s0007114518002167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between ferritin and insulin sensitivity have been described in recent studies. The possible association showed conflicting results by sex and menopausal status. We aimed to investigate the cross-sectional association of ferritin levels with insulin resistance and β-cell function. A total of 2518 participants (1033 men, 235 pre-menopausal women and 1250 post-menopausal women) were enrolled from the Changfeng Study. A standard interview was conducted, as well as anthropometric measurements and laboratory analyses, for each participant. The serum ferritin level was measured using electrochemiluminescence immunoassay. Insulin resistance and β-cell function indices were derived from a homeostasis model assessment. The results showed that the serum ferritin levels were 250·4 (sd 165·2), 94·6 (sd 82·0) and 179·8 (sd 126·6) ng/ml in the men, pre-menopausal and post-menopausal women, respectively. In fully adjusted models (adjusting for age, current smoking, BMI, waist:hip ratio, systolic blood pressure, diastolic blood pressure, TAG, HDL-cholesterol, LDL-cholesterol, log urine albumin:creatinine ratio, leucocytes, alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase), serum ferritin concentrations are significantly associated with insulin resistance in men and post-menopausal females, and the null association was observed in pre-menopausal females. Interestingly, an increased β-cell function associated with higher ferritin was observed in post-menopausal participants, but not in male participants. In conclusion, these results suggested that elevated serum ferritin levels were associated with surrogate measures of insulin resistance among the middle-aged and elderly male and post-menopausal women, but not in pre-menopausal women.
Collapse
|
76
|
Bian Z, Hann HW, Ye Z, Yin C, Wang Y, Fang W, Wan S, Wang C, Tao K. Ferritin level prospectively predicts hepatocarcinogenesis in patients with chronic hepatitis B virus infection. Oncol Lett 2018; 16:3499-3508. [PMID: 30127954 PMCID: PMC6096080 DOI: 10.3892/ol.2018.9099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
Previous studies have detected a higher level of ferritin in patients with hepatocellular carcinoma (HCC), but a potential causal association between serum ferritin level and hepatocarcinogenesis remains to be clarified. Using a well-established prospective cohort and longitudinally collected serial blood samples, the association between baseline ferritin levels and HCC risk were evaluated in 1,152 patients infected with hepatitis B virus (HBV), a major risk factor for HCC. The association was assessed by Cox proportional hazards regression model using univariate and multivariate analyses and longitudinal analysis. It was demonstrated that HBV patients who developed HCC had a significantly higher baseline ferritin level than those who remained cancer-free (188.00 vs. 108.00 ng/ml, P<0.0001). The patients with a high ferritin level (≥200 ng/ml) had 2.43-fold increased risk of HCC compared to those with lower ferritin levels [hazard ratio (HR), 2.43; 95% confidence interval, 1.63-3.63]. A significant trend of increasing HRs along with elevated ferritin levels was observed (P for trend <0.0001). The association was still significant after multivariate adjustment. Incorporating ferritin into the α-fetoprotein (AFP) model significantly improved the performance of HCC prediction (the area under the curve from 0.74 to 0.77, P=0.003). Longitudinal analysis showed that the average ferritin level in HBV patients who developed HCC was persistently higher than in those who were cancer-free during follow-up. HCC risk reached a peak at approximately the fifth year after baseline ferritin detection. Moreover, stratified analyses showed that the association was noted in both males and females, and was prominent in patients with a low AFP value. In short, serum ferritin level could independently predict the risk of HBV-related HCC and may have a complementary role in AFP-based HCC diagnosis. Future studies are warranted to validate these findings and test its clinical applicability in HCC prevention and management.
Collapse
Affiliation(s)
- Zhenyuan Bian
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hie-Won Hann
- Division of Gastroenterology and Hepatology, Department of Medicine, Liver Disease Prevention Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zhong Ye
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wan Fang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shaogui Wan
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, Henan 475004, P.R. China
| | - Chun Wang
- Division of Population Science, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
77
|
Serum levels of ferritin do not affect the prognosis of patients with hepatocellular carcinoma undergoing radiofrequency ablation. PLoS One 2018; 13:e0200943. [PMID: 30044835 PMCID: PMC6059486 DOI: 10.1371/journal.pone.0200943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 02/07/2023] Open
Abstract
Background & aims Hepatic iron accumulation can accelerate liver injury in patients with various chronic liver diseases and lead to hepatocarcinogenesis. We elucidated the impact of serum levels of ferritin on the prognosis of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA) in a large cohort. Methods We retrospectively analyzed 578 treatment-naïve HCC patients who underwent RFA. We divided our cohort into four groups by the quartile points of serum ferritin level: G1 (≤55 ng/mL, n = 148), G2 (56–130 ng/mL, n = 142), G3 (131–243 ng/mL, n = 144) and G4 (≥244 ng/mL, n = 144). We analyzed the recurrence and survival of patients using the Kaplan–Meier method. We also evaluated pathological iron deposition among patients with a solitary tumor smaller than 2 cm. Results The cumulative rates of overall recurrence and survival at 5 years were 81.6% and 66.3%, respectively. The serum levels of ferritin were correlated with pathological iron deposition. There were no significant differences in recurrence and survival rates according to serum levels of ferritin and pathological hepatic iron deposition. Conclusions Serum levels of ferritin do not affect the prognosis of HCC patients undergoing RFA.
Collapse
|
78
|
Significance of serum ferritin as a prognostic factor in advanced hepatobiliary cancer patients treated with Korean medicine: a retrospective cohort study. Altern Ther Health Med 2018; 18:176. [PMID: 29879960 PMCID: PMC5992645 DOI: 10.1186/s12906-018-2240-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Background Advanced hepatobiliary cancers are highly lethal cancers that require precise prediction in clinical practice. Serum ferritin level increases in malignancy and high serum ferritin level is associated with poor survival in various cancers. This study aimed to identify whether serum ferritin could independently predict the overall survival (OS) of patients with advanced hepatobiliary cancers. Methods The retrospective cohort study was performed by reviewing medical records of patients with advanced hepatobiliary cancers from June 2006 to September 2016. The demographic and clinicopathological characteristics as well as the biochemical markers were evaluated at the initiation of Korean medicine (KM) treatment. The OS was calculated using Kaplan-Meier estimates. The Cox proportional hazard model was used to identify the independent prognostic significance of serum ferritin for survival. Results The median OS of all subjects was 5.1 months (range, 0.5–114.9 months). The median OS of group with low ferritin levels and that with high ferritin levels was 7.5 months (range, 0.7–114.9 months) and 2.8 months (range, 0.5–22.8 months), respectively (P < 0.001). The results of the univariate analysis showed that the Eastern Cooperative Oncology Group Performance Status (ECOG-PS) (P = 0.002), tumor type (P = 0.001), prior treatment (P = 0.023), serum ferritin (P < 0.001), hemoglobin (P = 0.002), total bilirubin (P = 0.002), gamma-glutamyl transpeptidase (P = 0.007), albumin (P = 0.013), white blood cell (P = 0.002), and C-reactive protein (CRP) (P < 0.001) were significant factors for the patients’ survival outcome. On multivariate analysis controlling confounding factors, ferritin (P = 0.041), CRP (P = 0.010), ECOG-PS (P = 0.010), and tumor type (P = 0.018) were identified as independent prognostic factors for survival. Conclusions These results indicate that serum ferritin is a valid clinical biochemical marker to predict survival of patients with advanced hepatobiliary cancers.
Collapse
|
79
|
Wang L, Fang B, Fujiwara T, Krager K, Gorantla A, Li C, Feng JQ, Jennings ML, Zhou J, Aykin-Burns N, Zhao H. Deletion of ferroportin in murine myeloid cells increases iron accumulation and stimulates osteoclastogenesis in vitro and in vivo. J Biol Chem 2018; 293:9248-9264. [PMID: 29724825 DOI: 10.1074/jbc.ra117.000834] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/01/2018] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis, osteopenia, and pathological bone fractures are frequent complications of iron-overload conditions such as hereditary hemochromatosis, thalassemia, and sickle cell disease. Moreover, animal models of iron overload have revealed increased bone resorption and decreased bone formation. Although systemic iron overload affects multiple organs and tissues, leading to significant changes on bone modeling and remodeling, the cell autonomous effects of excessive iron on bone cells remain unknown. Here, to elucidate the role of cellular iron homeostasis in osteoclasts, we generated two mouse strains in which solute carrier family 40 member 1 (Slc40a1), a gene encoding ferroportin (FPN), the sole iron exporter in mammalian cells, was specifically deleted in myeloid osteoclast precursors or mature cells. The FPN deletion mildly increased iron levels in both precursor and mature osteoclasts, and its loss in precursors, but not in mature cells, increased osteoclastogenesis and decreased bone mass in vivo Of note, these phenotypes were more pronounced in female than in male mice. In vitro studies revealed that the elevated intracellular iron promoted macrophage proliferation and amplified expression of nuclear factor of activated T cells 1 (Nfatc1) and PPARG coactivator 1β (Pgc-1β), two transcription factors critical for osteoclast differentiation. However, the iron excess did not affect osteoclast survival. While increased iron stimulated global mitochondrial metabolism in osteoclast precursors, it had little influence on mitochondrial mass and reactive oxygen species production. These results indicate that FPN-regulated intracellular iron levels are critical for mitochondrial metabolism, osteoclastogenesis, and skeletal homeostasis in mice.
Collapse
Affiliation(s)
- Lei Wang
- From the Department of Orthopedics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China.,the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Bin Fang
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine.,the Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Toshifumi Fujiwara
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Akshita Gorantla
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Chaoyuan Li
- the Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas 75246
| | - Jian Q Feng
- the Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas 75246
| | - Michael L Jennings
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jian Zhou
- From the Department of Orthopedics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China,
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, and
| | - Haibo Zhao
- the Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology and Metabolism, Department of Internal Medicine, .,Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,the Research Department, Tibor Rubin Veterans Affairs Medical Center, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822, and.,the Division of Endocrinology, Department of Medicine, University of California at Irvine, Irvine, California 92697
| |
Collapse
|
80
|
Oh HL, Lee JA, Kim DH, Lim JS. Reference values for serum ferritin and percentage of transferrin saturation in Korean children and adolescents. Blood Res 2018; 53:18-24. [PMID: 29662858 PMCID: PMC5898989 DOI: 10.5045/br.2018.53.1.18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/13/2017] [Accepted: 09/01/2017] [Indexed: 11/17/2022] Open
Abstract
Background Ferritin reference values vary by age, gender, and ethnicity. We aimed to determine reference values of serum ferritin (SF) and the percentage of transferrin saturation (TSAT) for Korean children and adolescents. Methods We analyzed data from 2,487 participants (1,311 males and 1,176 females) aged 10-20 years from the Korea National Health and Nutrition Examination Survey (2010-2012). We calculated age- and gender-stratified means and percentile values for SF and TSAT. Results We first plotted mean SF and TSAT by gender and according to age. In males, mean SF tended to be relatively constant among participants aged 10 to 14 years, with an upward trend thereafter. Mean SF trended downward among female participants until the age of 15 years and remained constant thereafter. Thus, significant gender differences in ferritin exist from the age of 14 years. High levels of SF were associated with obesity, and lower SF levels were associated with anemia and menarche status. Conclusion We established reference values of SF and TSAT according to age and gender. The reference values for SF calculated in this study can be used to test the association between SF values and other defined diseases in Korean children and adolescents.
Collapse
Affiliation(s)
- Hea Lin Oh
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Jun Ah Lee
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Dong Ho Kim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Jung Sub Lim
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
81
|
Schreiber GB, Brinser R, Rosa-Bray M, Yu ZF, Simon T. Frequent source plasma donors are not at risk of iron depletion: the Ferritin Levels in Plasma Donor (FLIPD) study. Transfusion 2018. [DOI: 10.1111/trf.14489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Roger Brinser
- BioLife Plasma Services LP/Shire; Bannockburn Illinois
| | | | - Zi-Fan Yu
- Statistics Collaborative; Washington DC
| | | |
Collapse
|
82
|
Apostolakis S, Kypraiou AM. Iron in neurodegenerative disorders: being in the wrong place at the wrong time? Rev Neurosci 2018; 28:893-911. [PMID: 28792913 DOI: 10.1515/revneuro-2017-0020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
Abstract
Brain iron deposits have been reported consistently in imaging and histologic examinations of patients with neurodegenerative disorders. While the origins of this finding have not been clarified yet, it is speculated that impaired iron homeostasis or deficient transport mechanisms result in the accumulation of this highly toxic metal ultimately leading to formation of reactive oxygen species and cell death. On the other hand, there are also those who support that iron is just an incidental finding, a by product of neuronal loss. A literature review has been performed in order to present the key findings in support of the iron hypothesis of neurodegeneration, as well as to identify conditions causing or resulting from iron overload and compare and contrast their features with the most prominent neurodegenerative disorders. There is an abundance of experimental and observational findings in support of the hypothesis in question; however, as neurodegeneration is a rare incident of commonly encountered iron-associated disorders of the nervous system, and this metal is found in non-neurodegenerative disorders as well, it is possible that iron is the result or even an incidental finding in neurodegeneration. Understanding the underlying processes of iron metabolism in the brain and particularly its release during cell damage is expected to provide a deeper understanding of the origins of neurodegeneration in the years to come.
Collapse
|
83
|
The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients 2018; 10:nu10020167. [PMID: 29385099 PMCID: PMC5852743 DOI: 10.3390/nu10020167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/31/2022] Open
Abstract
Vitamin D may influence iron metabolism and erythropoiesis, whereas iron is essential for vitamin D synthesis. We examined whether vitamin D deficiencies (VDD) are associated with reduced iron status and whether progressive iron deficiency (ID) is accompanied by inferior vitamin D status. The study included 219 healthy female (14–34 years old) athletes. VDD was defined as a 25(OH)D concentration < 75 nmol/L. ID was classified based on ferritin, soluble transferrin receptor (sTfR), total iron binding capacity (TIBC) and blood morphology indices. The percentage of ID subjects was higher (32%) in the VDD group than in the 25(OH)D sufficient group (11%) (χ2 = 10.6; p = 0.001). The percentage of VDD subjects was higher (75%) in the ID than in the normal iron status group (48%) (χ2 = 15.6; p = 0.001). The odds ratios (ORs) for VDD increased from 1.75 (95% CI 1.02–2.99; p = 0.040) to 4.6 (95% CI 1.81–11.65; p = 0.001) with progressing iron deficiency. ID was dependent on VDD in both VDD groups (25(OH)D < 75 and < 50 nmol/L). The ID group had a lower 25(OH)D concentration (p = 0.000). The VDD group had lower ferritin (p = 0.043) and iron (p = 0.004) concentrations and higher values of TIBC (p = 0.016) and sTfR (p = 0.001). The current results confirm the association between vitamin D and iron status in female athletes, although it is difficult to assess exactly which of these nutrients exerts a stronger influence over the other.
Collapse
|
84
|
Peripheral iron levels in children with attention-deficit hyperactivity disorder: a systematic review and meta-analysis. Sci Rep 2018; 8:788. [PMID: 29335588 PMCID: PMC5768671 DOI: 10.1038/s41598-017-19096-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/16/2017] [Indexed: 01/11/2023] Open
Abstract
There is growing recognition that the risk of attention-deficit hyperactivity disorder (ADHD) in children may be influenced by micronutrient deficiencies, including iron. We conducted this meta-analysis to examine the association between ADHD and iron levels/iron deficiency (ID). We searched for the databases of the PubMed, ScienceDirect, Cochrane CENTRAL, and ClinicalTrials.gov up to August 9th, 2017. Primary outcomes were differences in peripheral iron levels in children with ADHD versus healthy controls (HCs) and the severity of ADHD symptoms in children with/without ID (Hedges' g) and the pooled adjusted odds ratio (OR) of the association between ADHD and ID. Overall, seventeen articles met the inclusion criteria. Peripheral serum ferritin levels were significantly lower in ADHD children (children with ADHD = 1560, HCs = 4691, Hedges' g = -0.246, p = 0.013), but no significant difference in serum iron or transferrin levels. In addition, the severity of ADHD was significantly higher in the children with ID than those without ID (with ID = 79, without ID = 76, Hedges' g = 0.888, p = 0.002), and there was a significant association between ADHD and ID (OR = 1.636, p = 0.031). Our results suggest that ADHD is associated with lower serum ferritin levels and ID. Future longitudinal studies are required to confirm these associations and to elucidate potential mechanisms.
Collapse
|
85
|
Zacharski LR, Shamayeva G, Chow BK. Iron reduction response and demographic differences between diabetics and non-diabetics with cardiovascular disease entered into a controlled clinical trial. Metallomics 2018; 10:264-277. [DOI: 10.1039/c7mt00282c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filings of elemental iron separated magnetically from a homogenate of breakfast cereal implicated in the risk of cardiovascular disease and diabetes.
Collapse
Affiliation(s)
- Leo R. Zacharski
- Veterans Affairs New England Health Care System
- Research Service (151)
- VA Medical Center
- White River Jct
- USA
| | - Galina Shamayeva
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| | - Bruce K. Chow
- Veterans Affairs Cooperative Studies Program Coordinating Center
- Veterans Affairs Palo Alto Health Care System
- Palo Alto
- USA
| |
Collapse
|
86
|
Wáng YXJ, Deng M, Lin J, Kwok AWL, Liu EKW, Chen W. Age- and Gender-Associated Liver Physiological T1rho Dynamics Demonstrated with a Clinically Applicable Single-Breathhold Acquisition. SLAS Technol 2017; 23:179-187. [PMID: 29241024 DOI: 10.1177/2472630317747198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand women's and men's physiological ranges of liver T1rho relaxation time measured with a single breathhold black blood sequence, this healthy volunteer study was conducted in 62 women (mean age, 38.9 y; range, 18-75 y) and 34 men (mean age, 44.7 y; range, 24-80 y). Approval from the institutional ethics committee was obtained. Magnetic resonance imaging was performed with a 3.0T scanner with six spin-lock times of 0, 10, 20, 25, 35, and 50 ms and a single breathhold of 12 s per slice acquisition. Six slices were acquired for each examination. The results demonstrated that the female liver T1rho value ranged between 35.07 and 51.97 ms and showed an age-dependent decrease, with younger women having a higher measurement. The male liver T1rho value ranged between 34.94 and 43.39 ms, with no evidential age dependence. Postmenopausal women had similar liver T1rho values as men. For women, there was a trend that the liver T1rho value could be 4% to 5% lower during the menstrual phase than during the nonmenstrual phase. For both women and men, no evidential association was seen between body mass index and liver T1rho.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Min Deng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Jiang Lin
- 2 Department of Radiology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anthony W L Kwok
- 3 Department of Orthopedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Eric K W Liu
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Weitian Chen
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| |
Collapse
|
87
|
Hoppe M, Önning G, Hulthén L. Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females-Double isotope sequential single-blind studies in menstruating women. PLoS One 2017; 12:e0189141. [PMID: 29236734 PMCID: PMC5728536 DOI: 10.1371/journal.pone.0189141] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The probiotic strain Lactobacillus plantarum 299v has earlier been shown to increase iron absorption when added to foods. However, it is not known if the same probiotic strain in a freeze-dried format included in a capsule increases the iron absorption. OBJECTIVE The aim of this study was to test the hypotheses that non-heme iron absorption from a light meal is promoted by a simultaneous intake of freeze-dried Lactobacillus plantarum 299v (Lp299v, DSM 9843). STUDY DESIGN With a single blinded placebo controlled sequential design, iron absorption from a light breakfast meal administered with or without capsules containing 1010 cfu freeze-dried Lp299v was studied in healthy female volunteers of fertile age. The methodology used was a double isotope technique (59Fe and 55Fe). Two studies were performed using the same protocol. RESULTS In study 1, the absorption of iron from a meal without Lp299v was found to be 17.4 ± 13.4%, and from an identical meal with Lp299v was found to be 22.4 ± 17.3% (mean ± SD). This difference was statistically significant (p = 0.040, n = 14). In study 2, the absorption of iron from a meal without Lp299v was found to be 20.9 ± 13.1%, and from an identical meal with Lp299v found to be 24.5 ± 12.0% (mean ± SD, n = 28), which again was statistically significant (p = 0.003). CONCLUSION Freeze-dried Lp299v enhances the absorption of iron when administered together with a meal with a high iron bioavailability. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02131870.
Collapse
Affiliation(s)
- Michael Hoppe
- Department of Gastroenterology and Hepatology, Section for Clinical Nutrition, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunilla Önning
- Biomedical Nutrition, Pure and Applied Biochemistry, Center for Applied Life Sciences, Lund University, Lund, Sweden
- Probi AB, Ideon Gamma 1, Lund, Sweden
| | - Lena Hulthén
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
88
|
Gordeuk VR, Brannon PM. Ethnic and genetic factors of iron status in women of reproductive age. Am J Clin Nutr 2017; 106:1594S-1599S. [PMID: 29070555 PMCID: PMC5701719 DOI: 10.3945/ajcn.117.155853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: African Americans are at increased risk of iron deficiency (ID) but also have higher serum ferritin (SF) concentrations than those of the general population. The Hemochromatosis and Iron Overload Screening (HEIRS) Study was a multicenter study of ethnically diverse participants that tested for the hemochromatosis (HFE) C282Y genotype and iron status.Objective: We sought to determine the prevalence and predictors of ID (SF concentration ≤15 μg/L) and elevated iron stores (SF concentration >300 μg/L) in HEIRS women of reproductive age (25-44 y).Design: The HEIRS Study was a cross-sectional study of iron status and HFE mutations in primary care patients at 5 centers in the United States and Canada. We analyzed data for women of reproductive age according to whether or not they were pregnant or breastfeeding at the time of the study.Results: ID was present in 12.5% of 20,080 nonpregnant and nonbreastfeeding women compared with 19.2% of 1962 pregnant or breastfeeding women (P < 0.001). Asian American ethnicity (OR ≤0.9; P ≤ 0.049) and HFE C282Y (OR ≤0.84; P ≤ 0.060) were independently associated with a decreased risk of ID in nonpregnant and nonbreastfeeding women and in pregnant or breastfeeding women. Hispanic ethnicity (OR: 1.8; P < 0.001) and African American ethnicity (OR: 1.6; P < 0.001) were associated with an increased risk of ID in nonpregnant and nonbreastfeeding women. Elevated iron stores were shown in 1.7% of nonpregnant and nonbreastfeeding women compared with 0.7% of pregnant or breastfeeding women (P = 0.001). HFE C282Y homozygosity had the most marked independent association with elevated iron stores in nonpregnant and nonbreastfeeding women and in pregnant or breastfeeding women (OR >49.0; P < 0.001), but African American ethnicity was also associated with increased iron stores in both groups of women (OR >2.0; P < 0.001). Asian American ethnicity (OR: 1.8; P = 0.001) and HFE C282Y heterozygosity (OR: 1.9; P = 0.003) were associated with increased iron stores in nonpregnant and nonbreastfeeding women.Conclusions: Both ID and elevated iron stores are present in women of reproductive age and are influenced by ethnicity and HFE C282Y. Efforts to optimize iron status should keep these findings in view. This study was registered at clinicaltrials.gov as NCT03276247.
Collapse
Affiliation(s)
- Victor R Gordeuk
- Division of Hematology & Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL;
| | - Patsy M Brannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, and,Office of Dietary Supplements, NIH, Bethesda, MD
| |
Collapse
|
89
|
Wáng YXJ, Chen W, Deng M. How liver pathologies contribute to T1rho contrast require more careful studies. Quant Imaging Med Surg 2017; 7:608-613. [PMID: 29184772 DOI: 10.21037/qims.2017.10.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, the Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, the Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Min Deng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, the Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| |
Collapse
|
90
|
Ruan Q, D'onofrio G, Wu T, Greco A, Sancarlo D, Yu Z. Sexual dimorphism of frailty and cognitive impairment: Potential underlying mechanisms (Review). Mol Med Rep 2017; 16:3023-3033. [PMID: 28713963 DOI: 10.3892/mmr.2017.6988] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/01/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to assess systematically gender differences in susceptibility to frailty and cognitive performance decline, and the underlying mechanisms. A systematic assessment was performed of the identified reviews of cohort, mechanistic and epidemiological studies. The selection criteria of the present study included: i) Sexual dimorphism of frailty, ii) sexual dimorphism of subjective memory decline (impairment) and atrophy of hippocampus during early life, iii) sexual dimorphism of late‑onset Alzheimer's disease and iv) sexual dimorphism mechanisms underlying frailty and cognitive impairment. Males exhibit a susceptibility to poor memory performance and a severe atrophy of the hippocampus during early life and females demonstrate a higher prevalence for frailty and late‑life dementia. The different alterations within the hypothalamic‑pituitary‑gonadal/adrenal axis, particularly with regard to gonadal hormones, cortisol and dehydroepiandrosterone/sulfate‑bound dehydroepiandrosterone prior to and following andropause in males and menopause in females, serve important roles in sexual dimorphism of frailty and cognitive impairment. These endocrine changes may accelerate immunosenescence, weaken neuroprotective and neurotrophic effects, and promote muscle catabolism. The present study suggested that these age‑associated endocrine alterations interact with gender‑specific genetic and epigenetic factors, together with immunosenescence and iron accumulation. Environment factors, including psychological factors, are additional potential causes of the sexual dimorphism of frailty and cognitive impairment.
Collapse
Affiliation(s)
- Qingwei Ruan
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'onofrio
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Tao Wu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Antonio Greco
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Daniele Sancarlo
- Department of Medical Sciences, Geriatric Unit and Laboratory of Gerontology and Geriatrics, The Scientific Institute for Research and Health Care, Home for Relief of the Suffering Hospital, San Giovanni Rotondo, Foggia I‑71013, Italy
| | - Zhuowei Yu
- Department of Geriatrics, Shanghai Key Laboratory of Clinical Geriatrics, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
91
|
Firquet A, Kirschner W, Bitzer J. Forty to fifty-five-year-old women and iron deficiency: clinical considerations and quality of life. Gynecol Endocrinol 2017; 33:503-509. [PMID: 28347197 DOI: 10.1080/09513590.2017.1306736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between the age of 40 and 55 years, women experience important changes in their lives. This period, which corresponds to the perimenopause for most women, is associated with the risk of iron deficiency anemia (IDA). The clinical presentation of anemia can be misleading, and the underlying cause, particularly bleeding, is frequently treated without concomitant iron prescription. Iron deficiency (ID) remains a social and economic burden in European countries. Underdiagnosed and undertreated, this problem has a strong negative impact on women's quality of life. The risk factors for ID are well known. The physician's role is essential in recognizing the symptoms, identifying the risk factors, detecting IDA by testing hemoglobin, and evaluating the degree of ID by measuring serum ferritin (SF). Iron therapy treats the anemia and restores iron stores, thus decreasing symptoms such as fatigue and restoring quality of life. Among the available forms of iron, evidence is in favor of ferrous sulfate in a slow release formulation, which is well-tolerated and results in good adherence, a key factor for efficacious supplementation.
Collapse
Affiliation(s)
- Anne Firquet
- a Department of Obstetrics and Gynecology , CHR Citadelle , Liège , Belgium
| | - Wolf Kirschner
- b FB + E Forschung, Beratung + Evaluation GmbH c/o Charité Frauenklinik CVK , Berlin , Germany
| | | |
Collapse
|
92
|
Gender difference in relationship between serum ferritin and 25-hydroxyvitamin D in Korean adults. PLoS One 2017; 12:e0177722. [PMID: 28562685 PMCID: PMC5451000 DOI: 10.1371/journal.pone.0177722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The present study was conducted to assess the gender difference in the relationship between serum ferritin and 25-hydroxyvitamin D [25(OH)D] in Korean adults. METHODS A total of 5,147 adults (2,162 men, 1,563 premenopausal women, and 1,422 postmenopausal women) aged ≥ 20 years from the Korean National Health and Nutrition Examination Survey (KNHANES) data (2012) were analyzed. A covariance test adjusted for covariates was performed for serum ferritin levels in relation to vitamin D status (vitamin D deficiency, 25(OH)D < 10.0 ng/mL; vitamin D insufficiency, 25(OH)D ≥ 10.0, < 20.0 ng/mL; vitamin D sufficiency, 25(OH)D ≥ 20.0 ng/mL). RESULTS The key study results were as follows: First, in men, in terms of serum ferritin levels by serum 25(OH)D level after adjusting for age, smoking, alcohol drinking, regular exercise, SBP, DBP, WM. TC, TGs, HDL-C, FPG, Hb, Hct, MCV, and Fe, serum ferritin levels were inversely increased with the increasing of serum 25(OH)D level (P = 0.012). Second, in premenopausal women, after adjusting for related variables, serum ferritin levels were increased with the increasing of serum 25(OH)D level (P = 0.003). Third, in postmenopausal women, after adjusting for related variables, serum ferritin levels were not significantly increased with the increasing of serum 25(OH)D level (P = 0.456). CONCLUSION Serum 25(OH)D level was inversely associated with the serum ferritin levels in men, but was positively associated with the serum ferritin levels in premenopausal women, and was not associated with the serum ferritin levels in postmenopausal women.
Collapse
|
93
|
Meng G, Yang H, Bao X, Zhang Q, Liu L, Wu H, Du H, Xia Y, Shi H, Guo X, Liu X, Li C, Su Q, Gu Y, Fang L, Yu F, Sun S, Wang X, Zhou M, Jia Q, Guo Q, Song K, Huang G, Wang G, Wu Y, Niu K. Increased serum ferritin levels are independently related to incidence of prediabetes in adult populations. DIABETES & METABOLISM 2017; 43:146-153. [DOI: 10.1016/j.diabet.2016.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
|
94
|
Warne CD, Zaloumis SG, Bertalli NA, Delatycki MB, Nicoll AJ, McLaren CE, Hopper JL, Giles GG, Anderson GJ, Olynyk JK, Powell LW, Allen KJ, Gurrin LC, for the HealthIron Study Investigators. HFE p.C282Y homozygosity predisposes to rapid serum ferritin rise after menopause: A genotype-stratified cohort study of hemochromatosis in Australian women. J Gastroenterol Hepatol 2017; 32:797-802. [PMID: 27784128 PMCID: PMC5365371 DOI: 10.1111/jgh.13621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/22/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Women who are homozygous for the p.C282Y mutation in the HFE gene are at much lower risk of iron overload-related disease than p.C282Y homozygous men, presumably because of the iron-depleting effects of menstruation and pregnancy. We used data from a population cohort study to model the impact of menstruation cessation at menopause on serum ferritin (SF) levels in female p.C282Y homozygotes, with p.C282Y/p.H63D simple or compound heterozygotes and those with neither p.C282Y nor p.H63D mutations (HFE wild types) as comparison groups. METHODS A sample of the Melbourne Collaborative Cohort Study was selected for the "HealthIron" study (n = 1438) including all HFE p.C282Y homozygotes plus a random sample stratified by HFE-genotype (p.C282Y and p.H63D). The relationship between the natural logarithm of SF and time since menopause was examined using linear mixed models incorporating spline smoothing. RESULTS For p.C282Y homozygotes, SF increased by a factor of 3.6 (95% CI (1.8, 7.0), P < 0.001) during the first 10 years postmenopause, after which SF continued to increase but at less than half the previous rate. In contrast, SF profiles for other HFE genotype groups increase more gradually and did not show a distinction between premenopausal and postmenopausal SF levels. Only p.C282Y homozygotes had predicted SF exceeding 200 μg/L postmenopause, but the projected SF did not increase the risk of iron overload-related disease. CONCLUSIONS These data provide the first documented evidence that physiological blood loss is a major factor in determining the marked gender difference in expression of p.C282Y homozygosity.
Collapse
Affiliation(s)
| | - Sophie G. Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Nadine A. Bertalli
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia,Murdoch Childrens Research Institute, Victoria, Australia
| | - Martin B. Delatycki
- Murdoch Childrens Research Institute, Victoria, Australia,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia,Austin Health, Heidelberg, Victoria, Australia
| | - Amanda J. Nicoll
- Department of Gastroenterology, Eastern Health, and Melbourne Health, Monash University, Melbourne, Victoria, Australia
| | | | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia,Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Greg J. Anderson
- QIMR Berghofer Medical Research Institute and The University of Queensland, Brisbane, Australia
| | - John K. Olynyk
- Department of Gastroenterology, Fiona Stanley and Fremantle Hospitals, Murdoch, Australia; School of Biomedical Sciences, Curtin University, Western Australia; School of Veterinary and Life Sciences, Murdoch University, Western Australia
| | - Lawrie W. Powell
- QIMR Berghofer Medical Research Institute and The University of Queensland, Brisbane, Australia,The Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Katrina J. Allen
- Murdoch Childrens Research Institute, Victoria, Australia,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Victoria, Australia
| | - Lyle C. Gurrin
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
95
|
Klocke C, Allen JL, Sobolewski M, Mayer-Pröschel M, Blum JL, Lauterstein D, Zelikoff JT, Cory-Slechta DA. Neuropathological Consequences of Gestational Exposure to Concentrated Ambient Fine and Ultrafine Particles in the Mouse. Toxicol Sci 2017; 156:492-508. [PMID: 28087836 PMCID: PMC6074840 DOI: 10.1093/toxsci/kfx010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence indicates that the central nervous system (CNS) is a target of air pollution. We previously reported that postnatal exposure of mice to concentrated ambient ultrafine particles (UFP; ≤100 nm) via the University of Rochester HUCAPS system during a critical developmental window of CNS development, equivalent to human 3rd trimester, produced male-predominant neuropathological and behavioral characteristics common to multiple neurodevelopmental disorders, including autism spectrum disorder (ASD), in humans. The current study sought to determine whether vulnerability to fine (≤2.5 μm) and UFP air pollution exposure extends to embryonic periods of brain development in mice, equivalent to human 1st and 2nd trimesters. Pregnant mice were exposed 6 h/day from gestational days (GDs) 0.5-16.5 using the New York University VACES system to concentrated ambient fine/ultrafine particles at an average concentration of 92.69 μg/m3 over the course of the exposure period. At postnatal days (PNDs) 11-15, neuropathological consequences were characterized. Gestational air pollution exposures produced ventriculomegaly, increased corpus callosum (CC) area and reduced hippocampal area in both sexes. Both sexes demonstrated CC hypermyelination and increased microglial activation and reduced total CC microglia number. Analyses of iron deposition as a critical component of myelination revealed increased iron deposition in the CC of exposed female offspring, but not in males. These findings demonstrate that vulnerability of the brain to air pollution extends to gestation and produces features of several neurodevelopmental disorders in both sexes. Further, they highlight the importance of the commonalities of components of particulate matter exposures as a source of neurotoxicity and common CNS alterations.
Collapse
Affiliation(s)
| | | | | | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine, Rochester, New York 14642
| | - Jason L. Blum
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Dana Lauterstein
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Judith T. Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | | |
Collapse
|
96
|
Jeney V. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front Pharmacol 2017; 8:77. [PMID: 28270766 PMCID: PMC5318432 DOI: 10.3389/fphar.2017.00077] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 01/19/2023] Open
Abstract
Diseases/conditions with diverse etiology, such as hemoglobinopathies, hereditary hemochromatosis and menopause, could lead to chronic iron accumulation. This condition is frequently associated with a bone phenotype; characterized by low bone mass, osteoporosis/osteopenia, altered microarchitecture and biomechanics, and increased incidence of fractures. Osteoporotic bone phenotype constitutes a major complication in patients with iron overload. The purpose of this review is to summarize what we have learnt about iron overload-associated bone loss from clinical studies and animal models. Bone is a metabolically active tissue that undergoes continuous remodeling with the involvement of osteoclasts that resorb mineralized bone, and osteoblasts that form new bone. Growing evidence suggests that both increased bone resorption and decreased bone formation are involved in the pathological bone-loss in iron overload conditions. We will discuss the cellular and molecular mechanisms that are involved in this detrimental process. Fuller understanding of this complex mechanism may lead to the development of improved therapeutics meant to interrupt the pathologic effects of excess iron on bone.
Collapse
Affiliation(s)
- Viktória Jeney
- Department of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
97
|
Hu PJ, Ley SH, Bhupathiraju SN, Li Y, Wang DD. Associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults: a cross-sectional study in the China Health and Nutrition Survey. Am J Clin Nutr 2017; 105:503-512. [PMID: 28031193 PMCID: PMC6546221 DOI: 10.3945/ajcn.116.136861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although a high prevalence of anemia and related disease burden have been documented in China, limited evidence is available on the current population-level iron status and risk factors for iron imbalance. OBJECTIVE We explored the associations of dietary, lifestyle, and sociodemographic factors with iron status in Chinese adults. DESIGN Our study population consisted of 7672 adults aged 18-65 y from the 2009 China Health and Nutrition Survey. Diet was assessed with the use of 3 consecutive 24-h dietary recalls. Serum ferritin, serum transferrin receptor, and hemoglobin concentrations were measured. RESULTS The geometric means ± SDs for ferritin concentrations were 135.9 ± 2.7 ng/mL in men and 42.7 ± 3.1 ng/mL in women. After adjustment for potential risk factors, including high-sensitivity C-reactive protein concentration, the association between age and ferritin concentration was inverse in men (P-trend < 0.001) and positive in women (P-trend < 0.001). We observed a positive association between body mass index (in kg/m2) and ferritin concentration in both men and women (both P-trends < 0.001). Dietary phytate intake was inversely associated with ferritin concentration in men (P-trend = 0.002) but not in women. Red meat consumption was positively associated with ferritin concentration both in men (P-trend = 0.002) and in older women (P-trend = 0.009). Lower intakes of grains and higher intakes of pork and poultry were associated with higher ferritin concentrations (all P-trends ≤ 0.05) in men but not in women. We observed variations in ferritin concentrations across different geographic regions (both P ≤ 0.01). CONCLUSIONS Serum ferritin concentrations varied across different sociodemographic, lifestyle, and dietary factors in this Chinese population. A higher intake of red meat was associated with higher ferritin concentrations in men and older women.
Collapse
Affiliation(s)
- Peter J Hu
- Cornell University College of Human Ecology, Ithaca, NY
| | - Sylvia H Ley
- Departments of Nutrition,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA
| | - Shilpa N Bhupathiraju
- Departments of Nutrition,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Dong D Wang
- Departments of Nutrition and .,Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; and
| |
Collapse
|
98
|
Das SK, Patel VB, Basu R, Wang W, DesAulniers J, Kassiri Z, Oudit GY. Females Are Protected From Iron-Overload Cardiomyopathy Independent of Iron Metabolism: Key Role of Oxidative Stress. J Am Heart Assoc 2017; 6:JAHA.116.003456. [PMID: 28115312 PMCID: PMC5523622 DOI: 10.1161/jaha.116.003456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Sex‐related differences in cardiac function and iron metabolism exist in humans and experimental animals. Male patients and preclinical animal models are more susceptible to cardiomyopathies and heart failure. However, whether similar differences are seen in iron‐overload cardiomyopathy is poorly understood. Methods and Results Male and female wild‐type and hemojuvelin‐null mice were injected and fed with a high‐iron diet, respectively, to develop secondary iron overload and genetic hemochromatosis. Female mice were completely protected from iron‐overload cardiomyopathy, whereas iron overload resulted in marked diastolic dysfunction in male iron‐overloaded mice based on echocardiographic and invasive pressure‐volume analyses. Female mice demonstrated a marked suppression of iron‐mediated oxidative stress and a lack of myocardial fibrosis despite an equivalent degree of myocardial iron deposition. Ovariectomized female mice with iron overload exhibited essential pathophysiological features of iron‐overload cardiomyopathy showing distinct diastolic and systolic dysfunction, severe myocardial fibrosis, increased myocardial oxidative stress, and increased expression of cardiac disease markers. Ovariectomy prevented iron‐induced upregulation of ferritin, decreased myocardial SERCA2a levels, and increased NCX1 levels. 17β‐Estradiol therapy rescued the iron‐overload cardiomyopathy in male wild‐type mice. The responses in wild‐type and hemojuvelin‐null female mice were remarkably similar, highlighting a conserved mechanism of sex‐dependent protection from iron‐overload‐mediated cardiac injury. Conclusions Male and female mice respond differently to iron‐overload‐mediated effects on heart structure and function, and females are markedly protected from iron‐overload cardiomyopathy. Ovariectomy in female mice exacerbated iron‐induced myocardial injury and precipitated severe cardiac dysfunction during iron‐overload conditions, whereas 17β‐estradiol therapy was protective in male iron‐overloaded mice.
Collapse
Affiliation(s)
- Subhash K Das
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jessica DesAulniers
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada .,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
99
|
Ashmore JH, Rogers CJ, Kelleher SL, Lesko SM, Hartman TJ. Dietary Iron and Colorectal Cancer Risk: A Review of Human Population Studies. Crit Rev Food Sci Nutr 2017; 56:1012-20. [PMID: 25574701 DOI: 10.1080/10408398.2012.749208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iron is an essential micronutrient that is involved in many redox processes and serves as an integral component in various physiological functions. However, excess iron can cause tissue damage through its pro-oxidative effects, potentiating the development of many diseases such as cancer through the generation of reactive oxidative species. The two major forms of iron in the diet are heme and nonheme iron, both of which are found in several different foods. In addition to natural food sources, intake of nonheme iron may also come from fortified foods or in supplement form. This review summarizes the results of human population studies that have examined the role of dietary iron (heme and nonheme), heme iron alone, and iron from supplements in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Joseph H Ashmore
- a Department of Pharmaceutical Sciences , Washington State University , Spokane , Washington , USA
| | - Connie J Rogers
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Shannon L Kelleher
- b Department of Nutritional Sciences , Pennsylvania State University , University Park , Pennsylvania , USA
| | - Samuel M Lesko
- c Northeast Regional Cancer Institute , Scranton , Pennsylvania , USA.,d The Commonwealth Medical College , Scranton , Pennsylvania , USA
| | - Terryl J Hartman
- e Department of Epidemiology , Rollins School of Public Health and Winship Cancer Institute, Emory University , Atlanta , Georgia , USA
| |
Collapse
|
100
|
Iron Isotope Signature in Red Blood Cell Samples from Japanese Female Donors of Various Ages. Metallomics 2017. [DOI: 10.1007/978-4-431-56463-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|