51
|
The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis. mBio 2020; 11:mBio.03197-19. [PMID: 32184253 PMCID: PMC7078482 DOI: 10.1128/mbio.03197-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.
Collapse
|
52
|
Culp EJ, Waglechner N, Wang W, Fiebig-Comyn AA, Hsu YP, Koteva K, Sychantha D, Coombes BK, Van Nieuwenhze MS, Brun YV, Wright GD. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature 2020; 578:582-587. [DOI: 10.1038/s41586-020-1990-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022]
|
53
|
Taguchi A, Kahne D, Walker S. Chemical tools to characterize peptidoglycan synthases. Curr Opin Chem Biol 2019; 53:44-50. [PMID: 31466035 PMCID: PMC6926152 DOI: 10.1016/j.cbpa.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/02/2023]
Abstract
The peptidoglycan cell wall is a unique macromolecular structure in bacteria that defines their shape and confers protection from the surrounding environment. Decades of research has focused on understanding the peptidoglycan synthesis pathway and exploiting its essentiality for antibiotic development. Recently, a new class of peptidoglycan polymerases known as the SEDS (shape, elongation, division and sporulation) proteins were identified; these polytopic membrane proteins function together with the better-known penicillin-binding proteins (PBPs) to build the cell wall. In this review, we will highlight recent developments in chemical tools and methods to label the bacterial cell wall and discuss how these developments are leading to a better understanding of peptidoglycan synthases and their cellular roles.
Collapse
Affiliation(s)
- Atsushi Taguchi
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
54
|
Hsu YP, Booher G, Egan A, Vollmer W, VanNieuwenhze MS. d-Amino Acid Derivatives as in Situ Probes for Visualizing Bacterial Peptidoglycan Biosynthesis. Acc Chem Res 2019; 52:2713-2722. [PMID: 31419110 DOI: 10.1021/acs.accounts.9b00311] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bacterial cell wall is composed of membrane layers and a rigid yet flexible scaffold called peptidoglycan (PG). PG provides mechanical strength to enable bacteria to resist damage from the environment and lysis due to high internal turgor. PG also has a critical role in dictating bacterial cell morphology. The essential nature of PG for bacterial propagation, as well as its value as an antibiotic target, has led to renewed interest in the study of peptidoglycan biosynthesis. However, significant knowledge gaps remain that must be addressed before a clear understanding of peptidoglycan synthesis and dynamics is realized. For example, the enzymes involved in the PG biosynthesis pathway have not been fully characterized. Our understanding of PG biosynthesis has been frequently revamped by the discovery of novel enzymes or newly characterized functions of known enzymes. In addition, we do not clearly know how the respective activities of these enzymes are coordinated with each other and how they control the spatial and temporal dynamics of PG synthesis. The emergence of molecular probes and imaging techniques has significantly advanced the study PG synthesis and modification. Prior efforts utilized the specificity of PG-targeting antibiotics and proteins to develop PG-specific probes, such as fluorescent vancomycin and fluorescent wheat germ agglutinin. However, these probes suffer from limitations due to toxic effects toward bacterial cells and poor membrane permeability. To address these issues, we designed and introduced a family of novel molecular probes, fluorescent d-amino acids (FDAAs), which are covalently incorporated into PG through the activities of endogenous bacterial transpeptidases. Their high biocompatibility and PG specificity have made them powerful tools for labeling peptidoglycan. In addition, their enzyme-mediated incorporation faithfully reflects the activity of PG synthases, providing a direct in situ method for studying PG formation during the bacterial life cycle. In this Account, we describe our efforts directed at the development of FDAAs and their derivatives. These probes have enabled for the first time the ability to visualize PG synthesis in live bacterial cells and in real time. We summarize experimental evidence for FDAA incorporation into PG and the enzyme-mediated incorporation pathway. We demonstrate various applications of FDAAs, including bacterial morphology analyses, PG growth model studies, investigation of PG-enzyme correlation, in vitro PG synthase activity assays, and antibiotic inhibition tests. Finally, we discuss the current limitations of the probes and our ongoing efforts to improve them. We are confident that these probes will prove to be valuable tools that will enable the discovery of new antibiotic targets and expand the available arsenal directed at the public health threat posed by antibiotic resistance.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Simon Hall 001, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Simon Hall 001, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Alexander Egan
- The Centre for Bacterial Cell Biology, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Michael S. VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Simon Hall 001, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University Bloomington, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
55
|
Tan S, Moore G, Nodwell J. Put a Bow on It: Knotted Antibiotics Take Center Stage. Antibiotics (Basel) 2019; 8:antibiotics8030117. [PMID: 31405236 PMCID: PMC6784204 DOI: 10.3390/antibiotics8030117] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 01/15/2023] Open
Abstract
Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large class of natural products produced across all domains of life. The lasso peptides, a subclass of RiPPs with a lasso-like structure, are structurally and functionally unique compared to other known peptide antibiotics in that the linear peptide is literally "tied in a knot" during its post-translational maturation. This underexplored class of peptides brings chemical diversity and unique modes of action to the antibiotic space. To date, eight different lasso peptides have been shown to target three known molecular machines: RNA polymerase, the lipid II precursor in peptidoglycan biosynthesis, and the ClpC1 subunit of the Clp protease involved in protein homeostasis. Here, we discuss the current knowledge on lasso peptide biosynthesis as well as their antibiotic activity, molecular targets, and mechanisms of action.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Gaelen Moore
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Justin Nodwell
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
56
|
Dong YY, Wang H, Pike ACW, Cochrane SA, Hamedzadeh S, Wyszyński FJ, Bushell SR, Royer SF, Widdick DA, Sajid A, Boshoff HI, Park Y, Lucas R, Liu WM, Lee SS, Machida T, Minall L, Mehmood S, Belaya K, Liu WW, Chu A, Shrestha L, Mukhopadhyay SMM, Strain-Damerell C, Chalk R, Burgess-Brown NA, Bibb MJ, Barry Iii CE, Robinson CV, Beeson D, Davis BG, Carpenter EP. Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design. Cell 2019; 175:1045-1058.e16. [PMID: 30388443 PMCID: PMC6218659 DOI: 10.1016/j.cell.2018.10.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/01/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Protein N-glycosylation is a widespread post-translational modification. The first committed step in this process is catalysed by dolichyl-phosphate N-acetylglucosamine-phosphotransferase DPAGT1 (GPT/E.C. 2.7.8.15). Missense DPAGT1 variants cause congenital myasthenic syndrome and disorders of glycosylation. In addition, naturally-occurring bactericidal nucleoside analogues such as tunicamycin are toxic to eukaryotes due to DPAGT1 inhibition, preventing their clinical use. Our structures of DPAGT1 with the substrate UDP-GlcNAc and tunicamycin reveal substrate binding modes, suggest a mechanism of catalysis, provide an understanding of how mutations modulate activity (thus causing disease) and allow design of non-toxic “lipid-altered” tunicamycins. The structure-tuned activity of these analogues against several bacterial targets allowed the design of potent antibiotics for Mycobacterium tuberculosis, enabling treatment in vitro, in cellulo and in vivo, providing a promising new class of antimicrobial drug. Structures of DPAGT1 with UDP-GlcNAc and tunicamycin reveal mechanisms of catalysis DPAGT1 mutations in patients with glycosylation disorders modulate DPAGT1 activity Structures, kinetics and biosynthesis reveal role of lipid in tunicamycin Lipid-altered, tunicamycin analogues give non-toxic antibiotics against TB
Collapse
Affiliation(s)
- Yin Yao Dong
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Wang
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ashley C W Pike
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Stephen A Cochrane
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK; School of Chemistry and Chemical Engineering, Queen's University, Belfast, UK
| | - Sadra Hamedzadeh
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Filip J Wyszyński
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Simon R Bushell
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sylvain F Royer
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - David A Widdick
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Andaleeb Sajid
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yumi Park
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ricardo Lucas
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Wei-Min Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Seung Seo Lee
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Takuya Machida
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Leanne Minall
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Katsiaryna Belaya
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Amy Chu
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Leela Shrestha
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | | | - Rod Chalk
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | | | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neuroscience, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK.
| | | |
Collapse
|
57
|
Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance. Nat Commun 2019; 10:2733. [PMID: 31227716 PMCID: PMC6588590 DOI: 10.1038/s41467-019-10673-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet, our understanding of antibiotic action is limited, as many strains devoid of all resistance determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive theory for the bacterial cell wall biosynthetic pathway and study its perturbation by antibiotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis features a highly asymmetric distribution of pathway intermediates, and show that antibiotic tolerance scales inversely with the abundance of the targeted pathway intermediate. We formalize this principle of minimal target exposure as intrinsic resistance mechanism and predict how cooperative drug-target interactions can mitigate resistance. The theory accurately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive bacteria and contributes to a systems-level understanding of antibiotic action.
Collapse
|
58
|
Tan S, Ludwig KC, Müller A, Schneider T, Nodwell JR. The Lasso Peptide Siamycin-I Targets Lipid II at the Gram-Positive Cell Surface. ACS Chem Biol 2019; 14:966-974. [PMID: 31026131 DOI: 10.1021/acschembio.9b00157] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are a diverse class of biologically active molecules produced by many environmental bacteria. While thousands of these compounds have been identified, mostly through genome mining, a relatively small number has been investigated at the molecular level. One less understood class of RiPPs is the lasso peptides. These are 20-25 amino acid residue compounds bearing an N-terminal macrocyclic ring and a C-terminal tail that is threaded through the ring. We have carried out a detailed investigation on the mechanism of action of the siamycin-I lasso peptide. We demonstrate that siamycin-I interacts with lipid II, the central building block of the major cell wall component peptidoglycan, which is readily accessible on the outside of the cell. This interaction compromises cell wall biosynthesis in a manner that activates the liaI stress response. Additionally, resistance to siamycin-I can be brought about by mutations in the essential WalKR two-component system that causes thickening of the cell wall. Siamycin-I is the first lasso peptide that has been shown to inhibit cell wall biosynthesis.
Collapse
Affiliation(s)
- Stephanie Tan
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Kevin C. Ludwig
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Justin R. Nodwell
- Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
59
|
Stone MRL, Masi M, Phetsang W, Pagès JM, Cooper MA, Blaskovich MAT. Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. MEDCHEMCOMM 2019; 10:901-906. [PMID: 31303987 PMCID: PMC6596217 DOI: 10.1039/c9md00124g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores.
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores. The azide (2) and fluorophore (3 and 4) derivatives retained antimicrobial activity against Gram-positive and Gram-negative bacteria. The use of confocal fluorescent microscopy showed intracellular penetration, which was substantially enhanced in the presence of carbonyl cyanide 3-chlorophenylhydrazone as an efflux pump inhibitor in Escherichia coli.
Collapse
Affiliation(s)
- M Rhia L Stone
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Muriel Masi
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Wanida Phetsang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Jean-Marie Pagès
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Matthew A Cooper
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| |
Collapse
|
60
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019; 7:125-138. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
61
|
Verderosa AD, Dhouib R, Fairfull-Smith KE, Totsika M. Profluorescent Fluoroquinolone-Nitroxides for Investigating Antibiotic⁻Bacterial Interactions. Antibiotics (Basel) 2019; 8:antibiotics8010019. [PMID: 30836686 PMCID: PMC6466543 DOI: 10.3390/antibiotics8010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023] Open
Abstract
Fluorescent probes are widely used for imaging and measuring dynamic processes in living cells. Fluorescent antibiotics are valuable tools for examining antibiotic⁻bacterial interactions, antimicrobial resistance and elucidating antibiotic modes of action. Profluorescent nitroxides are 'switch on' fluorescent probes used to visualize and monitor intracellular free radical and redox processes in biological systems. Here, we have combined the inherent fluorescent and antimicrobial properties of the fluoroquinolone core structure with the fluorescence suppression capabilities of a nitroxide to produce the first example of a profluorescent fluoroquinolone-nitroxide probe. Fluoroquinolone-nitroxide (FN) 14 exhibited significant suppression of fluorescence (>36-fold), which could be restored via radical trapping (fluoroquinolone-methoxyamine 17) or reduction to the corresponding hydroxylamine 20. Importantly, FN 14 was able to enter both Gram-positive and Gram-negative bacterial cells, emitted a measurable fluorescence signal upon cell entry (switch on), and retained antibacterial activity. In conclusion, profluorescent nitroxide antibiotics offer a new powerful tool for visualizing antibiotic⁻bacterial interactions and researching intracellular chemical processes.
Collapse
Affiliation(s)
- Anthony D Verderosa
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Rabeb Dhouib
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4006, Australia.
| |
Collapse
|
62
|
Burby PE, Simmons ZW, Simmons LA. DdcA antagonizes a bacterial DNA damage checkpoint. Mol Microbiol 2019; 111:237-253. [PMID: 30315724 PMCID: PMC6351180 DOI: 10.1111/mmi.14151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease-mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome-wide screens identified the gene ddcA as critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting from ddcA deletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion of ddcA resulted in sensitivity to yneA overexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP-YneA fusion we found that DdcA prevents YneA-dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint in Bacillus subtilis.
Collapse
Affiliation(s)
- Peter E. Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zackary W. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
63
|
Melzer ES, Sein CE, Chambers JJ, Siegrist MS. DivIVA concentrates mycobacterial cell envelope assembly for initiation and stabilization of polar growth. Cytoskeleton (Hoboken) 2018; 75:498-507. [PMID: 30160378 PMCID: PMC6644302 DOI: 10.1002/cm.21490] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
In many model organisms, diffuse patterning of cell wall peptidoglycan synthesis by the actin homolog MreB enables the bacteria to maintain their characteristic rod shape. In Caulobacter crescentus and Escherichia coli, MreB is also required to sculpt this morphology de novo. Mycobacteria are rod-shaped but expand their cell wall from discrete polar or subpolar zones. In this genus, the tropomyosin-like protein DivIVA is required for the maintenance of cell morphology. DivIVA has also been proposed to direct peptidoglycan synthesis to the tips of the mycobacterial cell. The precise nature of this regulation is unclear, as is its role in creating rod shape from scratch. We find that DivIVA localizes nascent cell wall and covalently associated mycomembrane but is dispensable for the assembly process itself. Mycobacterium smegmatis rendered spherical by peptidoglycan digestion or by DivIVA depletion are able to regain rod shape at the population level in the presence of DivIVA. At the single cell level, there is a close spatiotemporal correlation between DivIVA foci, rod extrusion and concentrated cell wall synthesis. Thus, although the precise mechanistic details differ from other organisms, M. smegmatis also establish and propagate rod shape by cytoskeleton-controlled patterning of peptidoglycan. Our data further support the emerging notion that morphology is a hardwired trait of bacterial cells.
Collapse
Affiliation(s)
- Emily S Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - Caralyn E Sein
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts.,Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
64
|
DeMeester KE, Liang H, Jensen MR, Jones ZS, D'Ambrosio EA, Scinto SL, Zhou J, Grimes CL. Synthesis of Functionalized N-Acetyl Muramic Acids To Probe Bacterial Cell Wall Recycling and Biosynthesis. J Am Chem Soc 2018; 140:9458-9465. [PMID: 29986130 DOI: 10.1021/jacs.8b03304] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uridine diphosphate N-acetyl muramic acid (UDP NAM) is a critical intermediate in bacterial peptidoglycan (PG) biosynthesis. As the primary source of muramic acid that shapes the PG backbone, modifications installed at the UDP NAM intermediate can be used to selectively tag and manipulate this polymer via metabolic incorporation. However, synthetic and purification strategies to access large quantities of these PG building blocks, as well as their derivatives, are challenging. A robust chemoenzymatic synthesis was developed using an expanded NAM library to produce a variety of 2 -N-functionalized UDP NAMs. In addition, a synthetic strategy to access bio-orthogonal 3-lactic acid NAM derivatives was developed. The chemoenzymatic UDP synthesis revealed that the bacterial cell wall recycling enzymes MurNAc/GlcNAc anomeric kinase (AmgK) and NAM α-1 phosphate uridylyl transferase (MurU) were permissive to permutations at the two and three positions of the sugar donor. We further explored the utility of these derivatives in the fluorescent labeling of both Gram (-) and Gram (+) PG in whole cells using a variety of bio-orthogonal chemistries including the tetrazine ligation. This report allows for rapid and scalable access to a variety of functionalized NAMs and UDP NAMs, which now can be used in tandem with other complementary bio-orthogonal labeling strategies to address fundamental questions surrounding PG's role in immunology and microbiology.
Collapse
|
65
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
66
|
Fujinami S, Ito M. The Surface Layer Homology Domain-Containing Proteins of Alkaliphilic Bacillus pseudofirmus OF4 Play an Important Role in Alkaline Adaptation via Peptidoglycan Synthesis. Front Microbiol 2018; 9:810. [PMID: 29765360 PMCID: PMC5938343 DOI: 10.3389/fmicb.2018.00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/10/2018] [Indexed: 01/15/2023] Open
Abstract
It is well known that the Na+ cycle and the cell wall are essential for alkaline adaptation of Na+-dependent alkaliphilic Bacillus species. In Bacillus pseudofirmus OF4, surface layer protein A (SlpA), the most abundant protein in the surface layer (S-layer) of the cell wall, is involved in alkaline adaptation, especially under low Na+ concentrations. The presence of a large number of genes that encode S-layer homology (SLH) domain-containing proteins has been suggested from the genome sequence of B. pseudofirmus OF4. However, other than SlpA, the functions of SLH domain-containing proteins are not well known. Therefore, a deletion mutant of the csaB gene, required for the retention of SLH domain-containing proteins on the cell wall, was constructed to investigate its physiological properties. The csaB mutant strain of B. pseudofirmus OF4 had a chained morphology and alkaline sensitivity even under a 230 mM Na+ concentration at which there is no growth difference between the parental strain and the slpA mutant strain. Ultra-thin section transmission electron microscopy showed that a csaB mutant strain lacked an S-layer part, and its peptidoglycan (PG) layer was disturbed. The slpA mutant strain also lacked an S-layer part, although its PG layer was not disturbed. These results suggested that the surface layer homology domain-containing proteins of B. pseudofirmus OF4 play an important role in alkaline adaptation via peptidoglycan synthesis.
Collapse
Affiliation(s)
- Shun Fujinami
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan.,Department of Chemistry, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Masahiro Ito
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Japan.,Graduate School of Life Sciences, Toyo University, Tokyo, Japan
| |
Collapse
|
67
|
Zhang JY, Lin GM, Xing WY, Zhang CC. Diversity of Growth Patterns Probed in Live Cyanobacterial Cells Using a Fluorescent Analog of a Peptidoglycan Precursor. Front Microbiol 2018; 9:791. [PMID: 29740419 PMCID: PMC5928242 DOI: 10.3389/fmicb.2018.00791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/09/2018] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria were the first oxygenic photosynthetic organisms during evolution and were ancestors of plastids. Cyanobacterial cells exhibit an extraordinary diversity in their size and shape, and bacterial cell morphology largely depends on the synthesis and the dynamics of the peptidoglycan (PG) layer. Here, we used a fluorescence analog of the PG synthesis precursor D-Ala, 7-Hydroxycoumarin-amino-D-alanine (HADA), to probe the PG synthesis pattern in live cells of cyanobacteria with different morphology. They displayed diverse synthesis patterns, with some strains showing an intensive HADA incorporation at the septal region, whereas others gave an HADA signal distributed around the cells. Growth zones covering several cells at the tips of the filament were present in some filamentous strains such as in Arthrospira. In Anabaena PCC 7120, which is capable of differentiating heterocysts for N2 fixation, PG synthesis followed the cell division cycle. In addition, an HADA incorporation was strongly activated from 12 to 15 h following the initiation of heterocyst development, indicating a thickening of the PG layer in heterocysts. The PG synthesis pattern is diverse in cyanobacteria and responds to developmental regulation. The use of fluorescent analogs may serve as a useful tool for understanding the mechanisms of cell growth and morphogenesis operating in these organisms.
Collapse
Affiliation(s)
- Ju-Yuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gui-Ming Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei-Yue Xing
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
68
|
Abstract
Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.
Collapse
Affiliation(s)
- Atanas D Radkov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Current affiliation: Biophysics and Biochemistry Department, University of California, San Francisco, California 94158, USA;
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| |
Collapse
|
69
|
Fluorescent Antibiotics: New Research Tools to Fight Antibiotic Resistance. Trends Biotechnol 2018; 36:523-536. [PMID: 29478675 DOI: 10.1016/j.tibtech.2018.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 01/02/2023]
Abstract
Better understanding how multidrug-resistant (MDR) bacteria can evade current and novel antibiotics requires a better understanding of the chemical biology of antibiotic action. This necessitates using new tools and techniques to advance our knowledge of bacterial responses to antibiotics, ideally in live cells in real time, to selectively investigate bacterial growth, division, metabolism, and resistance in response to antibiotic challenge. In this review, we discuss the preparation and biological evaluation of fluorescent antibiotics, focussing on how these reporters and assay methods can help elucidate resistance mechanisms. We also examine the potential utility of such probes for real-time in vivo diagnosis of infections.
Collapse
|
70
|
Yang X, Dang Y, Lou J, Shao H, Jiang X. D-alanyl-D-alanine-Modified Gold Nanoparticles Form a Broad-Spectrum Sensor for Bacteria. Theranostics 2018; 8:1449-1457. [PMID: 29507633 PMCID: PMC5835949 DOI: 10.7150/thno.22540] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/23/2017] [Indexed: 02/02/2023] Open
Abstract
Rationale: Rapid and facile detection of pathogenic bacteria is challenging due to the requirement of large-scale instruments and equipment in conventional methods. We utilize D-amino acid as molecules to selectively target bacteria because bacteria can incorporate DADA in its cell wall while mammalian cells or fungi cannot. Methods: We show a broad-spectrum bacterial detection system based on D-amino acid-capped gold nanoparticles (AuNPs). AuNPs serve as the signal output that we can monitor without relying on any complex instruments. Results: In the presence of bacteria, the AuNPs aggregate and the color of AuNPs changes from red to blue. This convenient color change can distinguish between Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA). This system can be applied for detection of ascites samples from patients. Conclusion: These D-amino acid-modified AuNPs serve as a promising platform for rapid visual identification of pathogens in the clinic.
Collapse
|
71
|
Howell M, Daniel JJ, Brown PJB. Live Cell Fluorescence Microscopy to Observe Essential Processes During Microbial Cell Growth. J Vis Exp 2017. [PMID: 29286454 DOI: 10.3791/56497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Core cellular processes such as DNA replication and segregation, protein synthesis, cell wall biosynthesis, and cell division rely on the function of proteins which are essential for bacterial survival. A series of target-specific dyes can be used as probes to better understand these processes. Staining with lipophilic dyes enables the observation of membrane structure, visualization of lipid microdomains, and detection of membrane blebs. Use of fluorescent-d-amino acids (FDAAs) to probe the sites of peptidoglycan biosynthesis can indicate potential defects in cell wall biogenesis or cell growth patterning. Finally, nucleic acid stains can indicate possible defects in DNA replication or chromosome segregation. Cyanine DNA stains label living cells and are suitable for time-lapse microscopy enabling real-time observations of nucleoid morphology during cell growth. Protocols for cell labeling can be applied to protein depletion mutants to identify defects in membrane structure, cell wall biogenesis, or chromosome segregation. Furthermore, time-lapse microscopy can be used to monitor morphological changes as an essential protein is removed and can provide additional insights into protein function. For example, the depletion of essential cell division proteins results in filamentation or branching, whereas the depletion of cell growth proteins may cause cells to become shorter or rounder. Here, protocols for cell growth, target-specific labeling, and time-lapse microscopy are provided for the bacterial plant pathogen Agrobacterium tumefaciens. Together, target-specific dyes and time-lapse microscopy enable characterization of essential processes in A. tumefaciens. Finally, the protocols provided can be readily modified to probe essential processes in other bacteria.
Collapse
|
72
|
Sharifzadeh S, Boersma MJ, Kocaoglu O, Shokri A, Brown CL, Shirley JD, Winkler ME, Carlson EE. Novel Electrophilic Scaffold for Imaging of Essential Penicillin-Binding Proteins in Streptococcus pneumoniae. ACS Chem Biol 2017; 12:2849-2857. [PMID: 28990753 DOI: 10.1021/acschembio.7b00614] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidoglycan (PG) is a mesh-like heteropolymer made up of glycan chains cross-linked by short peptides and is the major scaffold of eubacterial cell walls, determining cell shape, size, and chaining. This structure, which is required for growth and survival, is located outside of the cytoplasmic membrane of bacterial cells, making it highly accessible to antibiotics. Penicillin-binding proteins (PBPs) are essential for construction of PG and perform transglycosylase activities to generate the glycan strands and transpeptidation to cross-link the appended peptides. The β-lactam antibiotics, which are among the most clinically effective antibiotics for the treatment of bacterial infections, inhibit PBP transpeptidation, ultimately leading to cell lysis. Despite this importance, the discrete functions of individual PBP homologues have been difficult to determine. These major gaps in understanding of PBP activation and macromolecular interactions largely result from a lack of tools to assess the functional state of specific PBPs in bacterial cells. We have identified β-lactones as a privileged scaffold for the generation of PBP-selective probes and utilized these compounds for imaging of the essential proteins, PBP2x and PBP2b, in Streptococcus pneumoniae. We demonstrated that while PBP2b activity is restricted to a ring surrounding the division sites, PBP2x activity is present both at the septal center and at the surrounding ring. These spatially separate regions of PBP2x activity could not be detected by previous activity-based approaches, which highlights a critical strength of our PBP-selective imaging strategy.
Collapse
Affiliation(s)
- Shabnam Sharifzadeh
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Michael J. Boersma
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ozden Kocaoglu
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alireza Shokri
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Clayton L. Brown
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Joshua D. Shirley
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Malcolm E. Winkler
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Erin E. Carlson
- Departments
of Chemistry, ‡Medicinal Chemistry, and Biochemistry, §Molecular Biology
and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Departments of Biology, ⊥Molecular and Cellular Biochemistry,
and #Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
73
|
Wang Y, Lazor KM, DeMeester KE, Liang H, Heiss TK, Grimes CL. Postsynthetic Modification of Bacterial Peptidoglycan Using Bioorthogonal N-Acetylcysteamine Analogs and Peptidoglycan O-Acetyltransferase B. J Am Chem Soc 2017; 139:13596-13599. [PMID: 28898061 PMCID: PMC5837961 DOI: 10.1021/jacs.7b06820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacteria have the natural ability to install protective postsynthetic modifications onto its bacterial peptidoglycan (PG), the coat woven into bacterial cell wall. Peptidoglycan O-acetyltransferase B (PatB) catalyzes the O-acetylation of PG in Gram (-) bacteria, which aids in bacterial survival, as it prevents autolysins such as lysozyme from cleaving the PG. We explored the mechanistic details of PatB's acetylation function and determined that PatB has substrate specificity for bioorthgonal short N-acetyl cysteamine (SNAc) donors. A variety of functionality including azides and alkynes were installed on tri-N-acetylglucosamine (NAG)3, a PG mimic, as well as PG isolated from various Gram (+) and Gram (-) bacterial species. The bioorthogonal modifications protect the isolated PG against lysozyme degradation in vitro. We further demonstrate that this postsynthetic modification of PG can be extended to use click chemistry to fluorescently label the mature PG in whole bacterial cells of Bacillus subtilis. Modifying PG postsynthetically can aid in the development of antibiotics and immune modulators by expanding the understanding of how PG is processed by lytic enzymes.
Collapse
Affiliation(s)
- Yiben Wang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Klare M. Lazor
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kristen E. DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tyler K. Heiss
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Catherine L. Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Biological Chemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
74
|
Hsu YP, Rittichier J, Kuru E, Yablonowski J, Pasciak E, Tekkam S, Hall E, Murphy B, Lee TK, Garner EC, Huang KC, Brun YV, VanNieuwenhze MS. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem Sci 2017; 8:6313-6321. [PMID: 28989665 PMCID: PMC5628581 DOI: 10.1039/c7sc01800b] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Fluorescent d-amino acids (FDAAs) enable efficient in situ labeling of peptidoglycan in diverse bacterial species. Conducted by enzymes involved in peptidoglycan biosynthesis, FDAA labeling allows specific probing of cell wall formation/remodeling activity, bacterial growth and cell morphology. Their broad application and high biocompatibility have made FDAAs an important and effective tool for studies of peptidoglycan synthesis and dynamics, which, in turn, has created a demand for the development of new FDAA probes. Here, we report the synthesis of new FDAAs, with emission wavelengths that span the entire visible spectrum. We also provide data to characterize their photochemical and physical properties, and we demonstrate their utility for visualizing peptidoglycan synthesis in Gram-negative and Gram-positive bacterial species. Finally, we show the permeability of FDAAs toward the outer-membrane of Gram-negative organisms, pinpointing the probes available for effective labeling in these species. This improved FDAA toolkit will enable numerous applications for the study of peptidoglycan biosynthesis and dynamics.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA .
| | | | - Erkin Kuru
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Jacob Yablonowski
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA .
| | - Erick Pasciak
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA
| | - Srinivas Tekkam
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA
| | - Edward Hall
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA
| | - Brennan Murphy
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA
| | - Timothy K Lee
- Department of Bioengineering , Stanford University , Stanford , CA 94305 , USA
| | - Ethan C Garner
- Molecular and Cellular Biology (FAS) Center for Systems Biology , Harvard University , Cambridge , Massachusetts 02138 , USA
| | - Kerwyn Casey Huang
- Department of Bioengineering , Stanford University , Stanford , CA 94305 , USA
- Department of Microbiology and Immunology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Yves V Brun
- Department of Biology , Indiana University , Bloomington , IN 47405 , USA .
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry , Indiana University , Bloomington , IN 47405 , USA .
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA
| |
Collapse
|
75
|
Sabulski MJ, Pidgeon SE, Pires MM. Immuno-targeting of Staphylococcus aureus via surface remodeling complexes. Chem Sci 2017; 8:6804-6809. [PMID: 29147504 PMCID: PMC5643955 DOI: 10.1039/c7sc02721d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/20/2017] [Indexed: 12/28/2022] Open
Abstract
Agents with novel mechanisms of action are needed to complement traditional antibiotics. Towards these goals, we have exploited the surface-homing properties of vancomycin to tag the surface of Gram-positive pathogens with immune cell attractants in two unique modes. First, vancomycin was conjugated to the small molecule hapten 2,4-dinitrophenol (DNP) to promote bacterial opsonization. Second, we built on these results by improving the tagging specificity and mechanism of incorporation by coupling it to a sortase A substrate peptide. We demonstrated, for the first time, that the surface of Staphylococcus aureus (S. aureus) can be metabolically labeled in live Caenorhabditis elegans hosts. These constructs represent a class of promising narrow-spectrum agents that target S. aureus for opsonization and establish a new surface labeling modality in live host organisms, which should be a powerful tool in dissecting features of host-pathogen interactions.
Collapse
Affiliation(s)
- Mary J Sabulski
- Department of Chemistry , Lehigh University , 6 E Packer Ave. , Bethlehem , PA 18015 , USA .
| | - Sean E Pidgeon
- Department of Chemistry , Lehigh University , 6 E Packer Ave. , Bethlehem , PA 18015 , USA .
| | - Marcos M Pires
- Department of Chemistry , Lehigh University , 6 E Packer Ave. , Bethlehem , PA 18015 , USA .
| |
Collapse
|
76
|
Wang W, Zhu Y, Chen X. Selective Imaging of Gram-Negative and Gram-Positive Microbiotas in the Mouse Gut. Biochemistry 2017; 56:3889-3893. [PMID: 28682052 DOI: 10.1021/acs.biochem.7b00539] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diverse gut microbial communities are crucial for host health. How the interactions between microbial communities and between host and microbes influence the host, however, is not well understood. To facilitate gut microbiota research, selective imaging of specific groups of microbiotas in the gut is of great utility but remains technically challenging. Here we present a chemical approach that enables selective imaging of Gram-negative and Gram-positive microbiotas in the mouse gut by exploiting their distinctive cell wall components. Cell-selective labeling is achieved by the combined use of metabolic labeling of Gram-negative bacterial lipopolysaccharides with a clickable azidosugar and direct labeling of Gram-positive bacteria with a vancomycin-derivatized fluorescent probe. We demonstrated this strategy by two-color fluorescence imaging of Gram-negative and Gram-positive gut microbiotas in the mouse intestines. This chemical method should be broadly applicable to different gut microbiota research fields and other bacterial communities studied in microbiology.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Molecular Engineering, ‡Peking-Tsinghua Center for Life Sciences, §Synthetic and Functional Biomolecules Center, and ∥Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University , Beijing 100871, China
| | - Yuntao Zhu
- College of Chemistry and Molecular Engineering, ‡Peking-Tsinghua Center for Life Sciences, §Synthetic and Functional Biomolecules Center, and ∥Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University , Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, ‡Peking-Tsinghua Center for Life Sciences, §Synthetic and Functional Biomolecules Center, and ∥Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University , Beijing 100871, China
| |
Collapse
|
77
|
Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N, Fromion V, Carballido-López R. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 2017; 8:15370. [PMID: 28589952 PMCID: PMC5467245 DOI: 10.1038/ncomms15370] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria. Protein MreB participates in elongation of sidewalls during growth of most rod-shaped bacteria. Here, the authors use fluorescence microscopy and single-particle tracking to visualize MreB, showing that Bacillus subtilis and Escherichia coli appear to use different strategies to adapt to growth rate variations.
Collapse
Affiliation(s)
- Cyrille Billaudeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Chastanet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Zhizhong Yao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Charlène Cornilleau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Mirouze
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Vincent Fromion
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas F78350, France
| | - Rut Carballido-López
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
78
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
79
|
An Amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase is required for mycobacterial cell division. Sci Rep 2017; 7:1140. [PMID: 28442758 PMCID: PMC5430687 DOI: 10.1038/s41598-017-01184-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/23/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacteria possess a multi-layered cell wall that requires extensive remodelling during cell division. We investigated the role of an amidase_3 domain-containing N-acetylmuramyl-L-alanine amidase, a peptidoglycan remodelling enzyme implicated in cell division. We demonstrated that deletion of MSMEG_6281 (Ami1) in Mycobacterium smegmatis resulted in the formation of cellular chains, illustrative of cells that were unable to complete division. Suprisingly, viability in the Δami1 mutant was maintained through atypical lateral branching, the products of which proceeded to form viable daughter cells. We showed that these lateral buds resulted from mislocalization of DivIVA, a major determinant in facilitating polar elongation in mycobacterial cells. Failure of Δami1 mutant cells to separate also led to dysregulation of FtsZ ring bundling. Loss of Ami1 resulted in defects in septal peptidoglycan turnover with release of excess cell wall material from the septum or newly born cell poles. We noted signficant accumulation of 3-3 crosslinked muropeptides in the Δami1 mutant. We further demonstrated that deletion of ami1 leads to increased cell wall permeability and enhanced susceptiblity to cell wall targeting antibiotics. Collectively, these data provide novel insight on cell division in actinobacteria and highlights a new class of potential drug targets for mycobacterial diseases.
Collapse
|
80
|
Progress and prospects for small-molecule probes of bacterial imaging. Nat Chem Biol 2017; 12:472-8. [PMID: 27315537 DOI: 10.1038/nchembio.2109] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/13/2016] [Indexed: 11/09/2022]
Abstract
Fluorescence microscopy is an essential tool for the exploration of cell growth, division, transcription and translation in eukaryotes and prokaryotes alike. Despite the rapid development of techniques to study bacteria, the size of these organisms (1-10 μm) and their robust and largely impenetrable cell envelope present major challenges in imaging experiments. Fusion-based strategies, such as attachment of the protein of interest to a fluorescent protein or epitope tag, are by far the most common means for examining protein localization and expression in prokaryotes. While valuable, the use of genetically encoded tags can result in mislocalization or altered activity of the desired protein, does not provide a readout of the catalytic state of enzymes and cannot enable visualization of many other important cellular components, such as peptidoglycan, lipids, nucleic acids or glycans. Here, we highlight the use of biomolecule-specific small-molecule probes for imaging in bacteria.
Collapse
|
81
|
Liang H, DeMeester KE, Hou CW, Parent MA, Caplan JL, Grimes CL. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications. Nat Commun 2017; 8:15015. [PMID: 28425464 PMCID: PMC5411481 DOI: 10.1038/ncomms15015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Bacterial cells are surrounded by a polymer known as peptidoglycan (PG), which protects the cell from changes in osmotic pressure and small molecule insults. A component of this material, N-acetyl-muramic acid (NAM), serves as a core structural element for innate immune recognition of PG fragments. We report the synthesis of modifiable NAM carbohydrate derivatives and the installation of these building blocks into the backbone of Gram-positive and Gram-negative bacterial PG utilizing metabolic cell wall recycling and biosynthetic machineries. Whole cells are labelled via click chemistry and visualized using super-resolution microscopy, revealing higher resolution PG structural details and allowing the cell wall biosynthesis, as well as its destruction in immune cells, to be tracked. This study will assist in the future identification of mechanisms that the immune system uses to recognize bacteria, glean information about fundamental cell wall architecture and aid in the design of novel antibiotics. N-acetyl-muramic acid (NAM) is a core component of the bacterial peptidoglycan (PG) cell wall, and is recognised by the innate immune system. Here the authors engineer Gram-negative and Gram-positive bacteria to incorporate a modified NAM into the backbone of PG, which can be labelled with click chemistry for imaging and tracking.
Collapse
Affiliation(s)
- Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Ching-Wen Hou
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA
| | - Michelle A Parent
- Department of Medical Laboratory Sciences, University of Delaware, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA.,Bioimaging Center, Delaware Biotechnology Institute, Newark, Delaware 19716, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, 134 Brown Lab, Newark, Delaware 19716, USA.,Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
82
|
Yang D, Ding F, Mitachi K, Kurosu M, Lee RE, Kong Y. A Fluorescent Probe for Detecting Mycobacterium tuberculosis and Identifying Genes Critical for Cell Entry. Front Microbiol 2016; 7:2021. [PMID: 28066347 PMCID: PMC5168438 DOI: 10.3389/fmicb.2016.02021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/02/2016] [Indexed: 11/13/2022] Open
Abstract
The conventional method for quantitating Mycobacterium tuberculosis (Mtb) in vitro and in vivo relies on bacterial colony forming unit (CFU) enumeration on agar plates. Due to the slow growth rate of Mtb, it takes 3-6 weeks to observe visible colonies on agar plates. Imaging technologies that are capable of quickly quantitating both active and dormant tubercle bacilli in vitro and in vivo would accelerate research toward the development of anti-TB chemotherapies and vaccines. We have developed a fluorescent probe that can directly label the Mtb cell wall components. The fluorescent probe, designated as DLF-1, has a strong affinity to the D-Ala-D-Ala unit of the late peptidoglycan intermediates in the bacterial cell wall. We demonstrate that DLF-1 is capable of detecting Mtb in both the actively replicating and dormant states in vitro at 100 nM without inhibiting bacterial growth. The DLF-1 fluorescence signal correlated well with CFU of the labeled bacteria (R2 = 1 and 0.99 for actively replicating and dormant Mtb, respectively). DLF-1 can also quantitate labeled Mtb inside of cells. The utility of DLF-1 probe to quantitate Mtb was successfully applied to identify genes critical for cell invasion. In conclusion, this novel near infrared imaging probe provides a powerful new tool for enumerating Mtb with potential future use in bacterial virulence study.
Collapse
Affiliation(s)
- Dong Yang
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Feng Ding
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Katsuhiko Mitachi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center Memphis, TN, USA
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center Memphis, TN, USA
| | - Richard E Lee
- Chemical Biology and Therapeutics Department, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Ying Kong
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
83
|
Phetsang W, Pelingon R, Butler MS, KC S, Pitt ME, Kaeslin G, Cooper MA, Blaskovich MAT. Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli. ACS Infect Dis 2016; 2:688-701. [PMID: 27737551 PMCID: PMC5067704 DOI: 10.1021/acsinfecdis.6b00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Reduced
susceptibility to antimicrobials in Gram-negative bacteria may result
from multiple resistance mechanisms, including increased efflux pump
activity or reduced porin protein expression. Up-regulation of the
efflux pump system is closely associated with multidrug resistance
(MDR). To help investigate the role of efflux pumps on compound accumulation,
a fluorescence-based assay was developed using fluorescent derivatives
of trimethoprim (TMP), a broad-spectrum synthetic antibiotic that
inhibits an intracellular target, dihydrofolate reductase (DHFR).
Novel fluorescent TMP probes inhibited eDHFR activity
with comparable potency to TMP, but did not kill or inhibit growth
of wild type Escherichia coli. However,
bactericidal activity was observed against an efflux pump deficient E. coli mutant strain (ΔtolC). A simple and quick fluorescence assay was developed to measure
cellular accumulation of the TMP probe using either fluorescence spectroscopy
or flow cytometry, with validation by LC-MS/MS. This fluorescence
assay may provide a simple method to assess efflux pump activity with
standard laboratory equipment.
Collapse
Affiliation(s)
- Wanida Phetsang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruby Pelingon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanjaya KC
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Miranda E. Pitt
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geraldine Kaeslin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
84
|
Maréchal M, Amoroso A, Morlot C, Vernet T, Coyette J, Joris B. Enterococcus hirae LcpA (Psr), a new peptidoglycan-binding protein localized at the division site. BMC Microbiol 2016; 16:239. [PMID: 27729019 PMCID: PMC5059904 DOI: 10.1186/s12866-016-0844-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/26/2022] Open
Abstract
Background Proteins from the LytR-CpsA-Psr family are found in almost all Gram-positive bacteria. Although LCP proteins have been studied in other pathogens, their functions in enterococci remain uncharacterized. The Psr protein from Enterococcus hirae, here renamed LcpA, previously associated with the regulation of the expression of the low-affinity PBP5 and β-lactam resistance, has been characterized. Results LcpA protein of E. hirae ATCC 9790 has been produced and purified with and without its transmembrane helix. LcpA appears, through different methods, to be localized in the membrane, in agreement with in silico predictions. The interaction of LcpA with E. hirae cell wall indicates that LcpA binds enterococcal peptidoglycan, regardless of the presence of secondary cell wall polymers. Immunolocalization experiments showed that LcpA and PBP5 are localized at the division site of E. hirae. Conclusions LcpA belongs to the LytR-CpsA-Psr family. Its topology, localization and binding to peptidoglycan support, together with previous observations on defective mutants, that LcpA plays a role related to the cell wall metabolism, probably acting as a phosphotransferase catalyzing the attachment of cell wall polymers to the peptidoglycan. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0844-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxime Maréchal
- Physiologie et génétique bactérienne, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, Liège, B-4000, Belgium
| | - Ana Amoroso
- Physiologie et génétique bactérienne, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, Liège, B-4000, Belgium
| | - Cécile Morlot
- University Grenoble Alpes, IBS, Grenoble, F-38044, France.,CNRS, IBS, Grenoble, F-38044, France.,CEA, IBS, Grenoble, F-38044, France
| | - Thierry Vernet
- University Grenoble Alpes, IBS, Grenoble, F-38044, France.,CNRS, IBS, Grenoble, F-38044, France.,CEA, IBS, Grenoble, F-38044, France
| | - Jacques Coyette
- Physiologie et génétique bactérienne, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, Liège, B-4000, Belgium
| | - Bernard Joris
- Physiologie et génétique bactérienne, Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, Liège, B-4000, Belgium.
| |
Collapse
|
85
|
Mariscal V, Nürnberg DJ, Herrero A, Mullineaux CW, Flores E. Overexpression of SepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena. Mol Microbiol 2016; 101:968-81. [PMID: 27273832 DOI: 10.1111/mmi.13436] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/02/2016] [Indexed: 01/08/2023]
Abstract
Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.
Collapse
Affiliation(s)
- Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Dennis J Nürnberg
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, Seville, E-41092, Spain.
| |
Collapse
|
86
|
Biosynthetic Genes for the Tetrodecamycin Antibiotics. J Bacteriol 2016; 198:1965-1973. [PMID: 27137499 DOI: 10.1128/jb.00140-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We recently described 13-deoxytetrodecamycin, a new member of the tetrodecamycin family of antibiotics. A defining feature of these molecules is the presence of a five-membered lactone called a tetronate ring. By sequencing the genome of a producer strain, Streptomyces sp. strain WAC04657, and searching for a gene previously implicated in tetronate ring formation, we identified the biosynthetic genes responsible for producing 13-deoxytetrodecamycin (the ted genes). Using the ted cluster in WAC04657 as a reference, we found related clusters in three other organisms: Streptomyces atroolivaceus ATCC 19725, Streptomyces globisporus NRRL B-2293, and Streptomyces sp. strain LaPpAH-202. Comparing the four clusters allowed us to identify the cluster boundaries. Genetic manipulation of the cluster confirmed the involvement of the ted genes in 13-deoxytetrodecamycin biosynthesis and revealed several additional molecules produced through the ted biosynthetic pathway, including tetrodecamycin, dihydrotetrodecamycin, and another, W5.9, a novel molecule. Comparison of the bioactivities of these four molecules suggests that they may act through the covalent modification of their target(s). IMPORTANCE The tetrodecamycins are a distinct subgroup of the tetronate family of secondary metabolites. Little is known about their biosynthesis or mechanisms of action, making them an attractive subject for investigation. In this paper we present the biosynthetic gene cluster for 13-deoxytetrodecamycin in Streptomyces sp. strain WAC04657. We identify related clusters in several other organisms and show that they produce related molecules.
Collapse
|
87
|
Godič Torkar K, Bedenić B, Plečko V. Antimicrobial susceptibility and thein vitropostantibiotic effects of vancomycin and ciprofloxacin againstBacillus cereusisolates. J Chemother 2016; 28:151-8. [DOI: 10.1179/1973947815y.0000000069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
88
|
Sastre DE, Bisson-Filho A, de Mendoza D, Gueiros-Filho FJ. Revisiting the cell biology of the acyl-ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled inBacillus subtilis. Mol Microbiol 2016; 100:621-34. [DOI: 10.1111/mmi.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Emiliano Sastre
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre Bisson-Filho
- Department of Molecular and Cellular Biology and Faculty of Arts and Sciences (FAS) Center for Systems Biology; Harvard University; Cambridge MA 02138 USA
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario; 2000 Rosario Argentina
| | | |
Collapse
|
89
|
Molohon KJ, Saint-Vincent PMB, Park S, Doroghazi JR, Maxson T, Hershfield JR, Flatt KM, Schroeder NE, Ha T, Mitchell DA. Plantazolicin is an ultra-narrow spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect Dis 2016; 2:207-220. [PMID: 27152321 DOI: 10.1021/acsinfecdis.5b00115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plantazolicin (PZN) is a ribosomally synthesized and post-translationally modified natural product from Bacillus methylotrophicus FZB42 and Bacillus pumilus. Extensive tailoring to twelve of the fourteen amino acid residues in the mature natural product endows PZN with not only a rigid, polyheterocyclic structure, but also antibacterial activity. Here we report a remarkably discriminatory activity of PZN toward Bacillus anthracis, which rivals a previously-described gamma (γ) phage lysis assay in distinguishing B. anthracis from other members of the Bacillus cereus group. We evaluate the underlying cause of this selective activity by measuring the RNA expression profile of PZN-treated B. anthracis, which revealed significant upregulation of genes within the cell envelope stress response. PZN depolarizes the B. anthracis membrane like other cell envelope-acting compounds but uniquely localizes to distinct foci within the envelope. Selection and whole-genome sequencing of PZN-resistant mutants of B. anthracis implicate a relationship between the action of PZN and cardiolipin (CL) within the membrane. Exogenous CL increases the potency of PZN in wild type B. anthracis and promotes the incorporation of fluorescently tagged PZN in the cell envelope. We propose that PZN localizes to and exacerbates structurally compromised regions of the bacterial membrane, which ultimately results in cell lysis.
Collapse
Affiliation(s)
- Katie J. Molohon
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Seongjin Park
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James R. Doroghazi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeremy R. Hershfield
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, United States
| | - Kristen M. Flatt
- Department of Crop Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nathan E. Schroeder
- Department of Crop Sciences, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Taekjip Ha
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
90
|
Goodreid JD, Janetzko J, Santa Maria JP, Wong KS, Leung E, Eger BT, Bryson S, Pai EF, Gray-Owen SD, Walker S, Houry WA, Batey RA. Development and Characterization of Potent Cyclic Acyldepsipeptide Analogues with Increased Antimicrobial Activity. J Med Chem 2016; 59:624-46. [PMID: 26818454 DOI: 10.1021/acs.jmedchem.5b01451] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The problem of antibiotic resistance has prompted the search for new antibiotics with novel mechanisms of action. Analogues of the A54556 cyclic acyldepsipeptides (ADEPs) represent an attractive class of antimicrobial agents that act through dysregulation of caseinolytic protease (ClpP). Previous studies have shown that ADEPs are active against Gram-positive bacteria (e.g., MRSA, VRE, PRSP (penicillin-resistant Streptococcus pneumoniae)); however, there are currently few studies examining Gram-negative bacteria. In this study, the synthesis and biological evaluation of 14 novel ADEPs against a variety of pathogenic Gram-negative and Gram-positive organisms is outlined. Optimization of the macrocyclic core residues and N-acyl side chain culminated in the development of 26, which shows potent activity against the Gram-negative species Neisseria meningitidis and Neisseria gonorrheae and improved activity against the Gram-positive organisms Staphylococcus aureus and Enterococcus faecalis in comparison with known analogues. In addition, the co-crystal structure of an ADEP-ClpP complex derived from N. meningitidis was solved.
Collapse
Affiliation(s)
- Jordan D Goodreid
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John Janetzko
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - John P Santa Maria
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Keith S Wong
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Elisa Leung
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Bryan T Eger
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Steve Bryson
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- The Campbell Family Institute for Cancer Research, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
- The Campbell Family Institute for Cancer Research, University Health Network , Toronto, Ontario M5G 1L7, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Walid A Houry
- Department of Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | - Robert A Batey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
91
|
Hansenová Maňásková S, Nazmi K, van ‘t Hof W, van Belkum A, Martin NI, Bikker FJ, van Wamel WJB, Veerman ECI. Staphylococcus aureus Sortase A-Mediated Incorporation of Peptides: Effect of Peptide Modification on Incorporation. PLoS One 2016; 11:e0147401. [PMID: 26799839 PMCID: PMC4723074 DOI: 10.1371/journal.pone.0147401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.
Collapse
Affiliation(s)
- Silvie Hansenová Maňásková
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
- * E-mail:
| | - Kamran Nazmi
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Wim van ‘t Hof
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Alex van Belkum
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Nathaniel I. Martin
- Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Floris J. Bikker
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Enno C. I. Veerman
- Department of Periodontology and Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Ariyasu S, Too PC, Mu J, Goh CC, Ding Y, Tnay YL, Yeow EKL, Yang L, Ng LG, Chiba S, Xing B. Glycopeptide antibiotic analogs for selective inactivation and two-photon imaging of vancomycin-resistant strains. Chem Commun (Camb) 2016; 52:4667-70. [DOI: 10.1039/c5cc10230h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Theranostic divalent vancomycin systems exhibit selective antibacterial activity against vancomycin-resistant strains and can be applied for two-photon fluorescence imaging.
Collapse
|
93
|
Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; 404:177-201. [DOI: 10.1007/82_2016_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
94
|
Hsu YP, Meng X, VanNieuwenhze M. Methods for visualization of peptidoglycan biosynthesis. METHODS IN MICROBIOLOGY 2016. [DOI: 10.1016/bs.mim.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
95
|
Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal I. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:990-1004. [PMID: 26472159 DOI: 10.1111/1758-2229.12346] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/08/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.
Collapse
Affiliation(s)
- Tabitha Bucher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Centre for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
96
|
Fura JM, Kearns D, Pires MM. D-Amino Acid Probes for Penicillin Binding Protein-based Bacterial Surface Labeling. J Biol Chem 2015; 290:30540-50. [PMID: 26499795 DOI: 10.1074/jbc.m115.683342] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 02/02/2023] Open
Abstract
Peptidoglycan is an essential and highly conserved mesh structure that surrounds bacterial cells. It plays a critical role in retaining a defined cell shape, and, in the case of pathogenic Gram-positive bacteria, it lies at the interface between bacterial cells and the host organism. Intriguingly, bacteria can metabolically incorporate unnatural D-amino acids into the peptidoglycan stem peptide directly from the surrounding medium, a process mediated by penicillin binding proteins (PBPs). Metabolic peptidoglycan remodeling via unnatural D-amino acids has provided unique insights into peptidoglycan biosynthesis of live bacteria and has also served as the basis of a synthetic immunology strategy with potential therapeutic implications. A striking feature of this process is the vast promiscuity displayed by PBPs in tolerating entirely unnatural side chains. However, the chemical space and physical features of this side chain promiscuity have not been determined systematically. In this report, we designed and synthesized a library of variants displaying diverse side chains to comprehensively establish the tolerability of unnatural D-amino acids by PBPs in both Gram-positive and Gram-negative organisms. In addition, nine Bacillus subtilis PBP-null mutants were evaluated with the goal of identifying a potential primary PBP responsible for unnatural D-amino acid incorporation and gaining insights into the temporal control of PBP activity. We empirically established the scope of physical parameters that govern the metabolic incorporation of unnatural D-amino acids into bacterial peptidoglycan.
Collapse
Affiliation(s)
- Jonathan M Fura
- From the Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania and
| | - Daniel Kearns
- the Department of Biology, Indiana University, Bloomington, Indiana
| | - Marcos M Pires
- From the Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania and
| |
Collapse
|
97
|
Gautam S, Kim T, Shoda T, Sen S, Deep D, Luthra R, Ferreira MT, Pinho MG, Spiegel DA. An Activity-Based Probe for Studying Crosslinking in Live Bacteria. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
98
|
Gautam S, Kim T, Shoda T, Sen S, Deep D, Luthra R, Ferreira MT, Pinho MG, Spiegel DA. An Activity-Based Probe for Studying Crosslinking in Live Bacteria. Angew Chem Int Ed Engl 2015. [PMID: 26204841 DOI: 10.1002/anie.201503869] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Penicillin-binding proteins (PBPs) catalyze the crosslinking of peptidoglycan (PG), an essential process for bacterial growth and survival, and a common antibiotic target. Yet, despite its importance, little is known about the spatiotemporal aspects of crosslinking—largely because of a lack of experimental tools for studying the reaction in live bacteria. Here we introduce such a tool: an activity-based probe that enables visualization and relative quantitation of crosslinking in vivo. In Staphylococcus aureus, we show that fluorescent mimics of the natural substrate of PBPs (PG stem peptide) are covalently incorporated into the cell wall, installing fluorophores in place of natural crosslinks. These fluorescent stem peptide mimics (FSPMs) are selectively recognized by a single PBP in S. aureus: PBP4. Thus, we were able to use FSPM pulse-labeling to localize PBP4 activity in live cells, showing that it is recruited to the septum in a manner dependent on wall teichoic acid.
Collapse
Affiliation(s)
- Samir Gautam
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA).,Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Taehan Kim
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Takuji Shoda
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA).,National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 (Japan)
| | - Sounok Sen
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA).,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114 (USA)
| | - Deeksha Deep
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Ragini Luthra
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA)
| | - Maria Teresa Ferreira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras (Portugal)
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras (Portugal)
| | - David A Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06511 (USA). .,Department of Pharmacology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA).
| |
Collapse
|
99
|
Gautam S, Kim T, Spiegel DA. Chemical probes reveal an extraseptal mode of cross-linking in Staphylococcus aureus. J Am Chem Soc 2015; 137:7441-7. [PMID: 26035224 DOI: 10.1021/jacs.5b02972] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is an important human pathogen and a model organism for studying cell wall synthesis in Gram-positive cocci. The prevailing model of cell wall biogenesis in cocci holds that peptidoglycan synthesis (i.e., transglycosylation and cross-linking) is restricted spatially to the septal cross-wall and temporally to cell division. Previously, we developed a method for visualizing cross-linking in S. aureus using fluorescently tagged mimics of the endogenous substrate of penicillin-binding proteins (PBPs). These probes are incorporated into the cell wall of S. aureus specifically by PBP4, allowing localization of the enzyme's cross-linking activity in vivo with precise spatial and temporal resolution. Here, using this methodology, we have discovered that PBP4 is active not only at the septum, but unexpectedly at the peripheral wall as well. These results challenge the long-held belief that peptidoglycan synthesis is restricted to the septum in spherical bacteria, and instead indicate the presence of two spatiotemporally distinct modes of cross-linking in S. aureus: one at the septum during cell division, and another at the peripheral wall between divisions.
Collapse
Affiliation(s)
- Samir Gautam
- §Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - Taehan Kim
- §Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| | - David A Spiegel
- §Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
100
|
In vivo cluster formation of nisin and lipid II is correlated with membrane depolarization. Antimicrob Agents Chemother 2015; 59:3683-6. [PMID: 25870072 DOI: 10.1128/aac.04781-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
Nisin and related lantibiotics kill bacteria by pore formation or by sequestering lipid II. Some lantibiotics sequester lipid II into clusters, which were suggested to kill cells through delocalized peptidoglycan synthesis. Here, we show that cluster formation is always concomitant with (i) membrane pore formation and (ii) membrane depolarization. Nisin variants that cluster lipid II kill L-form bacteria with similar efficiency, suggesting that delocalization of peptidoglycan synthesis is not the primary killing mechanism of these lantibiotics.
Collapse
|