51
|
Goffová I, Vágnerová R, Peška V, Franek M, Havlová K, Holá M, Zachová D, Fojtová M, Cuming A, Kamisugi Y, Angelis KJ, Fajkus J. Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1090-1105. [PMID: 30834585 DOI: 10.1111/tpj.14304] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 05/11/2023]
Abstract
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Collapse
Affiliation(s)
- Ivana Goffová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Radka Vágnerová
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Vratislav Peška
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Michal Franek
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Kateřina Havlová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Marcela Holá
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Dagmar Zachová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Miloslava Fojtová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Andrew Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Karel J Angelis
- The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
52
|
Komakhin RA, Milyukova NA, Strelnikova SR, Krinitsina AA, Komakhina VV, Zhuchenko AA. Inheritance of Marker Genes among Progeny of Interspecific Tomato Hybrids Expressing the recA Escherichia coli Gene. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419040069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
53
|
Kobayashi W, Liu E, Ishii H, Matsunaga S, Schlögelhofer P, Kurumizaka H. Homologous pairing activities of Arabidopsis thaliana RAD51 and DMC1. J Biochem 2019; 165:289-295. [PMID: 30517709 DOI: 10.1093/jb/mvy105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 01/17/2023] Open
Abstract
In eukaryotes, homologous recombination plays a pivotal role in both genome maintenance and generation of genetic diversity. Eukaryotic RecA homologues, RAD51 and DMC1, are key proteins in homologous recombination that promote pairing between homologous DNA sequences. Arabidopsis thaliana is a prominent model plant for studying eukaryotic homologous recombination. However, A. thaliana RAD51 and DMC1 have not been biochemically characterized. In the present study, we purified A. thaliana RAD51 (AtRAD51) and DMC1 (AtDMC1). Biochemical analyses revealed that both AtRAD51 and AtDMC1 possess ATP hydrolyzing activity, filament formation activity and homologous pairing activity in vitro. We then compared the homologous pairing activities of AtRAD51 and AtDMC1 with those of the Oryza sativa and Homo sapiens RAD51 and DMC1 proteins.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Enwei Liu
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Hajime Ishii
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Japan
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, A-1030 Vienna, Austria
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
54
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
55
|
Liu F, Xu Y, Zhou L, Ali A, Jiang H, Zhu S, Li X. DNA Repair Gene ZmRAD51A Improves Rice and Arabidopsis Resistance to Disease. Int J Mol Sci 2019; 20:E807. [PMID: 30781829 PMCID: PMC6412738 DOI: 10.3390/ijms20040807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/31/2022] Open
Abstract
RAD51 (DNA repair gene) family genes play ubiquitous roles in immune response among species from plants to mammals. In this study, we cloned the ZmRAD51A gene (a member of RAD51) in maize and generated ZmRAD51A overexpression (ZmRAD51A-OE) in rice, tobacco, and Arabidopsis. The expression level of ZmRAD51A was remarkably induced by salicylic acid (SA) application in maize, and the transient overexpression of ZmRAD51A in tobacco induced a hypersensitive response. The disease resistance was significantly enhanced in ZmRAD51A- OE (overexpressing) plants, triggering an increased expression of defense-related genes. High-performance liquid chromatography (HPLC) analysis showed that, compared to control lines, ZmRAD51A-OE in rice plants resulted in higher SA levels, and conferred rice plants resistance to Magnaporthe oryzae. Moreover, the ZmRAD51A-OE Arabidopsis plants displayed increased resistance to Pseudomonas syringae pv. tomato DC3000 when compared to wild types. Together, our results provide the evidence that, for the first time, the maize DNA repair gene ZmRAD51A plays an important role in in disease resistance.
Collapse
Affiliation(s)
- Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Lingyan Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
56
|
Wang C, Huang J, Zhang J, Wang H, Han Y, Copenhaver GP, Ma H, Wang Y. The Largest Subunit of DNA Polymerase Delta Is Required for Normal Formation of Meiotic Type I Crossovers. PLANT PHYSIOLOGY 2019; 179:446-459. [PMID: 30459265 PMCID: PMC6426404 DOI: 10.1104/pp.18.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Meiotic recombination contributes to the maintenance of the association between homologous chromosomes (homologs) and ensures the accurate segregation of homologs during anaphase I, thus facilitating the redistribution of alleles among progeny. Meiotic recombination is initiated by the programmed formation of DNA double strand breaks, the repair of which requires DNA synthesis, but the role of DNA synthesis proteins during meiosis is largely unknown. Here, we hypothesized that the lagging strand-specific DNA Polymerase δ (POL δ) might be required for meiotic recombination, based on a previous analysis of DNA Replication Factor1 that suggested a role for lagging strand synthesis in meiotic recombination. In Arabidopsis (Arabidopsis thaliana), complete mutation of the catalytic subunit of POL δ, encoded by AtPOLD1, leads to embryo lethality. Therefore, we used a meiocyte-specific knockdown strategy to test this hypothesis. Reduced expression of AtPOLD1 in meiocytes caused decreased fertility and meiotic defects, including incomplete synapsis, the formation of multivalents, chromosome fragmentation, and improper segregation. Analysis of meiotic crossover (CO) frequencies showed that AtPOLD1RNAi plants had significantly fewer interference-sensitive COs than the wild type, indicating that AtPOL δ participates in type I CO formation. AtPOLD1RNAi atpol2a double mutant meiocytes displayed more severe meiotic phenotypes than those of either single mutant, suggesting that the function of AtPOLD1 and AtPOL2A is not identical in meiotic recombination. Given that POL δ is highly conserved among eukaryotes, we hypothesize that the described role of POL δ here in meiotic recombination likely exists widely in eukaryotes.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gregory P Copenhaver
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
57
|
Xu Z, Zhang J, Xu M, Ji W, Yu M, Tao Y, Gong Z, Gu M, Yu H. Rice RAD51 paralogs play essential roles in somatic homologous recombination for DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:282-295. [PMID: 29729110 DOI: 10.1111/tpj.13949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Synthesis-dependent strand annealing (SDSA) and single-strand annealing (SSA) are the two main homologous recombination (HR) pathways in double-strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss-of-function mutants of rad51 paralogs show increased sensitivity to the DSB-inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K-like kinases in wild-type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K-like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog-dependent somatic HR.
Collapse
Affiliation(s)
- Zhan Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yajun Tao
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
58
|
Lu Z, Huang Q, Zhang T, Hu B, Chang Y. Global transcriptome analysis and characterization of Dryopteris fragrans (L.) Schott sporangium in different developmental stages. BMC Genomics 2018; 19:471. [PMID: 29914367 PMCID: PMC6006573 DOI: 10.1186/s12864-018-4843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dryopteris fragrans (D. fragrans) is a potential medicinal fern distributed in volcanic magmatic rock areas under tough environmental condition. Sporangia are important organs for fern reproduction. This study was designed to characterize the transcriptome characteristics of the wild D. fragrans sporangia in three stages (stage A, B, and C) with the aim of uncovering its molecular mechanism of growth and development. RESULTS Using a HiSeq 4000, 79.81 Gb clean data (each sample is at least 7.95 GB) were obtained from nine samples, with three being supplied from each period, and assembled into 94,705 Unigenes, among which 44,006 Unigenes were annotated against public protein databases (NR, Swiss-Prot, KEGG, COG, KOG, GO, eggNOG and Pfam). Furthermore, we observed 7126 differentially expressed genes (DEG) (Fold Change > 4, FDR < 0.001), 349,885 SNP loci, and 10,584 SSRs. DEGs involved in DNA replication and homologous recombination were strongly expressed in stage A, and several DEGs involved in cutin, suberin and wax biosynthesis had undergone dramatic changes during development, which was consistent with morphological observations. DEGs responsible for secondary metabolism and plant hormone signal transduction changed clearly in the last two stages. DEGs homologous to those known genes associated with the development of reproductive organs of flowering plants have also been validated and discussed, such as AGL61, AGL62, ONAC010. In particular, a Unigene encoding TFL1, an important flower-development regulator in flowering plants, was identified and exhibited the highest expression level in stage B in D. fragrans sporangia. CONCLUSIONS This study is the first report on global transcriptome analysis in the development of sporangia of wild D. fragrans. DEGs related to development and homologous to flower-seed development in flowering plants were discussed. All DEGs involved in DNA replication and homologous recombination were consistent with morphological observations of paraffin slices. The results of this study provide rare resources for further investigation of the D. fragrans sporangium development, stress resistance and secondary metabolism.
Collapse
Affiliation(s)
- Zhen Lu
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyang Huang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Tong Zhang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | | | - Ying Chang
- Laboratory of Plant Research, College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
59
|
Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks. Nat Commun 2018; 9:1995. [PMID: 29777105 PMCID: PMC5959919 DOI: 10.1038/s41467-018-04256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand break (DSB)-mediated genome rearrangements are assumed to provide diverse raw genetic materials enabling accelerated adaptive evolution; however, it remains unclear about the consequences of massive simultaneous DSB formation in cells and their resulting phenotypic impact. Here, we establish an artificial genome-restructuring technology by conditionally introducing multiple genomic DSBs in vivo using a temperature-dependent endonuclease TaqI. Application in yeast and Arabidopsis thaliana generates strains with phenotypes, including improved ethanol production from xylose at higher temperature and increased plant biomass, that are stably inherited to offspring after multiple passages. High-throughput genome resequencing revealed that these strains harbor diverse rearrangements, including copy number variations, translocations in retrotransposons, and direct end-joinings at TaqI-cleavage sites. Furthermore, large-scale rearrangements occur frequently in diploid yeasts (28.1%) and tetraploid plants (46.3%), whereas haploid yeasts and diploid plants undergo minimal rearrangement. This genome-restructuring system (TAQing system) will enable rapid genome breeding and aid genome-evolution studies. DNA double-strand break (DSB) leads to genome rearrangements with various genetic and phenotypic effects. Here, the authors develop a tool to induce large-scale genome restructuring by introducing conditional multiple DNA breaks, and produce various traits in yeast and Arabidopsis thaliana.
Collapse
|
60
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
61
|
|
62
|
Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK. Overexpression of OsNAC14 Improves Drought Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:310. [PMID: 29593766 PMCID: PMC5855183 DOI: 10.3389/fpls.2018.00310] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/22/2018] [Indexed: 05/14/2023]
Abstract
Plants have evolved to have sophisticated adaptation mechanisms to cope with drought stress by reprograming transcriptional networks through drought responsive transcription factors. NAM, ATAF1-2, and CUC2 (NAC) transcription factors are known to be associated with various developmental processes and stress tolerance. In this study, we functionally characterized the rice drought responsive transcription factor OsNAC14. OsNAC14 was predominantly expressed at meiosis stage but is induced by drought, high salinity, ABA, and low temperature in leaves. Overexpression of OsNAC14 resulted in drought tolerance at the vegetative stage of growth. Field drought tests demonstrated that OsNAC14 overexpressing transgenic rice lines exhibited higher number of panicle and filling rate compared to non-transgenic plants under drought conditions. RNA-sequencing analysis revealed that OsNAC14 overexpression elevated the expression of genes for stress response, DNA damage repair, defense related, and strigolactone biosynthesis. In addition, chromatin immunoprecipitation analysis confirmed the direct interaction of OsNAC14 with the promoter of OsRAD51A1, a key component in homologous recombination in DNA repair system. Collectively, these results indicate that OsNAC14 mediates drought tolerance by recruiting factors involved in DNA damage repair and defense response resulting in improved tolerance to drought.
Collapse
Affiliation(s)
- Jae Sung Shim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Nuri Oh
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
| | - Yang Do Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute, GreenBio Science & Technology, Seoul National University, Pyeongchang, South Korea
- *Correspondence: Ju-Kon Kim
| |
Collapse
|
63
|
Osman K, Yang J, Roitinger E, Lambing C, Heckmann S, Howell E, Cuacos M, Imre R, Dürnberger G, Mechtler K, Armstrong S, Franklin FCH. Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:17-33. [PMID: 29078019 PMCID: PMC5767750 DOI: 10.1111/tpj.13752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
During meiosis, the formation of crossovers (COs) generates genetic variation and provides physical links that are essential for accurate chromosome segregation. COs occur in the context of a proteinaceous chromosome axis. The transcriptomes and proteomes of anthers and meiocytes comprise several thousand genes and proteins, but because of the level of complexity relatively few have been functionally characterized. Our understanding of the physical and functional interactions between meiotic proteins is also limited. Here we use affinity proteomics to analyse the proteins that are associated with the meiotic chromosome axis protein, ASY1, in Brassica oleracea anthers and meiocytes. We show that during prophase I ASY1 and its interacting partner, ASY3, are extensively phosphorylated, and we precisely assign phosphorylation sites. We identify 589 proteins that co-immunoprecipitate with ASY1. These correspond to 492 Arabidopsis orthologues, over 90% of which form a coherent protein-protein interaction (PPI) network containing known and candidate meiotic proteins, including proteins more usually associated with other cellular processes such as DNA replication and proteolysis. Mutant analysis confirms that affinity proteomics is a viable strategy for revealing previously unknown meiotic proteins, and we show how the PPI network can be used to prioritise candidates for analysis. Finally, we identify another axis-associated protein with a role in meiotic recombination. Data are available via ProteomeXchange with identifier PXD006042.
Collapse
Affiliation(s)
- Kim Osman
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jianhua Yang
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Faculty of Engineering and ComputingCoventry UniversityCoventryCV1 5FBUK
| | | | - Christophe Lambing
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Stefan Heckmann
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben, Corrensstrasse 3D‐06466Stadt SeelandGermany
| | - Elaine Howell
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Maria Cuacos
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Present address:
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)OT Gatersleben, Corrensstrasse 3D‐06466Stadt SeelandGermany
| | | | - Gerhard Dürnberger
- IMP‐IMBA1030ViennaAustria
- Gregor Mendel Institute of Molecular Plant BiologyDr. Bohr‐Gasse 31030ViennaAustria
| | | | - Susan Armstrong
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | |
Collapse
|
64
|
Dai J, Voloshin O, Potapova S, Camerini-Otero RD. Meiotic Knockdown and Complementation Reveals Essential Role of RAD51 in Mouse Spermatogenesis. Cell Rep 2017; 18:1383-1394. [PMID: 28178517 DOI: 10.1016/j.celrep.2017.01.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/30/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Meiotic homologous recombination (HR) is important for proper chromosomal segregation during gametogenesis and facilitates evolutionary adaptation via genomic reshuffling. In most eukaryotes, HR is mediated by two recombinases, the ubiquitous RAD51 and the meiosis-specific DMC1. The role of RAD51 in mammalian meiosis is unclear and study of its function is limited due to embryonic lethality of RAD51 knockouts. Here, we developed an in vivo meiotic knockdown and protein complementation system to study RAD51 during mouse spermatogenesis. We show that RAD51 is crucial during meiotic prophase and its loss leads to depletion of late prophase I spermatocytes through a p53-dependent apoptotic pathway. This phenotype is distinct from that observed in the DMC1 knockdown. Our meiotic knockdown and complementation system establishes an experimental platform for mechanistic studies of meiotic proteins with unknown functions or essential genes for which a testis-specific knockout is not possible.
Collapse
Affiliation(s)
- Jieqiong Dai
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oleg Voloshin
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Svetlana Potapova
- Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - R Daniel Camerini-Otero
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
65
|
Singh G, Da Ines O, Gallego ME, White CI. Analysis of the impact of the absence of RAD51 strand exchange activity in Arabidopsis meiosis. PLoS One 2017; 12:e0183006. [PMID: 28797117 PMCID: PMC5552350 DOI: 10.1371/journal.pone.0183006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022] Open
Abstract
The ploidy of eukaryote gametes must be halved to avoid doubling of numbers of chromosomes with each generation and this is carried out by meiosis, a specialized cell division in which a single chromosomal replication phase is followed by two successive nuclear divisions. With some exceptions, programmed recombination ensures the proper pairing and distribution of homologous pairs of chromosomes in meiosis and recombination defects thus lead to sterility. Two highly related recombinases are required to catalyse the key strand-invasion step of meiotic recombination and it is the meiosis-specific DMC1 which is generally believed to catalyse the essential non-sister chromatid crossing-over, with RAD51 catalysing sister-chromatid and non-cross-over events. Recent work in yeast and plants has however shown that in the absence of RAD51 strand-exchange activity, DMC1 is able to repair all meiotic DNA breaks and surprisingly, that this does not appear to affect numbers of meiotic cross-overs. In this work we confirm and extend this conclusion. Given that more than 95% of meiotic homologous recombination in Arabidopsis does not result in inter-homologue crossovers, Arabidopsis is a particularly sensitive model for testing the relative importance of the two proteins-even minor effects on the non-crossover event population should produce detectable effects on crossing-over. Although the presence of RAD51 protein provides essential support for the action of DMC1, our results show no significant effect of the absence of RAD51 strand-exchange activity on meiotic crossing-over rates or patterns in different chromosomal regions or across the whole genome of Arabidopsis, strongly supporting the argument that DMC1 catalyses repair of all meiotic DNA breaks, not only non-sister cross-overs.
Collapse
Affiliation(s)
- Gunjita Singh
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Olivier Da Ines
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Maria Eugenia Gallego
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| | - Charles I. White
- Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France
| |
Collapse
|
66
|
Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination. PLoS Genet 2017; 13:e1006827. [PMID: 28562599 PMCID: PMC5470734 DOI: 10.1371/journal.pgen.1006827] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/14/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022] Open
Abstract
Meiotic recombination is required for proper homologous chromosome segregation in plants and other eukaryotes. The eukaryotic RAD51 gene family has seven ancient paralogs with important roles in mitotic and meiotic recombination. Mutations in mammalian RAD51 homologs RAD51C and XRCC3 lead to embryonic lethality. In the model plant Arabidopsis thaliana, RAD51C and XRCC3 homologs are not essential for vegetative development but are each required for somatic and meiotic recombination, but the mechanism of RAD51C and XRCC3 in meiotic recombination is unclear. The non-lethal Arabidopsis rad51c and xrcc3 null mutants provide an opportunity to study their meiotic functions. Here, we show that AtRAD51C and AtXRCC3 are components of the RAD51-dependent meiotic recombination pathway and required for normal AtRAD51 localization on meiotic chromosomes. In addition, AtRAD51C interacts with both AtRAD51 and AtXRCC3 in vitro and in vivo, suggesting that these proteins form a complex (es). Comparison of AtRAD51 foci in meiocytes from atrad51, atrad51c, and atxrcc3 single, double and triple heterozygous mutants further supports an interaction between AtRAD51C and AtXRCC3 that enhances AtRAD51 localization. Moreover, atrad51c-/+atxrcc3-/+ double and atrad51-/+atrad51c-/+atxrcc3-/+ triple heterozygous mutants have defects in meiotic recombination, suggesting the role of the AtRAD51C-AtXRCC3 complex in meiotic recombination is in part AtRAD51-dependent. Together, our results support a model in which direct interactions between the RAD51C-XRCC3 complex and RAD51 facilitate RAD51 localization on meiotic chromosomes and RAD51-dependent meiotic recombination. Finally, we hypothesize that maintenance of RAD51 function facilitated by the RAD51C-XRCC3 complex could be highly conserved in eukaryotes. Meiotic recombination and sister chromatid cohesion are important for maintaining the association between homologous chromosomes and ensuring their accurate segregation. Meiotic recombination starts with a set of programmed DNA double-strand breaks (DSBs), catalyzed by the SPO11 endonuclease. Processing of DSB ends produces 3′ single-stranded DNA tails, which form nucleoprotein filaments with RAD51 and DMC1, homologs of the prokaryotic RecA protein. The eukaryotic RAD51 gene family has seven ancient paralogs, in addition to RAD51 and DMC1, the other five members in mammals form two complexes: RAD51B-RAD51C-RAD51D- XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3). To date, the molecular mechanism of CX3 in animal meiosis remains largely unknown due to the essential roles of these two proteins in embryo development. In Arabidopsis, RAD51C and XRCC3 are required for meiosis and fertility, but their specific mechanisms are unclear. Here we present strong evidence that Arabidopsis RAD51 forms a protein complex with AtRAD51C-AtXRCC3 in vivo. Our data also support the previous hypothesis that CX3 promotes RAD51-denpendet meiotic recombination by affecting its localization on chromosomes. Given that the RAD51, RAD51C and XRCC3 proteins are highly conserved in plants and vertebrates, the mechanism we present here could be important for the regulation of meiotic recombination in both plants and vertebrate animals.
Collapse
|
67
|
Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 2017; 36:1279-1297. [PMID: 28320735 PMCID: PMC5412766 DOI: 10.15252/embj.201694571] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The retinoblastoma protein (Rb), which typically functions as a transcriptional repressor of E2F‐regulated genes, represents a major control hub of the cell cycle. Here, we show that loss of the Arabidopsis Rb homolog RETINOBLASTOMA‐RELATED 1 (RBR1) leads to cell death, especially upon exposure to genotoxic drugs such as the environmental toxin aluminum. While cell death can be suppressed by reduced cell‐proliferation rates, rbr1 mutant cells exhibit elevated levels of DNA lesions, indicating a direct role of RBR1 in the DNA‐damage response (DDR). Consistent with its role as a transcriptional repressor, we find that RBR1 directly binds to and represses key DDR genes such as RADIATION SENSITIVE 51 (RAD51), leaving it unclear why rbr1 mutants are hypersensitive to DNA damage. However, we find that RBR1 is also required for RAD51 localization to DNA lesions. We further show that RBR1 is itself targeted to DNA break sites in a CDKB1 activity‐dependent manner and partially co‐localizes with RAD51 at damage sites. Taken together, these results implicate RBR1 in the assembly of DNA‐bound repair complexes, in addition to its canonical function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | | | - Poyu Chen
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, Paris, France
| | - Kostika Sofroni
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France .,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| |
Collapse
|
68
|
Sidhu GK, Warzecha T, Pawlowski WP. Evolution of meiotic recombination genes in maize and teosinte. BMC Genomics 2017; 18:106. [PMID: 28122517 PMCID: PMC5267385 DOI: 10.1186/s12864-017-3486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. Results To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Conclusions Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gaganpreet K Sidhu
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Current address: Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Tomasz Warzecha
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.,Permanent address: Department of Plant Breeding and Seed Science, Agricultural University, Krakow, Poland
| | - Wojciech P Pawlowski
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
69
|
Zeng X, Yan X, Yuan R, Li K, Wu Y, Liu F, Luo J, Li J, Wu G. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. FRONTIERS IN PLANT SCIENCE 2017; 7:1966. [PMID: 28101089 PMCID: PMC5209369 DOI: 10.3389/fpls.2016.01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 05/13/2023]
Abstract
Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
70
|
Roy S, Das KP. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid. PLoS One 2017; 12:e0169294. [PMID: 28046013 PMCID: PMC5207409 DOI: 10.1371/journal.pone.0169294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/14/2016] [Indexed: 12/27/2022] Open
Abstract
Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis.
Collapse
Affiliation(s)
- Sujit Roy
- Protein Chemistry laboratory, Department of Chemistry, Bose Institute, Kolkata, India
| | - Kali Pada Das
- Protein Chemistry laboratory, Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
71
|
Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, Xuan D, Li Z, Yu P, Wu W, Wang K, Cao L, Cheng S. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:1639. [PMID: 29021797 PMCID: PMC5624289 DOI: 10.3389/fpls.2017.01639] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sittipun Sinumporn
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bin Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| |
Collapse
|
72
|
Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan Y, Pochon G, Heese M, Van Damme D, Sugimoto K, Koncz C, Doerner P, Umeda M, Schnittger A. The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. EMBO J 2016; 35:2068-2086. [PMID: 27497297 PMCID: PMC5048351 DOI: 10.15252/embj.201593083] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 07/14/2016] [Indexed: 01/30/2023] Open
Abstract
Upon DNA damage, cyclin‐dependent kinases (CDKs) are typically inhibited to block cell division. In many organisms, however, it has been found that CDK activity is required for DNA repair, especially for homology‐dependent repair (HR), resulting in the conundrum how mitotic arrest and repair can be reconciled. Here, we show that Arabidopsis thaliana solves this dilemma by a division of labor strategy. We identify the plant‐specific B1‐type CDKs (CDKB1s) and the class of B1‐type cyclins (CYCB1s) as major regulators of HR in plants. We find that RADIATION SENSITIVE 51 (RAD51), a core mediator of HR, is a substrate of CDKB1‐CYCB1 complexes. Conversely, mutants in CDKB1 and CYCB1 fail to recruit RAD51 to damaged DNA. CYCB1;1 is specifically activated after DNA damage and we show that this activation is directly controlled by SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a transcription factor that acts similarly to p53 in animals. Thus, while the major mitotic cell‐cycle activity is blocked after DNA damage, CDKB1‐CYCB1 complexes are specifically activated to mediate HR.
Collapse
Affiliation(s)
- Annika K Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | | | | | - Naoki Takahashi
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan
| | - Julia Foreman
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Yonsheng Guan
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France
| | - Gaëtan Pochon
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Daniël Van Damme
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Japan
| | - Csaba Koncz
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln, Germany
| | - Peter Doerner
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Masaaki Umeda
- Plant Growth Regulation Laboratory, Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS UPR2357, Université de Strasbourg, Strasbourg Cedex, France Department of Developmental Biology, Biozentrum Klein Flottbek, University of Hamburg, Hamburg, Germany Trinationales Institut für Pflanzenforschung, Institut de Biologie Moléculaire des Plantes du CNRS, IBMP-CNRS, Strasbourg Cedex, France
| |
Collapse
|
73
|
Wang J, Niu B, Huang J, Wang H, Yang X, Dong A, Makaroff C, Ma H, Wang Y. The PHD Finger Protein MMD1/DUET Ensures the Progression of Male Meiotic Chromosome Condensation and Directly Regulates the Expression of the Condensin Gene CAP-D3. THE PLANT CELL 2016; 28:1894-909. [PMID: 27385818 PMCID: PMC5006699 DOI: 10.1105/tpc.16.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 05/18/2023]
Abstract
Chromosome condensation, a process mediated by the condensin complex, is essential for proper chromosome segregation during cell division. Unlike rapid mitotic chromosome condensation, meiotic chromosome condensation occurs over a relatively long prophase I and is unusually complex due to the coordination with chromosome axis formation and homolog interaction. The molecular mechanisms that regulate meiotic chromosome condensation progression from prophase I to metaphase I are unclear. Here, we show that the Arabidopsis thaliana meiotic PHD-finger protein MMD1/DUET is required for progressive compaction of prophase I chromosomes to metaphase I bivalents. The MMD1 PHD domain is required for its function in chromosome condensation and binds to methylated histone tails. Transcriptome analysis and qRT-PCR showed that several condensin genes exhibit significantly reduced expression in mmd1 meiocytes. Furthermore, MMD1 specifically binds to the promoter region of the condensin subunit gene CAP-D3 to enhance its expression. Moreover, cap-d3 mutants exhibit similar chromosome condensation defects, revealing an MMD1-dependent mechanism for regulating meiotic chromosome condensation, which functions in part by promoting condensin gene expression. Together, these discoveries provide strong evidence that the histone reader MMD1/DUET defines an important step for regulating the progression of meiotic prophase I chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | | | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
74
|
Jia N, Liu X, Gao H. A DNA2 Homolog Is Required for DNA Damage Repair, Cell Cycle Regulation, and Meristem Maintenance in Plants. PLANT PHYSIOLOGY 2016; 171:318-33. [PMID: 26951435 PMCID: PMC4854720 DOI: 10.1104/pp.16.00312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Plant meristem cells divide and differentiate in a spatially and temporally regulated manner, ultimately giving rise to organs. In this study, we isolated the Arabidopsis jing he sheng 1 (jhs1) mutant, which exhibited retarded growth, an abnormal pattern of meristem cell division and differentiation, and morphological defects such as fasciation, an irregular arrangement of siliques, and short roots. We identified JHS1 as a homolog of human and yeast DNA Replication Helicase/Nuclease2, which is known to be involved in DNA replication and damage repair. JHS1 is strongly expressed in the meristem of Arabidopsis. The jhs1 mutant was sensitive to DNA damage stress and had an increased DNA damage response, including increased expression of genes involved in DNA damage repair and cell cycle regulation, and a higher frequency of homologous recombination. In the meristem of the mutant plants, cell cycle progression was delayed at the G2 or late S phase and genes essential for meristem maintenance were misregulated. These results suggest that JHS1 plays an important role in DNA replication and damage repair, meristem maintenance, and development in plants.
Collapse
Affiliation(s)
- Ning Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China (N.J., X.L., H.G.)
| |
Collapse
|
75
|
Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection. Virology 2016; 493:113-27. [PMID: 27018825 DOI: 10.1016/j.virol.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
To study a possible role for homologous recombination in geminivirus replication, we challenged Arabidopsis recombination gene knockouts by Euphorbia yellow mosaic virus infection. Our results show that the RAD51 paralog RAD51D, rather than RAD51 itself, promotes viral replication at early stages of infection. Blot hybridization analyses of replicative intermediates using one- and two-dimensional gels and deep sequencing point to an unexpected facet of recombination-dependent replication, the repair by single-strand annealing (SSA) during complementary strand replication. A significant decrease of both intramolecular, yielding defective DNAs and intermolecular recombinant molecules between the two geminiviral DNA components (A, B) were observed in the absence of RAD51D. By contrast, DNA A and B reacted differentially with the generation of inversions. A model to implicate single-strand annealing recombination in geminiviral recombination-dependent replication is proposed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Heϊdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
76
|
Salo HM, Sarjala T, Jokela A, Häggman H, Vuosku J. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. TREE PHYSIOLOGY 2016; 36:392-402. [PMID: 26786537 PMCID: PMC4885945 DOI: 10.1093/treephys/tpv136] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/29/2015] [Indexed: 05/02/2023]
Abstract
Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines.
Collapse
Affiliation(s)
- Heikki M Salo
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Parkano Unit, FI-39700 Parkano, Finland
| | - Anne Jokela
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Hely Häggman
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Jaana Vuosku
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland Natural Resources Institute Finland (Luke), Rovaniemi Unit, FI-96300 Rovaniemi, Finland
| |
Collapse
|
77
|
Vrielynck N, Chambon A, Vezon D, Pereira L, Chelysheva L, De Muyt A, Mezard C, Mayer C, Grelon M. A DNA topoisomerase VI-like complex initiates meiotic recombination. Science 2016; 351:939-43. [DOI: 10.1126/science.aad5196] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
78
|
Olivier M, Da Ines O, Amiard S, Serra H, Goubely C, White CI, Gallego ME. The Structure-Specific Endonucleases MUS81 and SEND1 Are Essential for Telomere Stability in Arabidopsis. THE PLANT CELL 2016; 28:74-86. [PMID: 26704385 PMCID: PMC4746687 DOI: 10.1105/tpc.15.00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 05/02/2023]
Abstract
Structure-specific endonucleases act to repair potentially toxic structures produced by recombination and DNA replication, ensuring proper segregation of the genetic material to daughter cells during mitosis and meiosis. Arabidopsis thaliana has two putative homologs of the resolvase (structure-specific endonuclease): GEN1/Yen1. Knockout of resolvase genes GEN1 and SEND1, individually or together, has no detectable effect on growth, fertility, or sensitivity to DNA damage. However, combined absence of the endonucleases MUS81 and SEND1 results in severe developmental defects, spontaneous cell death, and genome instability. A similar effect is not seen in mus81 gen1 plants, which develop normally and are fertile. Absence of RAD51 does not rescue mus81 send1, pointing to roles of these proteins in DNA replication rather than DNA break repair. The enrichment of S-phase histone γ-H2AX foci and a striking loss of telomeric DNA in mus81 send1 further support this interpretation. SEND1 has at most a minor role in resolution of the Holliday junction but acts as an essential backup to MUS81 for resolution of toxic replication structures to ensure genome stability and to maintain telomere integrity.
Collapse
Affiliation(s)
- Margaux Olivier
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Simon Amiard
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Heïdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Chantal Goubely
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| | - Maria E Gallego
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63000 Clermont-Ferrand, France
| |
Collapse
|
79
|
Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, Santos JL. Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:1034. [PMID: 26648949 PMCID: PMC4664637 DOI: 10.3389/fpls.2015.01034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
Maintenance and precise regulation of sister chromatid cohesion is essential for faithful chromosome segregation during mitosis and meiosis. Cohesin cofactors contribute to cohesin dynamics and interact with cohesin complexes during cell cycle. One of these, PDS5, also known as SPO76, is essential during mitosis and meiosis in several organisms and also plays a role in DNA repair. In yeast, the complex Wapl-Pds5 controls cohesion maintenance and colocalizes with cohesin complexes into chromosomes. In Arabidopsis, AtWAPL proteins are essential during meiosis, however, the role of AtPDS5 remains to be ascertained. Here we have isolated mutants for each of the five AtPDS5 genes (A-E) and obtained, after different crosses between them, double, triple, and even quadruple mutants (Atpds5a Atpds5b Atpds5c Atpds5e). Depletion of AtPDS5 proteins has a weak impact on meiosis, but leads to severe effects on development, fertility, somatic homologous recombination (HR) and DNA repair. Furthermore, this cohesin cofactor could be important for the function of the AtSMC5/AtSMC6 complex. Contrarily to its function in other species, our results suggest that AtPDS5 is dispensable during the meiotic division of Arabidopsis, although it plays an important role in DNA repair by HR.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Eduardo Corredor
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of TechnologyKarlsruhe, Germany
| | - Juan L. Santos
- Departamento de Genética, Facultad de Biología, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
80
|
Manova V, Gruszka D. DNA damage and repair in plants - from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:885. [PMID: 26557130 PMCID: PMC4617055 DOI: 10.3389/fpls.2015.00885] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 05/17/2023]
Abstract
The genomic integrity of every organism is constantly challenged by endogenous and exogenous DNA-damaging factors. Mutagenic agents cause reduced stability of plant genome and have a deleterious effect on development, and in the case of crop species lead to yield reduction. It is crucial for all organisms, including plants, to develop efficient mechanisms for maintenance of the genome integrity. DNA repair processes have been characterized in bacterial, fungal, and mammalian model systems. The description of these processes in plants, in contrast, was initiated relatively recently and has been focused largely on the model plant Arabidopsis thaliana. Consequently, our knowledge about DNA repair in plant genomes - particularly in the genomes of crop plants - is by far more limited. However, the relatively small size of the Arabidopsis genome, its rapid life cycle and availability of various transformation methods make this species an attractive model for the study of eukaryotic DNA repair mechanisms and mutagenesis. Moreover, abnormalities in DNA repair which proved to be lethal for animal models are tolerated in plant genomes, although sensitivity to DNA damaging agents is retained. Due to the high conservation of DNA repair processes and factors mediating them among eukaryotes, genes and proteins that have been identified in model species may serve to identify homologous sequences in other species, including crop plants, in which these mechanisms are poorly understood. Crop breeding programs have provided remarkable advances in food quality and yield over the last century. Although the human population is predicted to "peak" by 2050, further advances in yield will be required to feed this population. Breeding requires genetic diversity. The biological impact of any mutagenic agent used for the creation of genetic diversity depends on the chemical nature of the induced lesions and on the efficiency and accuracy of their repair. More recent targeted mutagenesis procedures also depend on host repair processes, with different pathways yielding different products. Enhanced understanding of DNA repair processes in plants will inform and accelerate the engineering of crop genomes via both traditional and targeted approaches.
Collapse
Affiliation(s)
- Vasilissa Manova
- Department of Molecular Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of SciencesSofia
| | - Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
81
|
Abstract
Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| |
Collapse
|
82
|
Formation of interference-sensitive meiotic cross-overs requires sufficient DNA leading-strand elongation. Proc Natl Acad Sci U S A 2015; 112:12534-9. [PMID: 26392549 DOI: 10.1073/pnas.1507165112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Meiosis halves diploid genomes to haploid and is essential for sexual reproduction in eukaryotes. Meiotic recombination ensures physical association of homologs and their subsequent accurate segregation and results in the redistribution of genetic variations among progeny. Most organisms have two classes of cross-overs (COs): interference-sensitive (type I) and -insensitive (type II) COs. DNA synthesis is essential for meiotic recombination, but whether DNA synthesis has a role in differentiating meiotic CO pathways is unknown. Here, we show that Arabidopsis POL2A, the homolog of the yeast DNA polymerase-ε (a leading-strand DNA polymerase), is required for plant fertility and meiosis. Mutations in POL2A cause reduced fertility and meiotic defects, including abnormal chromosome association, improper chromosome segregation, and fragmentation. Observation of prophase I cell distribution suggests that pol2a mutants likely delay progression of meiotic recombination. In addition, the residual COs in pol2a have reduced CO interference, and the double mutant of pol2a with mus81, which affects type II COs, displayed more severe defects than either single mutant, indicating that POL2A functions in the type I pathway. We hypothesize that sufficient leading-strand DNA elongation promotes formation of some type I COs. Given that meiotic recombination and DNA synthesis are conserved in divergent eukaryotes, this study and our previous study suggest a novel role for DNA synthesis in the differentiation of meiotic recombination pathways.
Collapse
|
83
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
84
|
Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lehmemdi A, Mazel J, Crismani W, Mercier R. AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms. PLoS Genet 2015; 11:e1005369. [PMID: 26161528 PMCID: PMC4498898 DOI: 10.1371/journal.pgen.1005369] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 06/17/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression. Sexually reproducing species produce offspring that are genetically unique from one another, despite having the same parents. This uniqueness is created by meiosis, which is a specialized cell division. After meiosis each parent transmits half of their DNA, but each time this occurs, the 'half portion' of DNA transmitted to offspring is different from the previous. The differences are due to resorting the parental chromosomes, but also recombining them. Here we describe a gene—FIDGETIN-LIKE 1—which limits the amount of recombination that occurs during meiosis. Previously we identified a gene with a similar function, FANCM. FIGL1 and FANCM operate through distinct mechanisms. This discovery will be useful to understand more, from an evolutionary perspective, why recombination is naturally limited. Also this has potentially significant applications for plant breeding which is largely about sampling many 'recombinants' to find individuals that have heritable advantages compared to their parents.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Sandrine Choinard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Nicolas Macaisne
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lehmemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail: (WC); (RM)
| |
Collapse
|
85
|
Li H, Meng F, Guo C, Wang Y, Xie X, Zhu T, Zhou S, Ma H, Shan H, Kong H. MeioBase: a comprehensive database for meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:728. [PMID: 25566299 PMCID: PMC4267189 DOI: 10.3389/fpls.2014.00728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Meiosis is a special type of cell division process necessary for the sexual reproduction of all eukaryotes. The ever expanding meiosis research calls for an effective and specialized database that is not readily available yet. To fill this gap, we have developed a knowledge database MeioBase (http://meiosis.ibcas.ac.cn), which is comprised of two core parts, Resources and Tools. In the Resources part, a wealth of meiosis data collected by curation and manual review from published literatures and biological databases are integrated and organized into various sections, such as Cytology, Pathway, Species, Interaction, and Expression. In the Tools part, some useful tools have been integrated into MeioBase, such as Search, Download, Blast, Comparison, My Favorites, Submission, and Advice. With a simplified and efficient web interface, users are able to search against the database with gene model IDs or keywords, and batch download the data for local investigation. We believe that MeioBase can greatly facilitate the researches related to meiosis.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Fanrui Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Chunce Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Xiaojing Xie
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Tiansheng Zhu
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
86
|
Abstract
Homology search and DNA strand-exchange reactions are central to homologous recombination in meiosis. During meiosis, these processes are regulated such that the probability of choosing a homolog chromatid as recombination partner is enhanced relative to that of choosing a sister chromatid. This regulatory process occurs as homologous chromosomes pair in preparation for assembly of the synaptonemal complex. Two strand-exchange proteins, Rad51 and Dmc1, cooperate in regulated homology search and strand exchange in most organisms. Here, we summarize studies on the properties of these two proteins and their accessory factors. In addition, we review current models for the assembly of meiotic strand-exchange complexes and the possible mechanisms through which the interhomolog bias of recombination partner choice is achieved.
Collapse
Affiliation(s)
- M Scott Brown
- Department of Radiation and Cellular Oncology, and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Douglas K Bishop
- Department of Radiation and Cellular Oncology, and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
87
|
Cabral G, Marques A, Schubert V, Pedrosa-Harand A, Schlögelhofer P. Chiasmatic and achiasmatic inverted meiosis of plants with holocentric chromosomes. Nat Commun 2014; 5:5070. [PMID: 25295686 PMCID: PMC4190664 DOI: 10.1038/ncomms6070] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/25/2014] [Indexed: 11/09/2022] Open
Abstract
Meiosis is a specialized cell division in sexually reproducing organisms before gamete formation. Following DNA replication, the canonical sequence in species with monocentric chromosomes is characterized by reductional segregation of homologous chromosomes during the first and equational segregation of sister chromatids during the second meiotic division. Species with holocentric chromosomes employ specific adaptations to ensure regular disjunction during meiosis. Here we present the analysis of two closely related plant species with holocentric chromosomes that display an inversion of the canonical meiotic sequence, with the equational division preceding the reductional. In-depth analysis of the meiotic divisions of Rhynchospora pubera and R. tenuis reveals that during meiosis I sister chromatids are bi-oriented, display amphitelic attachment to the spindle and are subsequently separated. During prophase II, chromatids are connected by thin chromatin threads that appear instrumental for the regular disjunction of homologous non-sister chromatids in meiosis II. The absence of a defined centromere in organisms with holocentric chromosomes presents particular problems for the control of chromosome segregation during meiosis. Cabral et al. present evidence that two plant species overcome this challenge by inverting the conventional sequence of meiotic divisions.
Collapse
Affiliation(s)
- Gabriela Cabral
- 1] Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil [2] Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna A-1030, Austria
| | - André Marques
- Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, Gatersleben 06466, Germany
| | - Andrea Pedrosa-Harand
- Department of Botany, Laboratory of Plant Cytogenetics and Evolution, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, Pernambuco 50670-420, Brazil
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna A-1030, Austria
| |
Collapse
|
88
|
Bauknecht M, Kobbe D. AtGEN1 and AtSEND1, two paralogs in Arabidopsis, possess holliday junction resolvase activity. PLANT PHYSIOLOGY 2014; 166:202-16. [PMID: 25037209 PMCID: PMC4149707 DOI: 10.1104/pp.114.237834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 05/02/2023]
Abstract
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.
Collapse
Affiliation(s)
- Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
89
|
Jahns MT, Vezon D, Chambon A, Pereira L, Falque M, Martin OC, Chelysheva L, Grelon M. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway. PLoS Biol 2014; 12:e1001930. [PMID: 25116939 PMCID: PMC4130666 DOI: 10.1371/journal.pbio.1001930] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
A genetic study finds the neddylation pathway (known to-date for post-translational protein modification) is involved in regulating crossover localization but not crossover number during meiosis in Arabidopsis. Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed. During meiosis, two successive chromosomal divisions follow a single S phase, resulting in the formation of four haploid cells, each with half of the parental genetic material. This reduction in chromosome number occurs during the first meiotic division, when homologous chromosomes (paternal and maternal) are separated from each other. For this to happen, homologous chromosomes associate in structures called bivalents, where each chromosome is linked to its homologue by a point of contact known as chiasmata. These chiasmata reflect the formation of crossovers (COs), one of the manifestations of the exchange of genetic material occurring during homologous recombination. CO number varies little at around two per chromosome pair, and they tend to be evenly spaced on chromosomes. Thus, CO number and distribution are very tightly controlled. However, the mechanisms underlying these controls are very poorly understood. In this study, we identified a regulatory pathway of meiotic recombination. We show that this pathway does not regulate the amount of recombination events per se, but instead controls their localisation, as when it is defective, CO events cluster together in a few regions of the genome, leading to bivalent shortage and progeny aneuploidy with incorrect numbers of chromosomes. This regulatory pathway is a posttranslational protein modification system called neddylation (or rubylation in plants), known to be required for numerous cellular processes in eukaryotes. We identify an enzyme of the neddylation complex as a major regulator of meiotic recombination in Arabidopsis and show that this process may be also conserved in mammals.
Collapse
Affiliation(s)
- Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Daniel Vezon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Chambon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Lucie Pereira
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Matthieu Falque
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Olivier C. Martin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche de Génétique Végétale, Université Paris-Sud, Gif-sur-Yvette, France
| | - Liudmila Chelysheva
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
90
|
Lu P, Chai M, Yang J, Ning G, Wang G, Ma H. The Arabidopsis CALLOSE DEFECTIVE MICROSPORE1 gene is required for male fertility through regulating callose metabolism during microsporogenesis. PLANT PHYSIOLOGY 2014; 164:1893-904. [PMID: 24567187 PMCID: PMC3982751 DOI: 10.1104/pp.113.233387] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/18/2014] [Indexed: 05/17/2023]
Abstract
During angiosperm microsporogenesis, callose serves as a temporary wall to separate microsporocytes and newly formed microspores in the tetrad. Abnormal callose deposition and dissolution can lead to degeneration of developing microspores. However, genes and their regulation in callose metabolism during microsporogenesis still remain largely unclear. Here, we demonstrated that the Arabidopsis (Arabidopsis thaliana) CALLOSE DEFECTIVE MICROSPORE1 (CDM1) gene, encoding a tandem CCCH-type zinc finger protein, plays an important role in regulation of callose metabolism in male meiocytes and in integrity of newly formed microspores. First, quantitative reverse transcription PCR and in situ hybridization analyses showed that the CDM1 gene was highly expressed in meiocytes and the tapetum from anther stages 4 to 7. In addition, a transfer DNA insertional cdm1 mutant was completely male sterile. Moreover, light microscopy of anther sections revealed that microspores in the mutant anther were initiated, and then degenerated soon afterward with callose deposition defects, eventually leading to male sterility. Furthermore, transmission electron microscopy demonstrated that pollen exine formation was severely affected in the cdm1 mutant. Finally, we found that the cdm1 mutation affected the expression of callose synthesis genes (CALLOSE SYNTHASE5 and CALLOSE SYNTHASE12) and potential callase-related genes (A6 and MYB80), as well as three other putative β-1,3-glucanase genes. Therefore, we propose that the CDM1 gene regulates callose metabolism during microsporogenesis, thereby promoting Arabidopsis male fertility.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Ma
- Address correspondence to
and
| |
Collapse
|
91
|
Luo Q, Li Y, Shen Y, Cheng Z. Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 2014; 41:125-37. [PMID: 24656233 DOI: 10.1016/j.jgg.2014.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/26/2014] [Accepted: 02/17/2014] [Indexed: 12/29/2022]
Abstract
Meiosis is the crucial process by which sexually propagating eukaryotes give rise to haploid gametes from diploid cells. Several key processes, like homologous chromosomes pairing, synapsis, recombination, and segregation, sequentially take place in meiosis. Although these widely conserved events are under both genetic and epigenetic control, the accurate details of molecular mechanisms are continuing to investigate. Rice is a good model organism for exploring the molecular mechanisms of meiosis in higher plants. So far, 28 rice meiotic genes have been characterized. In this review, we give an overview of the discovery of rice meiotic genes in the last ten years, with a particular focus on their functions in meiosis.
Collapse
Affiliation(s)
- Qiong Luo
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
92
|
Da Ines O, Gallego ME, White CI. Recombination-independent mechanisms and pairing of homologous chromosomes during meiosis in plants. MOLECULAR PLANT 2014; 7:492-501. [PMID: 24375719 DOI: 10.1093/mp/sst172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Meiosis is the specialized eukaryotic cell division that permits the halving of ploidy necessary for gametogenesis in sexually reproducing organisms. This involves a single round of DNA replication followed by two successive divisions. To ensure balanced segregation, homologous chromosome pairs must migrate to opposite poles at the first meiotic division and this means that they must recognize and pair with each other beforehand. Although understanding of the mechanisms by which meiotic chromosomes find and pair with their homologs has greatly advanced, it remains far from being fully understood. With some notable exceptions such as male Drosophila, the recognition and physical linkage of homologs at the first meiotic division involves homologous recombination. However, in addition to this, it is clear that many organisms, including plants, have also evolved a series of recombination-independent mechanisms to facilitate homolog recognition and pairing. These implicate chromosome structure and dynamics, telomeres, centromeres, and, most recently, small RNAs. With a particular focus on plants, we present here an overview of understanding of these early, recombination-independent events that act in the pairing of homologous chromosomes during the first meiotic division.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 63171 Aubière, France
| | | | | |
Collapse
|
93
|
Lu P, Wijeratne AJ, Wang Z, Copenhaver GP, Ma H. Arabidopsis PTD is required for type I crossover formation and affects recombination frequency in two different chromosomal regions. J Genet Genomics 2014; 41:165-75. [PMID: 24656236 DOI: 10.1016/j.jgg.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 01/26/2023]
Abstract
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSPO11-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors of Atspo11-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSPO11-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck ptd and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd-2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.
Collapse
Affiliation(s)
- Pingli Lu
- Institute of Plant Biology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Asela J Wijeratne
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhengjia Wang
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA; School of Forestry and Biotechnology, Zhejiang A&F University, Linan 311300, China
| | - Gregory P Copenhaver
- Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-3280, USA
| | - Hong Ma
- Institute of Plant Biology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
94
|
Pradillo M, Varas J, Oliver C, Santos JL. On the role of AtDMC1, AtRAD51 and its paralogs during Arabidopsis meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:23. [PMID: 24596572 PMCID: PMC3925842 DOI: 10.3389/fpls.2014.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 05/02/2023]
Abstract
Meiotic recombination plays a critical role in achieving accurate chromosome segregation and increasing genetic diversity. Many studies, mostly in yeast, have provided important insights into the coordination and interplay between the proteins involved in the homologous recombination pathway, especially the recombinase RAD51 and the meiosis-specific DMC1. Here we summarize the current progresses on the function of both recombinases and the CX3 complex encoded by AtRAD51 paralogs, in the plant model species Arabidopsis thaliana. Similarities and differences respect to the function of these proteins in other organisms are also indicated.
Collapse
Affiliation(s)
- Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | | | | | | |
Collapse
|
95
|
Wellmer F, Bowman JL, Davies B, Ferrándiz C, Fletcher JC, Franks RG, Graciet E, Gregis V, Ito T, Jack TP, Jiao Y, Kater MM, Ma H, Meyerowitz EM, Prunet N, Riechmann JL. Flower development: open questions and future directions. Methods Mol Biol 2014; 1110:103-24. [PMID: 24395254 DOI: 10.1007/978-1-4614-9408-9_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Almost three decades of genetic and molecular analyses have resulted in detailed insights into many of the processes that take place during flower development and in the identification of a large number of key regulatory genes that control these processes. Despite this impressive progress, many questions about how flower development is controlled in different angiosperm species remain unanswered. In this chapter, we discuss some of these open questions and the experimental strategies with which they could be addressed. Specifically, we focus on the areas of floral meristem development and patterning, floral organ specification and differentiation, as well as on the molecular mechanisms underlying the evolutionary changes that have led to the astounding variations in flower size and architecture among extant and extinct angiosperms.
Collapse
Affiliation(s)
- Frank Wellmer
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang Y, Xiao R, Wang H, Cheng Z, Li W, Zhu G, Wang Y, Ma H. The Arabidopsis RAD51 paralogs RAD51B, RAD51D and XRCC2 play partially redundant roles in somatic DNA repair and gene regulation. THE NEW PHYTOLOGIST 2014; 201:292-304. [PMID: 24102485 DOI: 10.1111/nph.12498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 08/14/2013] [Indexed: 05/12/2023]
Abstract
The eukaryotic RAD51 gene family has seven ancient paralogs conserved between plants and animals. Among these, RAD51, DMC1, RAD51C and XRCC3 are important for homologous recombination and/or DNA repair, whereas single mutants in RAD51B, RAD51D or XRCC2 show normal meiosis, and the lineages they represent diverged from each other evolutionarily later than the other four paralogs, suggesting possible functional redundancy. The function of Arabidopsis RAD51B, RAD51D and XRCC2 genes in mitotic DNA repair and meiosis was analyzed using molecular genetic, cytological and transcriptomic approaches. The relevant double and triple mutants displayed normal vegetative and reproductive growth. However, the triple mutant showed greater sensitivity than single or double mutants to DNA damage by bleomycin. RNA-Seq transcriptome analysis supported the idea that the triple mutant showed DNA damage similar to that caused by bleomycin. On bleomycin treatment, many genes were altered in the wild-type but not in the triple mutant, suggesting that the RAD51 paralogs have roles in the regulation of gene transcription, providing an explanation for the hypersensitive phenotype of the triple mutant to bleomycin. Our results provide strong evidence that Arabidopsis XRCC2, RAD51B and RAD51D have complex functions in somatic DNA repair and gene regulation, arguing for further studies of these ancient genes that have been maintained in both plants and animals during their long evolutionary history.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Rong Xiao
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Haifeng Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihao Cheng
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wuxing Li
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Genfeng Zhu
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
97
|
Liu Y, Gaines WA, Callender T, Busygina V, Oke A, Sung P, Fung JC, Hollingsworth NM. Down-regulation of Rad51 activity during meiosis in yeast prevents competition with Dmc1 for repair of double-strand breaks. PLoS Genet 2014; 10:e1004005. [PMID: 24465215 PMCID: PMC3900393 DOI: 10.1371/journal.pgen.1004005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022] Open
Abstract
Interhomolog recombination plays a critical role in promoting proper meiotic chromosome segregation but a mechanistic understanding of this process is far from complete. In vegetative cells, Rad51 is a highly conserved recombinase that exhibits a preference for repairing double strand breaks (DSBs) using sister chromatids, in contrast to the conserved, meiosis-specific recombinase, Dmc1, which preferentially repairs programmed DSBs using homologs. Despite the different preferences for repair templates, both Rad51 and Dmc1 are required for interhomolog recombination during meiosis. This paradox has recently been explained by the finding that Rad51 protein, but not its strand exchange activity, promotes Dmc1 function in budding yeast. Rad51 activity is inhibited in dmc1Δ mutants, where the failure to repair meiotic DSBs triggers the meiotic recombination checkpoint, resulting in prophase arrest. The question remains whether inhibition of Rad51 activity is important during wild-type meiosis, or whether inactivation of Rad51 occurs only as a result of the absence of DMC1 or checkpoint activation. This work shows that strains in which mechanisms that down-regulate Rad51 activity are removed exhibit reduced numbers of interhomolog crossovers and noncrossovers. A hypomorphic mutant, dmc1-T159A, makes less stable presynaptic filaments but is still able to mediate strand exchange and interact with accessory factors. Combining dmc1-T159A with up-regulated Rad51 activity reduces interhomolog recombination and spore viability, while increasing intersister joint molecule formation. These results support the idea that down-regulation of Rad51 activity is important during meiosis to prevent Rad51 from competing with Dmc1 for repair of meiotic DSBs.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - William A. Gaines
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Tracy Callender
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Valeria Busygina
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
98
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
99
|
Knoll A, Schröpfer S, Puchta H. The RTR complex as caretaker of genome stability and its unique meiotic function in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:33. [PMID: 24575106 PMCID: PMC3921566 DOI: 10.3389/fpls.2014.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/25/2014] [Indexed: 05/02/2023]
Abstract
The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO)-associated meiotic gene conversion (GC) differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO) could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.
Collapse
Affiliation(s)
| | | | - Holger Puchta
- *Correspondence: Holger Puchta, Botanical Institute II, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany e-mail:
| |
Collapse
|
100
|
Molecular cell biology of male meiotic chromosomes and isolation of male meiocytes in Arabidopsis thaliana. Methods Mol Biol 2014; 1110:217-30. [PMID: 24395259 DOI: 10.1007/978-1-4614-9408-9_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants typically produce numerous flowers whose meiotic chromosomes are relatively easy to observe, making them excellent structures for studying the cellular processes underlying meiosis. In recent years, breakthroughs in light and electron microscopic technologies for small chromosomes, combined with molecular genetic methods, have resulted in major advances in the understanding of meiosis in the model plant Arabidopsis thaliana. In this chapter, we summarize protocols for basic cytology, fluorescence in situ hybridization, immunofluorescence, electron microscopy, and isolation of male meiocytes for the analysis of Arabidopsis meiosis.
Collapse
|