51
|
Liu A, Yang Z, Liu L, Chen J, An L. Role of Functionality in Cross-Stream Migration, Structures, and Dynamics of Star Polymers in Poiseuille Flow. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aiqing Liu
- College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Jizhong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
52
|
Lin JH, Tsai TT, Zeng Q, Chang CY, Guo JY, Lin CJ, Chen CF. A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases. ACS Sens 2020; 5:3082-3090. [PMID: 32786388 DOI: 10.1021/acssensors.0c00969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we demonstrate a multifunctional, portable, and disposable microfluidic device for blood typing and primary screening of blood diseases. Preloaded antibodies (anti-A, anti-B, and anti-D) interact with injected whole blood cells to cause an agglutination reaction that blocks a microslit in the microfluidic channel to accumulate red blood cells and form a visible red line that can be easily read to determine the blood type. Moreover, the different blood density and agglutination properties of normal and subtype blood groups, as well as different blood diseases, including anemia and polycythemia vera, generate different lengths of blood agglutination within the channels, which allows us to successfully screen these various conditions in as little as 2 min. The required blood volume for each test is just 1 μL, which can be obtained by minimally invasive finger pricking. This novel method of observing agglutinated red blood cells to distinguish blood types and diseases is both feasible and affordable, suggesting its promise for use in areas with limited resources.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Qiang Zeng
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Yen Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Jui Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
53
|
Yang J, Wang R, Xie D. Self-organization in suspensions of telechelic star polymers. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Kumar D, Richter CM, Schroeder CM. Double-mode relaxation of highly deformed anisotropic vesicles. Phys Rev E 2020; 102:010605. [PMID: 32794982 DOI: 10.1103/physreve.102.010605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Lipid vesicles are known to undergo complex conformational transitions, but it remains challenging to systematically characterize nonequilibrium membrane dynamics in flow. Here, we report the direct observation of anisotropic vesicle relaxation from highly deformed shapes using a Stokes trap. Vesicle shape relaxation is described by two distinct characteristic timescales governed by the bending modulus and membrane tension. Interestingly, the fast double-mode timescale is found to depend on vesicle deflation or reduced volume. Experimental results are well described by a viscoelastic model of a deformed membrane. Overall, these results show that vesicle relaxation is governed by an interplay between membrane elastic moduli, surface tension, and vesicle deflation.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Channing M Richter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
55
|
Bahrami N, Childs SJ. Development of vascular regulation in the zebrafish embryo. Development 2020; 147:147/10/dev183061. [PMID: 32423977 DOI: 10.1242/dev.183061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/07/2020] [Indexed: 01/03/2023]
Abstract
The thin endothelial wall of a newly formed vessel is under enormous stress at the onset of blood flow, rapidly acquiring support from mural cells (pericytes and vascular smooth muscle cells; vSMCs) during development. Mural cells then develop vasoactivity (contraction and relaxation) but we have little information as to when this first develops or the extent to which pericytes and vSMCs contribute. For the first time, we determine the dynamic developmental acquisition of vasoactivity in vivo in the cerebral vasculature of zebrafish. We show that pericyte-covered vessels constrict in response to α1-adrenergic receptor agonists and dilate in response to nitric oxide donors at 4 days postfertilization (dpf) but have heterogeneous responses later, at 6 dpf. In contrast, vSMC-covered vessels constrict at 6 dpf, and dilate at both stages. Using genetic ablation, we demonstrate that vascular constriction and dilation is an active response. Our data suggest that both pericyte- and vSMC-covered vessels regulate their diameter in early development, and that their relative contributions change over developmental time.
Collapse
Affiliation(s)
- Nabila Bahrami
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Sarah J Childs
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
56
|
Li L, Hu J, Różycki B, Song F. Intercellular Receptor-Ligand Binding and Thermal Fluctuations Facilitate Receptor Aggregation in Adhering Membranes. NANO LETTERS 2020; 20:722-728. [PMID: 31858798 PMCID: PMC7751893 DOI: 10.1021/acs.nanolett.9b04596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/15/2019] [Indexed: 05/28/2023]
Abstract
Nanoscale molecular clusters in cell membranes can serve as platforms to recruit membrane proteins for various biological functions. A central question is how these nanoclusters respond to physical contacts between cells. Using a statistical mechanics model and Monte Carlo simulations, we explore how the adhesion of cell membranes affects the stability and coalescence of clusters enriched in receptor proteins. Our results show that intercellular receptor-ligand binding and membrane shape fluctuations can lead to receptor aggregation within the adhering membranes even if large-scale clusters are thermodynamically unstable in nonadhering membranes.
Collapse
Affiliation(s)
- Long Li
- State
Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of
Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglei Hu
- Kuang
Yaming Honors School & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Bartosz Różycki
- Institute
of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Fan Song
- State
Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of
Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Engineering Science, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Kumar D, Richter CM, Schroeder CM. Conformational dynamics and phase behavior of lipid vesicles in a precisely controlled extensional flow. SOFT MATTER 2020; 16:337-347. [PMID: 31802095 DOI: 10.1039/c9sm02048a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we lack a complete understanding of the non-equilibrium dynamics of vesicles due to challenges associated with long-time observation of shape fluctuations in strong flows. In this work, we present a flow-phase diagram for vesicle shape and conformational transitions in planar extensional flow using a Stokes trap, which enables control over the center-of-mass position of single or multiple vesicles in precisely defined flows [A. Shenoy, C. V. Rao and C. M. Schroeder, Proc. Natl. Acad. Sci. U. S. A., 2016, 113(15), 3976-3981]. In this way, we directly observe the non-equilibrium conformations of lipid vesicles as a function of reduced volume ν, capillary number Ca, and viscosity contrast λ. Our results show that vesicle dynamics in extensional flow are characterized by the emergence of three distinct shape transitions, including a tubular to symmetric dumbbell transition, a spheroid to asymmetric dumbbell transition, and quasi-spherical to ellipsoid transition. The experimental phase diagram is in good agreement with recent predictions from simulations [V. Narsimhan, A. P. Spann and E. S. Shaqfeh, J. Fluid Mech., 2014, 750, 144]. We further show that the phase boundary of vesicle shape transitions is independent of the viscosity contrast. Taken together, our results demonstrate the utility of the Stokes trap for the precise quantification of vesicle stretching dynamics in precisely defined flows.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
58
|
Arakawa C, Gunnarsson C, Howard C, Bernabeu M, Phong K, Yang E, DeForest CA, Smith JD, Zheng Y. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. SCIENCE ADVANCES 2020; 6:eaay7243. [PMID: 32010773 PMCID: PMC6968943 DOI: 10.1126/sciadv.aay7243] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-μm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo-like stretching and tumbling with negligible interactions with the vessel wall. By comparison, Plasmodium falciparum-infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases.
Collapse
Affiliation(s)
- Christopher Arakawa
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Celina Gunnarsson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Maria Bernabeu
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kiet Phong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Eric Yang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joseph D. Smith
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
59
|
Radhakrishnan R, Farokhirad S, Eckmann DM, Ayyaswamy PS. Nanoparticle transport phenomena in confined flows. ADVANCES IN HEAT TRANSFER 2019; 51:55-129. [PMID: 31692964 DOI: 10.1016/bs.aiht.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanoparticles submerged in confined flow fields occur in several technological applications involving heat and mass transfer in nanoscale systems. Describing the transport with nanoparticles in confined flows poses additional challenges due to the coupling between the thermal effects and fluid forces. Here, we focus on the relevant literature related to Brownian motion, hydrodynamic interactions and transport associated with nanoparticles in confined flows. We review the literature on the several techniques that are based on the principles of non-equilibrium statistical mechanics and computational fluid dynamics in order to simultaneously preserve the fluctuation-dissipation relationship and the prevailing hydrodynamic correlations. Through a review of select examples, we discuss the treatments of the temporal dynamics from the colloidal scales to the molecular scales pertaining to nanoscale fluid dynamics and heat transfer. As evident from this review, there, indeed has been little progress made in regard to the accurate modeling of heat transport in nanofluids flowing in confined geometries such as tubes. Therefore the associated mechanisms with such processes remain unexplained. This review has revealed that the information available in open literature on the transport properties of nanofluids is often contradictory and confusing. It has been very difficult to draw definitive conclusions. The quality of work reported on this topic is non-uniform. A significant portion of this review pertains to the treatment of the fluid dynamic aspects of the nanoparticle transport problem. By simultaneously treating the energy transport in ways discussed in this review as related to momentum transport, the ultimate goal of understanding nanoscale heat transport in confined flows may be achieved.
Collapse
Affiliation(s)
- Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Samaneh Farokhirad
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - David M Eckmann
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Portonovo S Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States.,Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA, United States
| |
Collapse
|
60
|
Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells. Microvasc Res 2019; 125:103878. [DOI: 10.1016/j.mvr.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
|
61
|
Shen Z, He Y. Migration of a red blood cell in a permeable microvessel. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2019. [DOI: 10.1016/j.medntd.2019.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
62
|
Lei C, Li Q, Yang L, Deng F, Li J, Ye Z, Wang Y, Zhang Z. Controlled reversible buckling of polydopamine spherical microcapsules: revealing the hidden rich phenomena of post-buckling of spherical polymeric shells. SOFT MATTER 2019; 15:6504-6517. [PMID: 31343046 DOI: 10.1039/c9sm00705a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Under external pressure compression, various kinds of artificial microcapsules can undergo buckling induced deformation and catastrophic rupturing failure, which needs to be understood for their diverse practical applications. For this, many theories and numerical simulations have recently emerged, leading to some intriguing but often debatable predictions and scaling laws. However, experimental testing of these predictions is very limited, due to challenges in realizing prescribed buckling pathways and in situ monitoring of the buckling procedure. Herein, we report the buckling behaviors of well-defined spherical polydopamine (PDA) capsules with tunable sizes and homogeneous nanoscale shells. Simple but controlled solvent evaporation was implemented inside a home-made optical chamber to induce buckling of PDA capsules by following a prescribed pathway toward targeted shapes that are only dictated by the inherent material properties of the capsules. In addition, the buckling speed was slowed down to the timescale of minutes, which can prevent buckling from being trapped at some metastable intermediate states as well as facilitating in situ optical monitoring of the whole buckling procedure in slow motion. In this way, several classic buckling behaviors were clearly observed, including the sudden appearance of spinodal-like dimples above critical pressures, transition of the indentation rim from the axisymmetric to polygonal shape, and evolution of multi-indented buckling into single indented buckling following Ostwald ripening. These observations are qualitatively comparable with recent predictions from numerical results. Furthermore, some novel buckling phenomena have been reported for the first time, which might stimulate further theories and numerical simulations.
Collapse
Affiliation(s)
- Caifen Lei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| | - Qiang Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| | - Lu Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| | - Jianyao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zihan Ye
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| | - Ying Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
63
|
Ruiz-Franco J, Jaramillo-Cano D, Camargo M, Likos CN, Zaccarelli E. Multi-particle collision dynamics for a coarse-grained model of soft colloids. J Chem Phys 2019; 151:074902. [PMID: 31438712 DOI: 10.1063/1.5113588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The growing interest in the dynamical properties of colloidal suspensions, both in equilibrium and under an external drive such as shear or pressure flow, requires the development of accurate methods to correctly include hydrodynamic effects due to the suspension in a solvent. In the present work, we generalize Multiparticle Collision Dynamics (MPCD) to be able to deal with soft, polymeric colloids. Our methods build on the knowledge of the monomer density profile that can be obtained from monomer-resolved simulations without hydrodynamics or from theoretical arguments. We hereby propose two different approaches. The first one simply extends the MPCD method by including in the simulations effective monomers with a given density profile, thus neglecting monomer-monomer interactions. The second one considers the macromolecule as a single penetrable soft colloid (PSC), which is permeated by an inhomogeneous distribution of solvent particles. By defining an appropriate set of rules to control the collision events between the solvent and the soft colloid, both linear and angular momenta are exchanged. We apply these methods to the case of linear chains and star polymers for varying monomer lengths and arm number, respectively, and compare the results for the dynamical properties with those obtained within monomer-resolved simulations. We find that the effective monomer method works well for linear chains, while the PSC method provides very good results for stars. These methods pave the way to extend MPCD treatments to complex macromolecular objects such as microgels or dendrimers and to work with soft colloids at finite concentrations.
Collapse
Affiliation(s)
- José Ruiz-Franco
- CNR-ISC, Sapienza University of Rome, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Diego Jaramillo-Cano
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Manuel Camargo
- FIMEB & CICBA, Universidad Antonio Nariño - Campus Farallones, Km 18 vía Cali-Jamundí, 760030 Cali, Colombia
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | | |
Collapse
|
64
|
Chuphal P, P V, Thakur S. Dynamics of diffusiophoretic vesicle under external shear flow. J Chem Phys 2019. [DOI: 10.1063/1.5112808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Prabha Chuphal
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Varun P
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
65
|
Dasanna AK, Fedosov DA, Gompper G, Schwarz US. State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. SOFT MATTER 2019; 15:5511-5520. [PMID: 31241632 DOI: 10.1039/c9sm00677j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Red blood cells in shear flow show a variety of different shapes due to the complex interplay between hydrodynamics and membrane elasticity. Malaria-infected red blood cells become generally adhesive and less deformable. Adhesion to a substrate leads to a reduction in shape variability and to a flipping motion of the non-spherical shapes during the mid-stage of infection. Here, we present a complete state diagram for wall adhesion of red blood cells in shear flow obtained by simulations, using a particle-based mesoscale hydrodynamics approach, multiparticle collision dynamics. We find that cell flipping at a substrate is replaced by crawling beyond a critical shear rate, which increases with both membrane stiffness and viscosity contrast between the cytosol and suspending medium. This change in cell dynamics resembles the transition between tumbling and tank-treading for red blood cells in free shear flow. In the context of malaria infections, the flipping-crawling transition would strongly increase the adhesive interactions with the vascular endothelium, but might be suppressed by the combined effect of increased elasticity and viscosity contrast.
Collapse
Affiliation(s)
- Anil K Dasanna
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany. and Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ulrich S Schwarz
- BioQuant and Institute of Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
66
|
Chien W, Zhang Z, Gompper G, Fedosov DA. Deformation and dynamics of erythrocytes govern their traversal through microfluidic devices with a deterministic lateral displacement architecture. BIOMICROFLUIDICS 2019; 13:044106. [PMID: 31372194 PMCID: PMC6660305 DOI: 10.1063/1.5112033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/10/2019] [Indexed: 05/11/2023]
Abstract
Deterministic lateral displacement (DLD) microfluidic devices promise versatile and precise processing of biological samples. However, this prospect has been realized so far only for rigid spherical particles and remains limited for biological cells due to the complexity of cell dynamics and deformation in microfluidic flow. We employ mesoscopic hydrodynamics simulations of red blood cells (RBCs) in DLD devices with circular posts to better understand the interplay between cell behavior in complex microfluidic flow and sorting capabilities of such devices. We construct a mode diagram of RBC behavior (e.g., displacement, zig-zagging, and intermediate modes) and identify several regimes of RBC dynamics (e.g., tumbling, tank-treading, and trilobe motion). Furthermore, we link the complex interaction dynamics of RBCs with the post to their effective cell size and discuss relevant physical mechanisms governing the dynamic cell states. In conclusion, sorting of RBCs in DLD devices based on their shear elasticity is, in general, possible but requires fine-tuning of flow conditions to targeted mechanical properties of the RBCs.
Collapse
Affiliation(s)
- Wei Chien
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Zunmin Zhang
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A. Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
67
|
Belardinelli D, Sbragaglia M, Benzi R, Ciliberto S. Lattice Boltzmann simulations of nonequilibrium fluctuations in a nonideal binary mixture. Phys Rev E 2019; 99:063302. [PMID: 31330737 DOI: 10.1103/physreve.99.063302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Indexed: 06/10/2023]
Abstract
In recent years the lattice Boltzmann (LB) methodology has been fruitfully extended to include the effects of thermal fluctuations. So far, all studied cases pertain to equilibrium fluctuations, i.e., fluctuations with respect to an equilibrium background state. In this paper we take a step further and present results of fluctuating LB simulations of a binary mixture confined between two parallel walls in the presence of a constant concentration gradient in the wall-to-wall direction. This is a paradigmatic setup for the study of nonequilibrium (NE) fluctuations, i.e., fluctuations with respect to a nonequilibrium state. We analyze the dependence of the structure factors for the hydrodynamical fields on the wave vector q in both the directions parallel and perpendicular to the walls, highlighting the long-range (∼|q|^{-4}) nature of correlations in the NE framework. Results at the small scales (high wave numbers) quantitatively agree with the predictions of fluctuating hydrodynamics without fitting parameters. At larger scales (low wave numbers), however, results show finite-size effects induced by confinement and call for further studies aimed at controlling boundary conditions in the fluctuating LB framework as well as compressibility effects. Moreover, in the presence of a nonideal equation of state of the mixture, we also observe that the (spatially homogeneous) average pressure changes, due to a genuinely new contribution triggered by NE fluctuations. These NE pressure effects are studied at changing the system size and the concentration gradient. Taken all together, we argue that the results of this article are useful and instrumental to boost the applicability of the fluctuating LB methodology in the framework of NE fluctuations, possibly in conjunction with experiments.
Collapse
Affiliation(s)
- Daniele Belardinelli
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mauro Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Roberto Benzi
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Sergio Ciliberto
- Laboratoire de Physique de Ecole Normale Superieure de Lyon (CNRS UMR5672), 46 Allée d'Italie, 69364, Lyon, France
| |
Collapse
|
68
|
Reichel F, Mauer J, Nawaz AA, Gompper G, Guck J, Fedosov DA. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability. Biophys J 2019; 117:14-24. [PMID: 31235179 DOI: 10.1016/j.bpj.2019.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/22/2019] [Indexed: 02/01/2023] Open
Abstract
The motion of red blood cells (RBCs) in microchannels is important for microvascular blood flow and biomedical applications such as blood analysis in microfluidics. The current understanding of the complexity of RBC shapes and dynamics in microchannels is mainly based on several simulation studies, but there are a few systematic experimental investigations. Here, we present a combined study that systematically characterizes RBC behavior for a wide range of flow rates and channel sizes. Even though simulations and experiments generally show good agreement, experimental observations demonstrate that there is no single well-defined RBC state for fixed flow conditions but rather a broad distribution of states. This result can be attributed to the inherent variability in RBC mechanical properties, which is confirmed by a model that takes the variation in RBC shear elasticity into account. This represents a significant step toward a quantitative connection between RBC behavior in microfluidic devices and their mechanical properties, which is essential for a high-throughput characterization of diseased cells.
Collapse
Affiliation(s)
- Felix Reichel
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Johannes Mauer
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Ahmad Ahsan Nawaz
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Max Planck Institute for the Science of Light, Erlangen, Germany.
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
69
|
Lázaro GR, Hernández-Machado A, Pagonabarraga I. Collective behavior of red blood cells in confined channels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:46. [PMID: 30989403 DOI: 10.1140/epje/i2019-11805-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
We study the flow properties of red blood cells in confined channels, when the channel width is comparable to the cell size. We focus on the case of intermediate concentrations when hydrodynamic interactions between cells play a dominant role. This regime is different to the case of low concentration in which the cells behave as hydrodynamically isolated. In this last case, the dynamic behavior is entirely controlled by the interplay between the interaction with the wall and the elastic response of the cell membrane. Our results highlight the different fluid properties when collective flow is present. The cells acquire a characteristic slipper shape, and parachute shapes are only observed at very large capillary numbers. We have characterized the spatial ordering and the layering by means of a pairwise correlation function. Focusing effects are observed at the core of the channel instead of at the lateral position typical of the single-train case. These results indicate that at these intermediate concentrations we observed at the microscale the first steps of the well-known macroscopic Fahraeus-Lindqvist effect. The rheological properties of the suspension are studied by means of the effective viscosity, with an expected shear-thinning behavior. Two main differences are obtained with respect to the single-train case. First, a large magnitude of the viscosity is obtained indicating a high resistance to flow. Secondly, the shear-thinning behavior is obtained at larger values of the capillary number respect to the single-train case. These results suggest that the phenomena of ordering in space and orientation occur at higher values of the capillary number.
Collapse
Affiliation(s)
- Guillermo R Lázaro
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain
| | - Aurora Hernández-Machado
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028, Barcelona, Spain.
- Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne, Batochime, Avenue Forel 2, 1015, Lausanne, Switzerland.
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
70
|
Itoga H, Morikawa R, Ueta T, Miyakawa T, Natsume Y, Takasu M. Effect of particles with repulsive interactions enclosed in both rigid spherical shells and flexible fluid vesicles studied by Monte Carlo simulation. Phys Rev E 2019; 99:042418. [PMID: 31108718 DOI: 10.1103/physreve.99.042418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 11/07/2022]
Abstract
Experimental observations indicate that the repulsion of particles is a factor that induces the transformation of vesicles containing multiple particles. Metropolis Monte Carlo simulations are performed with two models in which repulsive particles are enclosed inside a vesicle. The distribution of the particles and the effective bending coefficient and surface tension of the membrane are analyzed. The shape and internal structure of the vesicle containing the particles are investigated as the vesicle volume is decreased. It is revealed that the repulsive interaction between particles produces a layered structure and stiffens the membrane. When particles repulsively interact over a long range, the membrane takes on a dumbbell form.
Collapse
Affiliation(s)
- Hibiki Itoga
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Ryota Morikawa
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | - Takeshi Miyakawa
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | | | - Masako Takasu
- Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
71
|
Biomechanical characterization of TIM protein-mediated Ebola virus-host cell adhesion. Sci Rep 2019; 9:267. [PMID: 30670766 PMCID: PMC6342996 DOI: 10.1038/s41598-018-36449-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/19/2023] Open
Abstract
Since the most recent outbreak, the Ebola virus (EBOV) epidemic remains one of the world’s public health and safety concerns. EBOV is a negative-sense RNA virus that can infect humans and non-human primates, and causes hemorrhagic fever. It has been proposed that the T-cell immunoglobulin and mucin domain (TIM) family proteins act as cell surface receptors for EBOV, and that the interaction between TIM and phosphatidylserine (PS) on the surface of EBOV mediates the EBOV–host cell attachment. Despite these initial findings, the biophysical properties of the TIM-EBOV interaction, such as the mechanical strength of the TIM-PS bond that allows the virus-cell interaction to resist external mechanical perturbations, have not yet been characterized. This study utilizes single-molecule force spectroscopy to quantify the specific interaction forces between TIM-1 or TIM-4 and the following binding partners: PS, EBOV virus-like particle, and EBOV glycoprotein/vesicular stomatitis virus pseudovirion. Depending on the loading rates, the unbinding forces between TIM and ligands ranged from 40 to 100 pN, suggesting that TIM-EBOV interactions are mechanically comparable to previously reported adhesion molecule–ligand interactions. The TIM-4–PS interaction is more resistant to mechanical force than the TIM-1–PS interaction. We have developed a simple model for virus–host cell interaction that is driven by its adhesion to cell surface receptors and resisted by membrane bending (or tension). Our model identifies critical dimensionless parameters representing the ratio of deformation and adhesion energies, showing how single-molecule adhesion measurements relate quantitatively to the mechanics of virus adhesion to the cell.
Collapse
|
72
|
Huang HW, Uslu FE, Katsamba P, Lauga E, Sakar MS, Nelson BJ. Adaptive locomotion of artificial microswimmers. SCIENCE ADVANCES 2019; 5:eaau1532. [PMID: 30746446 PMCID: PMC6357760 DOI: 10.1126/sciadv.aau1532] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a notable role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of using elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors.
Collapse
Affiliation(s)
- H.-W. Huang
- Department of Mechanical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| | - F. E. Uslu
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - P. Katsamba
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - E. Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
| | - M. S. Sakar
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - B. J. Nelson
- Department of Mechanical Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
73
|
Myung JS, Roosen-Runge F, Winkler RG, Gompper G, Schurtenberger P, Stradner A. Weak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions. J Phys Chem B 2018; 122:12396-12402. [PMID: 30499666 PMCID: PMC6349356 DOI: 10.1021/acs.jpcb.8b07901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The effect of a nonspherical
particle shape on the dynamics in
crowded solutions presents a significant challenge for a comprehensive
understanding of interaction and structural relaxation in biological
and soft matter. We report that small deviations from a spherical
shape induce a nonmonotonic contribution to the crowding effect on
the short-time cage diffusion compared with spherical systems, using
molecular dynamics simulations with mesoscale hydrodynamics of a multiparticle
collision dynamics fluid in semidilute systems with volume fractions
smaller than 0.35. We show that the nonmonotonic effect due to anisotropy
is caused by the combination of a reduced relative mobility over the
entire concentration range and a looser and less homogeneous cage
packing of nonspherical particles. Our finding stresses that nonsphericity
induces new complexity, which cannot be accounted for in effective
sphere models, and is of great interest in applications such as formulations
as well as for the fundamental understanding of soft matter in general
and crowding effects in living cells in particular.
Collapse
Affiliation(s)
- Jin Suk Myung
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Felix Roosen-Runge
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation , Forschungszentrum Jülich , D-52425 Jülich , Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation , Forschungszentrum Jülich , D-52425 Jülich , Germany
| | - Peter Schurtenberger
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| | - Anna Stradner
- Division of Physical Chemistry, Department of Chemistry , Lund University , SE-221 00 Lund , Sweden
| |
Collapse
|
74
|
Xu Z, Yang Y, Zhu G, Chen P, Huang Z, Dai X, Hou C, Yan L. Simulating Transport of Soft Matter in Micro/Nano Channel Flows with Dissipative Particle Dynamics. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Ye Yang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Guolong Zhu
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Pengyu Chen
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Zihan Huang
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Xiaobin Dai
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Cuiling Hou
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| | - Li‐Tang Yan
- State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua University Beijing 100084 China
| |
Collapse
|
75
|
The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Commun Biol 2018; 1:211. [PMID: 30534603 PMCID: PMC6269544 DOI: 10.1038/s42003-018-0223-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Sickle cell trait, a common hereditary blood disorder, protects carriers from severe disease in infections with the human malaria parasite Plasmodium falciparum. Protection is associated with a reduced capacity of parasitized erythrocytes to cytoadhere to the microvascular endothelium and cause vaso-occlusive events. However, the underpinning cellular and biomechanical processes are only partly understood and the impact on endothelial cell activation is unclear. Here, we show, by combining quantitative flow chamber experiments with multiscale computer simulations of deformable cells in hydrodynamic flow, that parasitized erythrocytes containing the sickle cell haemoglobin displayed altered adhesion dynamics, resulting in restricted contact footprints on the endothelium. Main determinants were cell shape, knob density and membrane bending. As a consequence, the extent of endothelial cell activation was decreased. Our findings provide a quantitative understanding of how the sickle cell trait affects the dynamic cytoadhesion behavior of parasitized erythrocytes and, in turn, endothelial cell activation.
Collapse
|
76
|
Dissipative Coupling of Fluid and Immersed Objects for Modelling of Cells in Flow. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:7842857. [PMID: 30363716 PMCID: PMC6180995 DOI: 10.1155/2018/7842857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
Abstract
Modelling of cell flow for biomedical applications relies in many cases on the correct description of fluid-structure interaction between the cell membrane and the surrounding fluid. We analyse the coupling of the lattice-Boltzmann method for the fluid and the spring network model for the cells. We investigate the bare friction parameter of fluid-structure interaction that is mediated via dissipative coupling. Such coupling mimics the no-slip boundary condition at the interface between the fluid and object. It is an alternative method to the immersed boundary method. Here, the fluid-structure coupling is provided by forces penalising local differences between velocities of the object's boundaries and the surrounding fluid. The method includes a phenomenological friction coefficient that determines the strength of the coupling. This work aims at determination of proper values of such friction coefficient. We derive an explicit formula for computation of this coefficient depending on the mesh density assuming a reference friction is known. We validate this formula on spherical and ellipsoidal objects. We also provide sensitivity analysis of the formula on all parameters entering the model. We conclude that such formula may be used also for objects with irregular shapes provided that the triangular mesh covering the object's surface is in some sense uniform. Our findings are justified by two computational experiments where we simulate motion of a red blood cell in a capillary and in a shear flow. Both experiments confirm our results presented in this work.
Collapse
|
77
|
Cui J, Björnmalm M, Ju Y, Caruso F. Nanoengineering of Poly(ethylene glycol) Particles for Stealth and Targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10817-10827. [PMID: 30132674 DOI: 10.1021/acs.langmuir.8b02117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The assembly of particles composed solely or mainly of poly(ethylene glycol) (PEG) is an emerging area that is gaining increasing interest within bio-nano science. PEG, widely considered to be the "gold standard" among polymers for drug delivery, is providing a platform for exploring fundamental questions and phenomena at the interface between particle engineering and biomedicine. These include the targeting and stealth behaviors of synthetic nanomaterials in biological environments. In this feature article, we discuss recent work in the nanoengineering of PEG particles and explore how they are enabling improved targeting and stealth performance. Specific examples include PEG particles prepared through surface-initiated polymerization, mesoporous silica replication via postinfiltration, and particle assembly through metal-phenolic coordination. This particle class exhibits unique in vivo behavior (e.g., biodistribution and immune cell interactions) and has recently been explored for drug delivery applications.
Collapse
Affiliation(s)
- Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and the School of Chemistry and Chemical Engineering , Shandong University , Jinan , Shandong 250100 , China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering , Imperial College London , London SW7 2AZ , United Kingdom
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
78
|
Mauer J, Mendez S, Lanotte L, Nicoud F, Abkarian M, Gompper G, Fedosov DA. Flow-Induced Transitions of Red Blood Cell Shapes under Shear. PHYSICAL REVIEW LETTERS 2018; 121:118103. [PMID: 30265089 DOI: 10.1103/physrevlett.121.118103] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/29/2018] [Indexed: 05/25/2023]
Abstract
A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113, 13289 (2016)PNASA60027-842410.1073/pnas.1608074113] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast, which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the transition between subsequent RBC states.
Collapse
Affiliation(s)
- Johannes Mauer
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon Mendez
- IMAG, University of Montpellier, CNRS, Montpellier, France
| | - Luca Lanotte
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, University of Montpellier, 34090 Montpellier, France
| | - Franck Nicoud
- IMAG, University of Montpellier, CNRS, Montpellier, France
| | - Manouk Abkarian
- Centre de Biochimie Structurale, CNRS UMR 5048-INSERM UMR 1054, University of Montpellier, 34090 Montpellier, France
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
79
|
Daddi-Moussa-Ider A, Löwen H, Gekle S. Creeping motion of a solid particle inside a spherical elastic cavity ⋆. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:104. [PMID: 30194679 DOI: 10.1140/epje/i2018-11715-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
On the basis of the linear hydrodynamic equations, we present an analytical theory for the low-Reynolds-number motion of a solid particle moving inside a larger spherical elastic cavity which can be seen as a model system for a fluid vesicle. In the particular situation where the particle is concentric with the cavity, we use the stream function technique to find exact analytical solutions of the fluid motion equations on both sides of the elastic cavity. In this particular situation, we find that the solution of the hydrodynamic equations is solely determined by membrane shear properties and that bending does not play a role. For an arbitrary position of the solid particle within the spherical cavity, we employ the image solution technique to compute the axisymmetric flow field induced by a point force (Stokeslet). We then obtain analytical expressions of the leading-order mobility function describing the fluid-mediated hydrodynamic interactions between the particle and the confining elastic cavity. In the quasi-steady limit of vanishing frequency, we find that the particle self-mobility function is higher than that predicted inside a rigid no-slip cavity. Considering the cavity motion, we find that the pair-mobility function is determined only by membrane shear properties. Our analytical predictions are supplemented and validated by fully resolved boundary integral simulations where a very good agreement is obtained over the whole range of applied forcing frequencies.
Collapse
Affiliation(s)
- Abdallah Daddi-Moussa-Ider
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
80
|
Hoque SZ, Anand DV, Patnaik BSV. The dynamics of a healthy and infected red blood cell in flow through constricted channels: A DPD simulation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3105. [PMID: 29790664 DOI: 10.1002/cnm.3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Understanding the dynamics of red blood cell (RBC) motion under in silico conditions is central to the development of cost-effective diagnostic tools. Specifically, unraveling the relationship between the rheological properties and the nature of shape change in the RBC (healthy or infected) can be extremely useful. In case of malarial infection, RBC progressively loses its deformability and tends to occlude the microvessel. In the present study, detailed mesoscopic simulations are performed to investigate the deformation dynamics of an RBC in flow through a constricted channel. Specifically, the manifestation of viscous forces (through flow rates) on the passage and blockage characteristics of a healthy red blood cell (hRBC) vis-á-vis an infected red blood cell (iRBC) are investigated. A finite-sized dissipative particle dynamics framework is used to model plasma in conjunction with a discrete model for the RBC. Instantaneous wall boundary method was used to model no-slip wall boundary conditions with a good control on the near-wall density fluctuations and compressibility effects. To investigate the microvascular occlusion, the RBC motion through 2 types of constricted channels, viz, (1) a tapered microchannel and (2) a stenosed-type microchannel, were simulated. It was observed that the deformation of an infected cell was much less compared with a healthy cell, with an attendant increase in the passage time. Apart from the qualitative features, deformation indices were obtained. The deformation of hRBC was sudden, while the iRBC deformed slowly as it traversed through the constriction. For higher flow rates, both hRBC and iRBC were found to undergo severe deformation. Even under low flow rates, hRBC could easily traverse past the constricted channel. However, for sufficiently slow flow rates (eg, capillary flows), the microchannel was found to be completely blocked by the iRBC.
Collapse
Affiliation(s)
- Sazid Zamal Hoque
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036, India
| | - D Vijay Anand
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - B S V Patnaik
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
81
|
Block copolymer crystalsomes with an ultrathin shell to extend blood circulation time. Nat Commun 2018; 9:3005. [PMID: 30068976 PMCID: PMC6070537 DOI: 10.1038/s41467-018-05396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 11/23/2022] Open
Abstract
In water, amphiphilic block copolymers (BCPs) can self-assemble into various micelle structures depicting curved liquid/liquid interface. Crystallization, which is incommensurate with this curved space, often leads to defect accumulation and renders the structures leaky, undermining their potential biomedical applications. Herein we report using an emulsion-solution crystallization method to control the crystallization of an amphiphilic BCP, poly (l-lactide acid)-b-poly (ethylene glycol) (PLLA-b-PEG), at curved liquid/liquid interface. The resultant BCP crystalsomes (BCCs) structurally mimic the classical polymersomes and liposomes yet mechanically are more robust thanks to the single crystal-like crystalline PLLA shell. In blood circulation and biodistribution experiments, fluorophore-loaded BCCs show a 24 h circulation half-life and a 8% particle retention in the blood even at 96 h post injection. We further demonstrate that this good performance can be attributed to controlled polymer crystallization and the unique BCC nanostructure. In block copolymer vesicles, crystallization often leads to defects and renders the structures leaky that undermines their potential biomedical application. Here the authors use an emulsion solution method to control the crystallization of an amphiphilic block copolymer at the curved liquid/liquid interface to improve the blood circulation time.
Collapse
|
82
|
Hayashi K, Yamada S, Sakamoto W, Usugi E, Watanabe M, Yogo T. Red Blood Cell-Shaped Microparticles with a Red Blood Cell Membrane Demonstrate Prolonged Circulation Time in Blood. ACS Biomater Sci Eng 2018; 4:2729-2732. [DOI: 10.1021/acsbiomaterials.8b00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koichiro Hayashi
- Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-0044, Japan
| | - Shota Yamada
- Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Sakamoto
- Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Eri Usugi
- Oncologic Pathology Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Masatoshi Watanabe
- Oncologic Pathology Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Toshinobu Yogo
- Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
83
|
Sorkin R, Bergamaschi G, Kamsma D, Brand G, Dekel E, Ofir-Birin Y, Rudik A, Gironella M, Ritort F, Regev-Rudzki N, Roos WH, Wuite GJL. Probing cellular mechanics with acoustic force spectroscopy. Mol Biol Cell 2018; 29:2005-2011. [PMID: 29927358 PMCID: PMC6232971 DOI: 10.1091/mbc.e18-03-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.
Collapse
Affiliation(s)
- Raya Sorkin
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Department of Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Douwe Kamsma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Guy Brand
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Elya Dekel
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ariel Rudik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Marta Gironella
- Small Biosystems Lab, Departament de Fsica de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Felix Ritort
- Small Biosystems Lab, Departament de Fsica de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Wouter H Roos
- Department of Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
84
|
Sadeghi M, Weikl TR, Noé F. Particle-based membrane model for mesoscopic simulation of cellular dynamics. J Chem Phys 2018; 148:044901. [PMID: 29390800 DOI: 10.1063/1.5009107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
85
|
Kihm A, Kaestner L, Wagner C, Quint S. Classification of red blood cell shapes in flow using outlier tolerant machine learning. PLoS Comput Biol 2018; 14:e1006278. [PMID: 29906283 PMCID: PMC6021115 DOI: 10.1371/journal.pcbi.1006278] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/27/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
The manual evaluation, classification and counting of biological objects demands for an enormous expenditure of time and subjective human input may be a source of error. Investigating the shape of red blood cells (RBCs) in microcapillary Poiseuille flow, we overcome this drawback by introducing a convolutional neural regression network for an automatic, outlier tolerant shape classification. From our experiments we expect two stable geometries: the so-called 'slipper' and 'croissant' shapes depending on the prevailing flow conditions and the cell-intrinsic parameters. Whereas croissants mostly occur at low shear rates, slippers evolve at higher flow velocities. With our method, we are able to find the transition point between both 'phases' of stable shapes which is of high interest to ensuing theoretical studies and numerical simulations. Using statistically based thresholds, from our data, we obtain so-called phase diagrams which are compared to manual evaluations. Prospectively, our concept allows us to perform objective analyses of measurements for a variety of flow conditions and to receive comparable results. Moreover, the proposed procedure enables unbiased studies on the influence of drugs on flow properties of single RBCs and the resulting macroscopic change of the flow behavior of whole blood.
Collapse
Affiliation(s)
- Alexander Kihm
- Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany
| | - Lars Kaestner
- Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany
- Theoretical Medicine and Biosciences, Saarland University, Campus University Hospital, Homburg, Germany
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany
- Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg City, Luxembourg
| | - Stephan Quint
- Department of Experimental Physics, Saarland University, Campus E2 6, Saarbrücken, Germany
| |
Collapse
|
86
|
Lee DH, Li X, Ma N, Digman MA, Lee AP. Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy. LAB ON A CHIP 2018; 18:1349-1358. [PMID: 29638231 DOI: 10.1039/c7lc01301a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The rapid screening and isolation of single leukemia cells from blood has become critical for early leukemia detection and tumor heterogeneity interrogation. However, due to the size overlap between leukemia cells and the more abundant white blood cells (WBCs), the isolation and identification of leukemia cells individually from peripheral blood is extremely challenging and often requires immunolabeling or cytogenetic assays. Here we present a rapid and label-free single leukemia cell identification platform that combines: (1) high-throughput size-based separation of hemocytes via a single-cell trapping array, and (2) leukemia cell identification through phasor approach and fluorescence lifetime imaging microscopy (phasor-FLIM), to quantify changes between free/bound nicotinamide adenine dinucleotide (NADH) as an indirect measurement of metabolic alteration in living cells. The microfluidic trapping array designed with 1600 highly-packed addressable single-cell traps can simultaneously filter out red blood cells (RBCs) and trap WBCs/leukemia cells, and is compatible with low-magnification imaging and fast-speed fluorescence screening. The trapped single leukemia cells, e.g., THP-1, Jurkat and K562 cells, are distinguished from WBCs in the phasor-FLIM lifetime map, as they exhibit significant shift towards shorter fluorescence lifetime and a higher ratio of free/bound NADH compared to WBCs, because of their glycolysis-dominant metabolism for rapid proliferation. Based on a multiparametric scheme comparing the eight parameter-spectra of the phasor-FLIM signatures, spiked leukemia cells are quantitatively distinguished from normal WBCs with an area-under-the-curve (AUC) value of 1.00. Different leukemia cell lines are also quantitatively distinguished from each other with AUC values higher than 0.95, demonstrating high sensitivity and specificity for single cell analysis. The presented platform is the first to enable high-density size-based single-cell trapping simultaneously with RBC filtering and rapid label-free individual-leukemia-cell screening through non-invasive metabolic imaging. Compared to conventional biomolecular diagnostics techniques, phasor-FLIM based single-cell screening is label-free, cell-friendly, robust, and has the potential to screen blood in clinical volumes through parallelization.
Collapse
Affiliation(s)
- Do-Hyun Lee
- Department of Biomedical Engineering, University of California at Irvine, Irvine, CA 92697, USA.
| | | | | | | | | |
Collapse
|
87
|
Park I, Choe K, Seo H, Hwang Y, Song E, Ahn J, Hwan Jo Y, Kim P. Intravital imaging of a pulmonary endothelial surface layer in a murine sepsis model. BIOMEDICAL OPTICS EXPRESS 2018; 9:2383-2393. [PMID: 29760995 PMCID: PMC5946796 DOI: 10.1364/boe.9.002383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 05/18/2023]
Abstract
Direct intravital imaging of an endothelial surface layer (ESL) in pulmonary microcirculation could be a valuable approach to investigate the role of a vascular endothelial barrier in various pathological conditions. Despite its importance as a marker of endothelial cell damage and impairment of the vascular system, in vivo visualization of ESL has remained a challenging technical issue. In this work, we implemented a pulmonary microcirculation imaging system integrated to a custom-design video-rate laser scanning confocal microscopy platform. Using the system, a real-time cellular-level microscopic imaging of the lung was successfully performed, which facilitated a clear identification of individual flowing erythrocytes in pulmonary capillaries. Subcellular level pulmonary ESL was identified in vivo by fluorescence angiography using a dextran conjugated fluorophore to label blood plasma and the red blood cell (RBC) exclusion imaging analysis. Degradation of ESL width was directly evaluated in a murine sepsis model in vivo, suggesting an impairment of pulmonary vascular endothelium and endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kibaek Choe
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Howon Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Eunjoo Song
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jinhyo Ahn
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620
- Department of Emergency Medicine, Seoul National University College of Medicine (SNUCM), 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
88
|
Yu Q, Othman S, Dasgupta S, Auth T, Gompper G. Nanoparticle wrapping at small non-spherical vesicles: curvatures at play. NANOSCALE 2018; 10:6445-6458. [PMID: 29565057 DOI: 10.1039/c7nr08856f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticles in biological systems encounter lipid-bilayer membranes as barriers. They interact with plasma membranes, membranous organelles, such as the endoplasmic reticulum and the Golgi apparatus, the nucleus, and intracellular and extracellular vesicles, such as autophagosomes, lysosomes, and exosomes. Extracellular vesicles have recently attracted particular attention, as they are involved in the transmission of biological signals and as regulators for biological processes. For example, exosomes, small vesicles containing proteins, mRNA, and miRNA, that are released by cells into the extracellular environment, have been suggested to participate in tumor metastasis. Furthermore, vesicles can be applied as targeted-drug-delivery systems. We systematically characterize wrapping of spherical nanoparticles that enter and exit vesicles, depending on particle size, vesicle size, vesicle reduced volume, and membrane spontaneous curvature. We predict the complex wrapping behavior, in particular for large particle-to-vesicle size ratios, where the shape changes of the free membrane contribute significantly to the deformation energy and where nanoparticle wrapping transitions and vesicle shape transitions are coupled. Partial-wrapped membrane-bound particles impose boundary conditions on the membrane that stabilise oblates and stomatocytes for particle entry, and prolates and stomatocytes for particle exit. Our results suggest that nanoparticles may stimulate autophagocytic engulfment, which would facilitate transport of the nanoparticles into lysosomes and would lead to subsequent degradation of nanoparticle-attached proteins.
Collapse
Affiliation(s)
- Qingfen Yu
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Sameh Othman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Sabyasachi Dasgupta
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany. and Mechanobiology Institute, National University of Singapore, 11899 Singapore
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
89
|
Oya Y, Kawakatsu T. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow. J Chem Phys 2018; 148:114905. [PMID: 29566523 DOI: 10.1063/1.4999049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.
Collapse
Affiliation(s)
- Yutaka Oya
- Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan
| | | |
Collapse
|
90
|
Guckenberger A, Kihm A, John T, Wagner C, Gekle S. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel. SOFT MATTER 2018; 14:2032-2043. [PMID: 29473072 DOI: 10.1039/c7sm02272g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm s-1) and high velocities (>3 mm s-1) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.
Collapse
Affiliation(s)
- Achim Guckenberger
- Biofluid Simulation and Modeling, Theoretische Physik, Universität Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
91
|
Bernucci MT, Merkle CW, Srinivasan VJ. Investigation of artifacts in retinal and choroidal OCT angiography with a contrast agent. BIOMEDICAL OPTICS EXPRESS 2018; 9:1020-1040. [PMID: 29541501 PMCID: PMC5846511 DOI: 10.1364/boe.9.001020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography angiography (OCTA) has recently emerged for imaging vasculature in clinical ophthalmology. Yet, OCTA images contain artifacts that remain challenging to interpret. To help explain these artifacts, we perform contrast-enhanced OCTA with a custom-designed wide-field ophthalmoscope in rats in vivo. We choose an intravascular contrast agent (Intralipid) with particles that are more isotropically scattering and more symmetrically shaped than red blood cells (RBCs). Then, by examining how OCTA artifacts change after contrast agent injection, we attribute OCTA artifacts to RBC-specific properties. In this work, we investigate retinal and choroidal OCTA in rats with or without melanosomes, both before and after contrast agent injection, at a wavelength at which scattering dominates the image contrast (1300 nm). First, baseline images suggest that high backscattering of choroidal melanosomes accounts for the relatively dark appearance of choroidal vessel lumens in OCTA. Second, Intralipid injection tends to eliminate the hourglass pattern artifact in OCTA images of vessel lumens and highlights vertical capillaries that were previously faint in OCTA, showing that RBC orientation is important in determining OCTA signal. Third, Intralipid injection increases lumen signal without significantly affecting the tails, suggesting that projection artifacts, or tails, are due to RBC multiple scattering. Fourth, Intralipid injection increases the side-to-top signal ratio less in choroidal vessel lumens of pigmented rats, suggesting that melanosome multiple scattering makes the hourglass artifact less prominent. This study provides the first direct experimental in vivo evidence to explain light scattering-related artifacts in OCTA.
Collapse
Affiliation(s)
- Marcel T. Bernucci
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Conrad W. Merkle
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, California, USA
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
92
|
Singh SP, Gompper G, Winkler RG. Steady state sedimentation of ultrasoft colloids. J Chem Phys 2018; 148:084901. [PMID: 29495770 DOI: 10.1063/1.5001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structural and dynamical properties of ultra-soft colloids-star polymers-exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.
Collapse
Affiliation(s)
- Sunil P Singh
- Indian Institute of Science Education and Research Bhopal, Bhopal By pass Road Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
93
|
Hwang MY, Kim SG, Lee HS, Muller SJ. Elastic particle deformation in rectangular channel flow as a measure of particle stiffness. SOFT MATTER 2018; 14:216-227. [PMID: 29227498 DOI: 10.1039/c7sm01829k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, we experimentally observed and characterized soft elastic particle deformation in confined flow in a microchannel with a rectangular cross-section. Hydrogel microparticles of pNIPAM were produced using two different concentrations of crosslinker. This resulted in particles with two different shear moduli of 13.3 ± 5.5 Pa and 32.5 ± 15.7 Pa and compressive moduli of 66 ± 10 Pa and 79 ± 15 Pa, respectively, as measured by capillary micromechanics. Under flow, the particle shapes transitioned from circular to egg, triangular, arrowhead, and ultimately parachute shaped with increasing shear rate. The shape changes were reversible, and deformed particles relaxed back to circular/spherical in the absence of flow. The thresholds for each shape transition were quantified using a non-dimensional radius of curvature at the tip, particle deformation, circularity, and the depth of the concave dimple at the trailing edge. Several of the observed shapes were distinct from those previously reported in the literature for vesicles and capsules; the elastic particles had a narrower leading tip and a lower circularity. Due to variations in the shear moduli between particles within a batch of particles, each flow rate corresponded to a small but finite range of capillary number (Ca) and resulted in a series of shapes. By arranging the images on a plot of Ca versus circularity, a direct correlation was developed between shape and Ca and thus between particle deformation and shear modulus. As the shape was very sensitive to differences in shear modulus, particle deformation in confined flow may allow for better differentiation of microparticle shear modulus than other methods.
Collapse
Affiliation(s)
- Margaret Y Hwang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
94
|
Ahmmed SM, Suteria NS, Garbin V, Vanapalli SA. Hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a square microchannel. BIOMICROFLUIDICS 2018; 12:014114. [PMID: 29531635 PMCID: PMC5812743 DOI: 10.1063/1.5018620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 05/24/2023]
Abstract
The transport of deformable objects, including polymer particles, vesicles, and cells, has been a subject of interest for several decades where the majority of experimental and theoretical studies have been focused on circular tubes. Due to advances in microfluidics, there is a need to study the transport of individual deformable particles in rectangular microchannels where corner flows can be important. In this study, we report measurements of hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a linear microchannel with a square cross-section. Our operating conditions are such that the mobility is measured as a function of geometric confinement over the range 0.3 < λ < 1.5 and at specified particle Reynolds numbers that are within 0.1 < Rep < 2.5. The experimental mobility data of each of these systems is compared with the circular-tube theory of Hestroni, Haber, and Wacholder [J. Fluid Mech. 41, 689-705 (1970)] with modifications made for a square cross-section. For polymeric particles, we find that the mobility data agrees well over a large confinement range with the theory but under predicts for vesicles. The mobility of vesicles is higher in a square channel than in a circular tube, and does not depend significantly on membrane mechanical properties. The mobility of cancer cells is in good agreement with the theory up to λ ≈ 0.8, after which it deviates. Comparison of the mobility data of the three systems reveals that cancer cells have higher mobility than rigid particles but lower than vesicles, suggesting that the cell membrane frictional properties are in between a solid-like interface and a fluid bilayer. We explain further the differences in the mobility of the three systems by considering their shape deformation and surface flow on the interface. The results of this study may find potential applications in drug delivery and biomedical diagnostics.
Collapse
Affiliation(s)
- Shamim M. Ahmmed
- Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | | | - Valeria Garbin
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Siva A. Vanapalli
- Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
95
|
Das S, Riest J, Winkler RG, Gompper G, Dhont JKG, Nägele G. Clustering and dynamics of particles in dispersions with competing interactions: theory and simulation. SOFT MATTER 2017; 14:92-103. [PMID: 29199754 DOI: 10.1039/c7sm02019h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dispersions of particles with short-range attractive and long-range repulsive interactions exhibit rich equilibrium microstructures and a complex phase behavior. We present theoretical and simulation results for structural and, in particular, short-time diffusion properties of a colloidal model system with such interactions, both in the dispersed-fluid and equilibrium-cluster phase regions. The particle interactions are described by a generalized Lennard-Jones-Yukawa pair potential. For the theoretical-analytical description, we apply the hybrid Beenakker-Mazur pairwise additivity (BM-PA) scheme. The static structure factor input to this scheme is calculated self-consistently using the Zerah-Hansen integral equation theory approach. In the simulations, a hybrid simulation method is adopted, combing molecular dynamics simulations of colloids with the multiparticle collision dynamics approach for the fluid, which fully captures hydrodynamic interactions. The comparison of our theoretical and simulation results confirms the high accuracy of the BM-PA scheme for dispersed-fluid phase systems. For particle attraction strengths exceeding a critical value, our simulations yield an equilibrium cluster phase. Calculations of the mean lifetime of the appearing clusters and the comparison with the analytical prediction of the dissociation time of an isolated particle pair reveal quantitative differences pointing to the importance of many-particle hydrodynamic interactions for the cluster dynamics. The cluster lifetime in the equilibrium-cluster phase increases far stronger with increasing attraction strength than that in the dispersed-fluid phase. Moreover, significant changes in the cluster shapes are observed in the course of time. Hence, an equilibrium-cluster dispersion cannot be treated dynamically as a system of permanent rigid bodies.
Collapse
Affiliation(s)
- Shibananda Das
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
96
|
Weiss LB, Nikoubashman A, Likos CN. Topology-Sensitive Microfluidic Filter for Polymers of Varying Stiffness. ACS Macro Lett 2017; 6:1426-1431. [PMID: 35650806 DOI: 10.1021/acsmacrolett.7b00768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The separation of polymers based on their size, rigidity, and topology is an essential but also highly challenging task for nanoscience and engineering. Using hybrid molecular dynamics simulations that correctly take into account hydrodynamics, we have designed microfluidic channels for separating linear from ring polymers in dilute solutions. We establish that the transport velocity of the polymers is independent of their topology and rigidity when the channel walls are smooth and repulsive. However, when the walls are decorated with attractive spots arranged on lines parallel to the flow, ring polymers exhibit an order of magnitude higher transport velocity compared to linear chains. The spots induce a homeotropic-like reorientation of ring polymers close to walls leading to a tank treading motion along them, whereas linear chains are immobilized upon adsorption. This mechanism becomes more enhanced with increasing polymer rigidity. The presented technique holds thus promise for reliably separating nanoparticles based on their topology.
Collapse
Affiliation(s)
- Lisa B. Weiss
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Arash Nikoubashman
- Institute
of Physics, Johannes Gutenberg University Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
97
|
Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis. Biomaterials 2017; 156:45-55. [PMID: 29190497 DOI: 10.1016/j.biomaterials.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
Abstract
Micro-sized drug-carrier particles accumulate mainly in the lungs and nano-sized particles tend to accumulate in the liver and spleen. Here, we show that micro-particles designed to mimic red blood cells (RBCs) can overcome these limitations. The RBC-MPs created in this study have a unique intra-particle elasticity distribution (IED), enabling them to bend around the central axis of the RBC-like dent, enabling them to pass through pores smaller than their diameter, mechanically behaving as authentic RBCs. In contrast, spherical MPs (SPH-MPs) and RBC-MPs hardened by incorporating a siloxane network (SiO2-RBC-MPs), could not. In addition to the IED, we discovered that the deformability also depends on the shape and average particle elasticity. RBC-MPs did not accumulate in the lungs and the spleen, but were targeted specifically to the liver instead. In contrast, non-RBC-MPs such as SPH-MPs and SiO2-RBC-MPs showed heavy accumulation in the lungs and/or spleen, and were dispersed non-specifically in various organs. Thus, controlling the shape and mechanical properties of RBC-MPs is important for achieving the desired biodistribution. When RBC-MPs were loaded with a (TGF)-β receptor inhibitor, RBC-MPs could treat liver fibrosis without pneumotoxicity.
Collapse
|
98
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
99
|
Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci Rep 2017; 7:14278. [PMID: 29079767 PMCID: PMC5660260 DOI: 10.1038/s41598-017-14346-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
The protein von Willebrand factor (VWF) is essential in primary hemostasis, as it mediates platelet adhesion to vessel walls. VWF retains its compact (globule-like) shape in equilibrium due to internal molecular associations, but is able to stretch when a high enough shear stress is applied. Even though the shear-flow sensitivity of VWF conformation is well accepted, the behavior of VWF under realistic blood flow conditions remains poorly understood. We perform mesoscopic numerical simulations together with microfluidic experiments in order to characterize VWF behavior in blood flow for a wide range of flow-rate and hematocrit conditions. In particular, our results demonstrate that the compact shape of VWF is important for its migration (or margination) toward vessel walls and that VWF stretches primarily in a near-wall region in blood flow making its adhesion possible. Our results show that VWF is a highly optimized protein in terms of its size and internal associations which are necessary to achieve its vital function. A better understanding of the relevant mechanisms for VWF behavior in microcirculation provides a further step toward the elucidation of the role of mutations in various VWF-related diseases.
Collapse
|
100
|
Dasgupta S, Auth T, Gompper G. Nano- and microparticles at fluid and biological interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:373003. [PMID: 28608781 PMCID: PMC7104866 DOI: 10.1088/1361-648x/aa7933] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/12/2017] [Accepted: 06/13/2017] [Indexed: 05/05/2023]
Abstract
Systems with interfaces are abundant in both technological applications and biology. While a fluid interface separates two fluids, membranes separate the inside of vesicles from the outside, the interior of biological cells from the environment, and compartmentalize cells into organelles. The physical properties of interfaces are characterized by interface tension, those of membranes are characterized by bending and stretching elasticity. Amphiphilic molecules like surfactants that are added to a system with two immiscible fluids decrease the interface tension and induce a bending rigidity. Lipid bilayer membranes of vesicles can be stretched or compressed by osmotic pressure; in biological cells, also the presence of a cytoskeleton can induce membrane tension. If the thickness of the interface or the membrane is small compared with its lateral extension, both can be described using two-dimensional mathematical surfaces embedded in three-dimensional space. We review recent work on the interaction of particles with interfaces and membranes. This can be micrometer-sized particles at interfaces that stabilise emulsions or form colloidosomes, as well as typically nanometer-sized particles at membranes, such as viruses, parasites, and engineered drug delivery systems. In both cases, we first discuss the interaction of single particles with interfaces and membranes, e.g. particles in external fields, non-spherical particles, and particles at curved interfaces, followed by interface-mediated interaction between two particles, many-particle interactions, interface and membrane curvature-induced phenomena, and applications.
Collapse
Affiliation(s)
- S Dasgupta
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institut Curie, CNRS, UMR 168, 75005 Paris, France
- Present address: Department of Physics, University of Toronto, Toronto, Ontario M5S1A7, Canada
| | - T Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - G Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|