51
|
Johnson LE, Wilkinson T, Arosio P, Melman A, Bou-Abdallah F. Effect of chaotropes on the kinetics of iron release from ferritin by flavin nucleotides. Biochim Biophys Acta Gen Subj 2017; 1861:3257-3262. [PMID: 28943300 DOI: 10.1016/j.bbagen.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. METHODS The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. RESULTS AND CONCLUSIONS Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. GENERAL SIGNIFICANCE Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.
Collapse
Affiliation(s)
- Lindsay E Johnson
- State University of New York at Potsdam, Department of Chemistry, Potsdam, NY, USA
| | - Tyler Wilkinson
- Clarkson University, Department of Chemistry & Biomolecular Science, Potsdam, NY, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Artem Melman
- Clarkson University, Department of Chemistry & Biomolecular Science, Potsdam, NY, USA.
| | - Fadi Bou-Abdallah
- State University of New York at Potsdam, Department of Chemistry, Potsdam, NY, USA.
| |
Collapse
|
52
|
Wang Q, Zhang C, Liu L, Li Z, Guo F, Li X, Luo J, Zhao D, Liu Y, Su Z. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency. J Biotechnol 2017; 254:34-42. [PMID: 28591619 DOI: 10.1016/j.jbiotec.2017.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Liping Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zenglan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Jian Luo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Dawei Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 210023, PR China.
| |
Collapse
|
53
|
Yang R, Liu Y, Meng D, Chen Z, Blanchard CL, Zhou Z. Urea-Driven Epigallocatechin Gallate (EGCG) Permeation into the Ferritin Cage, an Innovative Method for Fabrication of Protein-Polyphenol Co-assemblies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1410-1419. [PMID: 28158944 DOI: 10.1021/acs.jafc.6b04671] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The 8 nm diameter cavity endows the ferritin cage with a natural space to encapsulate food components. In this work, urea was explored as a novel medium to facilitate the formation of ferritin-polyphenol co-assemblies. Results indicated that urea (20 mM) could expand the 4-fold channel size of apo-red bean ferritin (apoRBF) with an increased initial iron release rate υ0 (0.22 ± 0.02 μM min-1) and decreased α-helix content (5.6%). Moreover, urea (20 mM) could facilitate the permeation of EGCG into the apoRBF without destroying the ferritin structure and thus form ferritin-EGCG co-assemblies (FECs) with an encapsulation ratio and loading capacity of 17.6 and 2.1% (w/w), respectively. TEM exhibited that FECs maintained a spherical morphology with a 12 nm diameter in size. Fluorescence analysis showed that urea intervention could improve the binding constant K [(1.22 ± 0.8) × 104 M-1] of EGCG to apoRBF. Furthermore, the EGCG thermal stability was significantly improved (20-60 °C) compared with free EGCG. Additionally, this urea-involved method was applicable for chlorogenic acid and anthocyanin encapsulation by the apoRBF cage. Thus, urea shows potential as a novel potential medium to encapsulate and stabilize bioactive polyphenols for food usage based on the ferritin protein cage structure.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center , Tianjin 300457, China
| | - Yuqian Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Demei Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Zhiyu Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
| | - Christopher L Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains , Wagga Wagga, NSW 2678, Australia
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center , Tianjin 300457, China
| |
Collapse
|
54
|
Nandwana V, Ryoo SR, Kanthala S, Kumar A, Sharma A, Castro FC, Li Y, Hoffman B, Lim S, Dravid VP. Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging. RSC Adv 2017. [DOI: 10.1039/c7ra05681h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the development of a “natural” MRI contrast agent with tunable Fe loading and a magnetic core for magnetic resonance imaging.
Collapse
|
55
|
Abstract
Iron is very important in many biological processes and the ferritin protein family has evolved to store iron and to maintain cellular iron homeostasis. The deletion of the coding gene for the H subunit of ferritin leads to early embryonic death in mice and mutations in the gene for the L subunits in humans has been observed in neurodegenerative diseases, such as neuroferritinopathy. Thus, understanding how ferritin works is imperative and many studies have been conducted to delineate the molecular mechanism of ferritins and bacterioferritins. In the ferritin protein family, it is clear that a catalytic center for iron oxidation, the routes for iron to reach this center and the ability to nucleate an iron core, are common requirements for all ferritins. However, there are differences in the structural and mechanistic details of iron oxidation and mineralization. Although a common mechanism has been proposed for all ferritins, this mechanism needs to be further explored. There is a mechanistic diversity related to structural variation in the ferritin protein family. It is clear that other factors appear to affect the mechanism of iron oxidation and mineralization. This review focusses on the structural features of the ferritin protein family and its role in the mechanism of iron mineralization.
Collapse
Affiliation(s)
- Alejandro Yévenes
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
56
|
Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. RICE (NEW YORK, N.Y.) 2016; 9:39. [PMID: 27502932 PMCID: PMC4977236 DOI: 10.1186/s12284-016-0112-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/31/2016] [Indexed: 05/09/2023]
Abstract
Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.
Collapse
Affiliation(s)
- Lei Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Jiadong Chang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Ruijie Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hubo Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Hongfei Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China
| | - Longxing Tao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jie Xiong
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Zhejinag Province Key Laboratory of Plant Secondary Metabolism and Regulation, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
57
|
Li L, Zhang L, Knez M. Comparison of two endogenous delivery agents in cancer therapy: Exosomes and ferritin. Pharmacol Res 2016; 110:1-9. [DOI: 10.1016/j.phrs.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
|
58
|
Theil EC, Tosha T, Behera RK. Solving Biology's Iron Chemistry Problem with Ferritin Protein Nanocages. Acc Chem Res 2016; 49:784-91. [PMID: 27136423 DOI: 10.1021/ar500469e] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ferritins reversibly synthesize iron-oxy(ferrihydrite) biominerals inside large, hollow protein nanocages (10-12 nm, ∼480 000 g/mol); the iron biominerals are metabolic iron concentrates for iron protein biosyntheses. Protein cages of 12- or 24-folded ferritin subunits (4-α-helix polypeptide bundles) self-assemble, experimentally. Ferritin biomineral structures differ among animals and plants or bacteria. The basic ferritin mineral structure is ferrihydrite (Fe2O3·H2O) with either low phosphate in the highly ordered animal ferritin biominerals, Fe/PO4 ∼ 8:1, or Fe/PO4 ∼ 1:1 in the more amorphous ferritin biominerals of plants and bacteria. While different ferritin environments, plant bacterial-like plastid organelles and animal cytoplasm, might explain ferritin biomineral differences, investigation is required. Currently, the physiological significance of plant-specific and animal-specific ferritin iron minerals is unknown. The iron content of ferritin in living tissues ranges from zero in "apoferritin" to as high as ∼4500 iron atoms. Ferritin biomineralization begins with the reaction of Fe(2+) with O2 at ferritin enzyme (Fe(2+)/O oxidoreductase) sites. The product of ferritin enzyme activity, diferric oxy complexes, is also the precursor of ferritin biomineral. Concentrations of Fe(3+) equivalent to 2.0 × 10(-1) M are maintained in ferritin solutions, contrasting with the Fe(3+) Ks ∼ 10(-18) M. Iron ions move into, through, and out of ferritin protein cages in structural subdomains containing conserved amino acids. Cage subdomains include (1) ion channels for Fe(2+) entry/exit, (2) enzyme (oxidoreductase) site for coupling Fe(2+) and O yielding diferric oxy biomineral precursors, and (3) ferric oxy nucleation channels, where diferric oxy products from up to three enzyme sites interact while moving toward the central, biomineral growth cavity (12 nm diameter) where ferric oxy species, now 48-mers, grow in ferric oxy biomineral. High ferritin protein cage symmetry (3-fold and 4-fold axes) and amino acid conservation coincide with function, shown by amino acid substitution effects. 3-Fold symmetry axes control Fe(2+) entry (enzyme catalysis of Fe(2+)/O2 oxidoreduction) and Fe(2+) exit (reductive ferritin mineral dissolution); 3-fold symmetry axes influence Fe(2+)exit from dissolved mineral; bacterial ferritins diverge slightly in Fe/O2 reaction mechanisms and intracage paths of iron-oxy complexes. Biosynthesis rates of ferritin protein change with Fe(2+) and O2 concentrations, dependent on DNA-binding, and heme binding protein, Bach 1. Increased cellular O2 indirectly stabilizes ferritin DNA/Bach 1 interactions. Heme, Fe-protoporphyrin IX, decreases ferritin DNA-Bach 1 binding, causing increased ferritin mRNA biosynthesis (transcription). Direct Fe(2+) binding to ferritin mRNA decreases binding of an inhibitory protein, IRP, causing increased ferritin mRNA translation (protein biosynthesis). Newly synthesized ferritin protein consumes Fe(2+) in biomineral, decreasing Fe(2)(+) and creating a regulatory feedback loop. Ferritin without iron is "apoferritin". Iron removal from ferritin, experimentally, uses biological reductants, for example, NADH + FMN, or chemical reductants, for example, thioglycolic acid, with Fe(2+) chelators; physiological mechanism(s) are murky. Clear, however, is the necessity of ferritin for terrestrial life by conferring oxidant protection (plants, animals, and bacteria), virulence (bacteria), and embryonic survival (mammals). Future studies of ferritin structure/function and Fe(2+)/O2 chemistry will lead to new ferritin uses in medicine, nutrition, and nanochemistry.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| | - Takehiko Tosha
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| | - Rabindra K. Behera
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, United States
- Department of Structural
and Molecular Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7313, United States
| |
Collapse
|
59
|
Maxi- and mini-ferritins: minerals and protein nanocages. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2016; 52:29-47. [PMID: 21877262 DOI: 10.1007/978-3-642-21230-7_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ferritins synthesize ferric oxide biominerals and are central to all life for concentrating iron and protection against oxidative stress from the ferrous and oxidant chemistry. The ferritin protein nanocages and biomineral synthesis are discussed in terms of wide biological distribution of the maxi-ferritins (24 subunit ± heme) and mini-ferritins (Dps) (12 subunit), conservations of the iron/oxygen catalytic sites in the protein cages, mineral formation (step i. Fe(II) entry and binding, step ii. O(2) or H(2)O(2) binding and formation of transition intermediates, step iii. release of differric oxo mineral precursors from active sites, step iv. nucleation and mineralization) properties of the minerals, and protein control of mineral dissolution and release of Fe(II). Pores in ferritin protein cages control iron entry for mineralization and iron exit after mineral dissolution. The relationship between phosphate or the presence of catalytically inactive subunits (animal L subunits) and ferritin iron mineral disorder is developed based on new information about contributions of ferritin protein cage structure to nucleation in protein cage subunit channels that exit close enough to those of other subunits and exiting mineral nuclei to facilitate bulk mineral formation. How and where protons move in and out of the protein during mineral synthesis and dissolution, how ferritin cage assembly with 12 or 24 subunits is encoded in the widely divergent ferritin amino acid sequences, and what is the role of the protein in synthesis of the bulk mineral are all described as problems requiring new approaches in future investigations of ferritin biominerals.
Collapse
|
60
|
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-Inspired Synthesis of Copper Sulfide-Ferritin Nanocages as Cancer Theranostics. ACS NANO 2016; 10:3453-60. [PMID: 26871955 PMCID: PMC5242369 DOI: 10.1021/acsnano.5b07521] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
It is essential to control the size and morphology of nanoparticles strictly in nanomedicine. Protein cages offer significant potential for templated synthesis of inorganic nanoparticles. In this study, we successfully synthesized ultrasmall copper sulfide (CuS) nanoparticles inside the cavity of ferritin (Fn) nanocages by a biomimetic synthesis method. The uniform CuS-Fn nanocages (CuS-Fn NCs) showed strong near-infrared absorbance and high photothermal conversion efficiency. In quantitative ratiometric photoacoustic imaging (PAI), the CuS-Fn NCs exhibited superior photoacoustic tomography improvements for real-time in vivo PAI of entire tumors. With the incorporation of radionuclide (64)Cu, (64)CuS-Fn NCs also served as an excellent PET imaging agent with higher tumor accumulation compared to free copper. Following the guidance of PAI and PET, CuS-Fn NCs were applied in photothermal therapy to achieve superior cancer therapeutic efficiency with good biocompatibility both in vitro and in vivo. The results demonstrate that the bioinspired multifunctional CuS-Fn NCs have potential as clinically translatable cancer theranostics and could provide a noninvasive, highly sensitive, and quantitative in vivo guiding method for cancer photothermal therapies in experimental and clinical settings.
Collapse
Affiliation(s)
- Zhantong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zhe Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Nan Lu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Huimin Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University , Xiamen 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
61
|
Kumar KS, Pasula RR, Lim S, Nijhuis CA. Long-Range Tunneling Processes across Ferritin-Based Junctions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1824-30. [PMID: 26708136 DOI: 10.1002/adma.201504402] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/13/2015] [Indexed: 05/23/2023]
Abstract
The mechanism of long-range charge transport across tunneling junctions with monolayers of ferritin is investigated. It is shown that the mechanism can be switched between coherent tunneling, sequential tunneling, and hopping by changing the iron content inside the ferritin. This study shows that ferritins are an interesting class of biomolecules to control charge transport.
Collapse
Affiliation(s)
| | - Rupali Reddy Pasula
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Singapore
| |
Collapse
|
62
|
Bradley JM, Le Brun NE, Moore GR. Ferritins: furnishing proteins with iron. J Biol Inorg Chem 2016; 21:13-28. [PMID: 26825805 PMCID: PMC4771812 DOI: 10.1007/s00775-016-1336-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 12/04/2022]
Abstract
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores, consider how iron might be released from ferritins, and examine in detail how three selected ferritins oxidise Fe2+ to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins.
Collapse
Affiliation(s)
- Justin M Bradley
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Geoffrey R Moore
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
63
|
Bhattacharya A, Chatterjee S, Prajapati R, Mukherjee TK. Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots. Phys Chem Chem Phys 2016; 17:12833-40. [PMID: 25906758 DOI: 10.1039/c5cp00543d] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The origin of the excitation wavelength (λex)-dependent photoluminescence (PL) of carbon dots (CDs) is poorly understood and still remains obscured. This phenomenon is often explained on the basis of surface trap/defect states, while the effect of quantum confinement is highly neglected in the literature. Here, we have shown that the λex-dependent PL of CDs is mainly due to the inhomogeneous size distribution. We have demonstrated the λex-dependent PL quenching of CDs inside the ferritin nanocages through selective optical excitation of differently sized CDs. It has been observed that Fe(3+) ions of ferritin effectively quench the PL of CDs due to static electron transfer, which is driven by favorable electrostatic interactions. However, control experiment with aqueous Fe(3+) ions in bulk medium revealed λex-independent PL quenching of CDs. The λex-dependent PL quenching of CDs by Fe(3+) ions of ferritin has been rationalized on the basis of a different extent of accessibility of Fe(3+) ions by differently sized CDs through the funnel-shaped ferritin channels. PL microscopy of individual CDs has been performed to get further information about their inherent PL properties at single dot resolution. Our results have shown that these hydrophilic CDs can be used as potential iron sensors in biological macromolecules.
Collapse
Affiliation(s)
- Arpan Bhattacharya
- Discipline of Chemistry, Indian Institute of Technology Indore, M-Block, IET-DAVV Campus, Khandwa Road, Indore-452017, M.P., India.
| | | | | | | |
Collapse
|
64
|
Yang R, Gao Y, Zhou Z, Strappe P, Blanchard C. Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro. RSC Adv 2016. [DOI: 10.1039/c6ra04058f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nano-sized ferritin and chitosan provide a platform for fabricating shell–core system to encapsulate lutein, exhibiting improved stability and prolonged release of lutein in simulated gastrointestinal tract digestion.
Collapse
Affiliation(s)
- Rui Yang
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Yunjing Gao
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Zhongkai Zhou
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Padraig Strappe
- ARC Industrial Transformation Training Centre for Functional Grains
- School of Biomedical Sciences
- Charles Sturt University
- Wagga Wagga
- Australia
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains
- School of Biomedical Sciences
- Charles Sturt University
- Wagga Wagga
- Australia
| |
Collapse
|
65
|
Encapsulation as a Strategy for the Design of Biological Compartmentalization. J Mol Biol 2015; 428:916-27. [PMID: 26403362 DOI: 10.1016/j.jmb.2015.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Compartmentalization is one of the defining features of life. Through intracellular spatial control, cells are able to organize and regulate their metabolism. One of the most broadly used organizational principles in nature is encapsulation. Cellular processes can be encapsulated within either membrane-bound organelles or proteinaceous compartments that create distinct microenvironments optimized for a given task. Further challenges addressed through intracellular compartmentalization are toxic or volatile pathway intermediates, slow turnover rates and competing side reactions. This review highlights a selection of naturally occurring membrane- and protein-based encapsulation systems in microbes and their recent applications and emerging opportunities in synthetic biology. We focus on examples that use engineered cellular organization to control metabolic pathway flux for the production of useful compounds and materials.
Collapse
|
66
|
Sana B, Johnson E, Lim S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim Biophys Acta Gen Subj 2015; 1850:2544-51. [PMID: 26341788 DOI: 10.1016/j.bbagen.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND In conventional in vitro encapsulation of molecular cargo, the multi-subunit ferritin protein cages are disassembled in extremely acidic pH and re-assembled in the presence of highly concentrated cargo materials, which results in poor yields due to the low-pH treatment. In contrast, Archaeoglobus fulgidus open-pore ferritin (AfFtn) and its closed-pore mutant (AfFtn-AA) are present as dimeric species in neutral buffers that self-assemble into cage-like structure upon addition of metal ions. METHODS To understand the iron-mediated self-assembly and ascorbate-mediated disassembly properties, we studied the iron binding and release profile of the AfFtn and AfFtn-AA, and the corresponding oligomerization of their subunits. RESULTS Fe(2+) binding and conversion to Fe(3+) triggered the self-assembly of cage-like structures from dimeric species of AfFtn and AfFtn-AA subunits, while disassembly was induced by dissolving the iron core with reducing agents. The closed-pore AfFtn-AA has identical iron binding kinetics but lower iron release rates when compared to AfFtn. While the iron binding rate is proportional to Fe(2+) concentration, the iron release rate can be controlled by varying ascorbate concentrations. CONCLUSION The AfFtn and AfFtn-AA cages formed by iron mineralization could be disassembled by dissolving the iron core. The open-pores of AfFtn contribute to enhanced reductive iron release while the small channels located at the 3-fold symmetry axis (3-fold channels) are used for iron uptake. GENERAL SIGNIFICANCE The iron-mediated self-assembly/disassembly property of AfFtn offers a new set of molecular trigger for formation and dissociation of the protein cage, which can potentially regulate uptake and release of molecular cargo from protein cages.
Collapse
Affiliation(s)
- Barindra Sana
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore
| | - Eric Johnson
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore.
| |
Collapse
|
67
|
Yang R, Zhou Z, Sun G, Gao Y, Xu J. Ferritin, a novel vehicle for iron supplementation and food nutritional factors encapsulation. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
68
|
Bernacchioni C, Ciambellotti S, Theil EC, Turano P. Is His54 a gating residue for the ferritin ferroxidase site? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1118-22. [PMID: 25727028 DOI: 10.1016/j.bbapap.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Ferritin is a ubiquitous iron concentrating nanocage protein that functions through the enzymatic oxidation of ferrous iron and the reversible synthesis of a caged ferric-oxo biomineral. Among vertebrate ferritins, the bullfrog M homopolymer ferritin is a frequent model for analyzing the role of specific amino acids in the enzymatic reaction and translocation of iron species within the protein cage. X-ray crystal structures of ferritin in the presence of metal ions have revealed His54 binding to iron(II) and other divalent cations, with its imidazole ring proposed as "gate" that influences iron movement to/from the active site. To investigate its role, His54 was mutated to Ala. The H54A ferritin variant was expressed and its reactivity studied via UV-vis stopped-flow kinetics. The H54A variant exhibited a 20% increase in the initial reaction rate of formation of ferric products with 2 or 4 Fe²⁺/subunit and higher than 200% with 20 Fe²⁺/subunit. The possible meaning of the increased efficiency of the ferritin reaction induced by this mutation is proposed taking advantage of the comparative sequence analysis of other ferritins. The data here reported are consistent with a role for His54 as a metal ion trap that maintains the correct levels of access of iron to the active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Elizabeth C Theil
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA; Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 29695-7622, USA
| | - Paola Turano
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
69
|
Jutz G, van Rijn P, Santos Miranda B, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev 2015; 115:1653-701. [PMID: 25683244 DOI: 10.1021/cr400011b] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Günther Jutz
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University , Forckenbeckstrasse 50, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
70
|
Yang R, Zhou Z, Sun G, Gao Y, Xu J, Strappe P, Blanchard C, Cheng Y, Ding X. Synthesis of homogeneous protein-stabilized rutin nanodispersions by reversible assembly of soybean (Glycine max) seed ferritin. RSC Adv 2015. [DOI: 10.1039/c5ra03542b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have studied the soybean seed ferritin stabilized rutin nanodispersions with improved water-solubility, thermal stability, and UV radiation stability.
Collapse
Affiliation(s)
- Rui Yang
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Zhongkai Zhou
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Guoyu Sun
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Yunjing Gao
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Jingjing Xu
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Padraig Strappe
- School of Biomedical Sciences
- Charles Sturt University
- Wagga Wagga
- Australia
- ARC Functional Grains Centre
| | - Chris Blanchard
- School of Biomedical Sciences
- Charles Sturt University
- Wagga Wagga
- Australia
- ARC Functional Grains Centre
| | - Yao Cheng
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Xiaodong Ding
- School of Food Engineering and Biotechnology
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- Tianjin University of Science and Technology
- Tianjin 300457
| |
Collapse
|
71
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|
72
|
Bernacchioni C, Ghini V, Pozzi C, Di Pisa F, Theil EC, Turano P. Loop electrostatics modulates the intersubunit interactions in ferritin. ACS Chem Biol 2014; 9:2517-25. [PMID: 25148224 DOI: 10.1021/cb500431r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Functional ferritins are 24-mer nanocages that self-assemble with extended contacts between pairs of 4-helix bundle subunits coupled in an antiparallel fashion along the C2 axes. The largest intersubunit interaction surface in the ferritin nanocage involves helices, but contacts also occur between groups of three residues midway in the long, solvent-exposed L-loops of facing subunits. The anchor points between intersubunit L-loop pairs are the salt bridges between the symmetry-related, conserved residues Asp80 and Lys82. The resulting quaternary structure of the cage is highly soluble and thermostable. Substitution of negatively charged Asp80 with a positively charged Lys in homopolymeric M ferritin introduces electrostatic repulsions that inhibit the oligomerization of the ferritin subunits. D80K ferritin was present in inclusion bodies under standard overexpressing conditions in E. coli, contrasting with the wild type protein. Small amounts of fully functional D80K nanocages formed when expression was slowed. The more positively charged surface results in a different solubility profile and D80K crystallized in a crystal form with a low density packing. The 3D structure of D80K variant is the same as wild type except for the side chain orientations of Lys80 and facing Lys82. When three contiguous Lys groups are introduced in D80KI81K ferritin variant the nanocage assembly is further inhibited leading to lower solubility and reduced thermal stability. Here, we demonstrate that the electrostatic pairing at the center of the L-loops has a specific kinetic role in the self-assembly of ferritin nanocages.
Collapse
Affiliation(s)
- Caterina Bernacchioni
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Ghini
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Cecilia Pozzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Elizabeth C. Theil
- CHORI (Children’s
Hospital Oakland Research Institute), 5700 Martin Luther King, Jr. Way, Oakland, California 94609, United States
- Department
of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 29695-7622, United States
| | - Paola Turano
- Magnetic
Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
- Department
of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
73
|
Bradley JM, Moore GR, Le Brun NE. Mechanisms of iron mineralization in ferritins: one size does not fit all. J Biol Inorg Chem 2014; 19:775-85. [PMID: 24748222 DOI: 10.1007/s00775-014-1136-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022]
Abstract
Significant progress has been made in recent years toward understanding the processes by which an iron mineral is deposited within members of the ferritin family of 24mer iron storage proteins, enabled by high-resolution structures together with spectroscopic and kinetic studies. These suggest common characteristics that are shared between ferritins, namely, a highly symmetric arrangement of subunits that provides a protein coat around a central cavity in which the mineral is formed, channels through the coat that facilitate ingress and egress of ions, and catalytic sites, called ferroxidase centers, that drive Fe(2+) oxidation. They also reveal significant variations in both structure and mechanism amongst ferritins. Here, we describe three general types of structurally distinct ferroxidase center and the mechanisms of mineralization that they are associated with. The highlighted variation leads us to conclude that there is no universal mechanism by which ferritins function, but instead there exists several distinct mechanisms of ferritin iron mineralization.
Collapse
Affiliation(s)
- Justin M Bradley
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
74
|
Williams SM, Chandran AV, Vijayabaskar MS, Roy S, Balaram H, Vishveshwara S, Vijayan M, Chatterji D. A histidine aspartate ionic lock gates the iron passage in miniferritins from Mycobacterium smegmatis. J Biol Chem 2014; 289:11042-11058. [PMID: 24573673 PMCID: PMC4036245 DOI: 10.1074/jbc.m113.524421] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8-2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release.
Collapse
Affiliation(s)
| | - Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Mahalingam S Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom, and
| | - Sourav Roy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | | | - Mamannamana Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,; Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India.
| |
Collapse
|
75
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Laghaei R, Kowallis W, Evans DG, Coalson RD. Calculation of Iron Transport through Human H-chain Ferritin. J Phys Chem A 2014; 118:7442-53. [DOI: 10.1021/jp500198u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rozita Laghaei
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - William Kowallis
- Department
of Chemistry, Carlow University, Pittsburgh, Pennsylvania 15213, United States
| | - Deborah G. Evans
- The
Nanoscience and Microsystems Program and the Department of Chemistry
and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Rob D. Coalson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
77
|
Segond D, Abi Khalil E, Buisson C, Daou N, Kallassy M, Lereclus D, Arosio P, Bou-Abdallah F, Nielsen Le Roux C. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathog 2014; 10:e1003935. [PMID: 24550730 PMCID: PMC3923779 DOI: 10.1371/journal.ppat.1003935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/08/2014] [Indexed: 01/18/2023] Open
Abstract
In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. Iron homeostasis is important for all living organisms; too much iron confers cell toxicity, and too little iron results in reduced cell fitness. While crucial for many cellular processes in both man and pathogens, a battle for this essential nutrient erupts during infection between the host and the invading bacteria. Iron is principally stored in ferritin, a large molecule able to bind several thousand iron ions. Although host ferritins represent a mine of iron for pathogens, studies of the mechanisms involved in its acquisition by bacteria are scarce. In the human opportunistic pathogen Bacillus cereus, the surface protein IlsA is able to bind several host iron sources in vitro. In this study, we show that IlsA acts as a ferritin receptor and enhances iron release from the ferritin through direct interaction with each ferritin subunit. Moreover, we demonstrate that the siderophore bacillibactin, a small secreted iron chelator, is essential for ferritin iron acquisition and takes part in B. cereus virulence. We propose a new iron acquisition model that provides new insights into bacterial host adaptation.
Collapse
Affiliation(s)
- Diego Segond
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Elise Abi Khalil
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Christophe Buisson
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Nadine Daou
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York, United States of America
| | - Christina Nielsen Le Roux
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
78
|
Theil EC, Turano P, Ghini V, Allegrozzi M, Bernacchioni C. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes. J Biol Inorg Chem 2014; 19:615-22. [PMID: 24504941 DOI: 10.1007/s00775-014-1103-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/30/2013] [Indexed: 02/03/2023]
Abstract
Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.
Collapse
Affiliation(s)
- Elizabeth C Theil
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA,
| | | | | | | | | |
Collapse
|
79
|
Yang R, Chen L, Yang S, Lv C, Leng X, Zhao G. 2D square arrays of protein nanocages through channel-directed electrostatic interactions with poly(α, l-lysine). Chem Commun (Camb) 2014; 50:2879-82. [PMID: 24487730 DOI: 10.1039/c3cc49306g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstructed ferritin nanocages with expanded 4-fold channels can self-assemble into 2D square arrays through channel-directed electrostatic interactions with poly(α, l-lysine) at pH 7.0. Structurally, protein cages are aligned along their common 4-fold symmetry axis, imposing a fixed disposition of neighboring ferritins.
Collapse
Affiliation(s)
- R Yang
- CAU & ACC Joint-Laboratory of Space Food, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing, 100083, China.
| | | | | | | | | | | |
Collapse
|
80
|
Sana B, Johnson E, Le Magueres P, Criswell A, Cascio D, Lim S. The role of nonconserved residues of Archaeoglobus fulgidus ferritin on its unique structure and biophysical properties. J Biol Chem 2013; 288:32663-32672. [PMID: 24030827 PMCID: PMC3820901 DOI: 10.1074/jbc.m113.491191] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/31/2013] [Indexed: 11/06/2022] Open
Abstract
Archaeoglobus fulgidus ferritin (AfFtn) is the only tetracosameric ferritin known to form a tetrahedral cage, a structure that remains unique in structural biology. As a result of the tetrahedral (2-3) symmetry, four openings (∼45 Å in diameter) are formed in the cage. This open tetrahedral assembly contradicts the paradigm of a typical ferritin cage: a closed assembly having octahedral (4-3-2) symmetry. To investigate the molecular mechanism affecting this atypical assembly, amino acid residues Lys-150 and Arg-151 were replaced by alanine. The data presented here shed light on the role that these residues play in shaping the unique structural features and biophysical properties of the AfFtn. The x-ray crystal structure of the K150A/R151A mutant, solved at 2.1 Å resolution, indicates that replacement of these key residues flips a "symmetry switch." The engineered molecule no longer assembles with tetrahedral symmetry but forms a typical closed octahedral ferritin cage. Small angle x-ray scattering reveals that the overall shape and size of AfFtn and AfFtn-AA in solution are consistent with those observed in their respective crystal structures. Iron binding and release kinetics of the AfFtn and AfFtn-AA were investigated to assess the contribution of cage openings to the kinetics of iron oxidation, mineralization, or reductive iron release. Identical iron binding kinetics for AfFtn and AfFtn-AA suggest that Fe(2+) ions do not utilize the triangular pores for access to the catalytic site. In contrast, relatively slow reductive iron release was observed for the closed AfFtn-AA, demonstrating involvement of the large pores in the pathway for iron release.
Collapse
Affiliation(s)
- Barindra Sana
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457
| | - Eric Johnson
- the Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | | | | | - Duilio Cascio
- UCLA-Department of Energy, Institute for Genomics and Proteomics, Los Angeles, California 90095-1570.
| | - Sierin Lim
- From the School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, Singapore 637457,.
| |
Collapse
|
81
|
Abstract
At the center of iron and oxidant metabolism is the ferritin superfamily: protein cages with Fe(2+) ion channels and two catalytic Fe/O redox centers that initiate the formation of caged Fe2O3·H2O. Ferritin nanominerals, initiated within the protein cage, grow inside the cage cavity (5 or 8 nm in diameter). Ferritins contribute to normal iron flow, maintenance of iron concentrates for iron cofactor syntheses, sequestration of iron from invading pathogens, oxidant protection, oxidative stress recovery, and, in diseases where iron accumulates excessively, iron chelation strategies. In eukaryotic ferritins, biomineral order/crystallinity is influenced by nucleation channels between active sites and the mineral growth cavity. Animal ferritin cages contain, uniquely, mixtures of catalytically active (H) and inactive (L) polypeptide subunits with varied rates of Fe(2+)/O2 catalysis and mineral crystallinity. The relatively low mineral order in liver ferritin, for example, coincides with a high percentage of L subunits and, thus, a low percentage of catalytic sites and nucleation channels. Low mineral order facilitates rapid iron turnover and the physiological role of liver ferritin as a general iron source for other tissues. Here, current concepts of ferritin structure/function/genetic regulation are discussed and related to possible therapeutic targets such as mini-ferritin/Dps protein active sites (selective pathogen inhibition in infection), nanocage pores (iron chelation in therapeutic hypertransfusion), mRNA noncoding, IRE riboregulator (normalizing the ferritin iron content after therapeutic hypertransfusion), and protein nanovessels to deliver medicinal or sensor cargo.
Collapse
Affiliation(s)
- Elizabeth C Theil
- Children's Hospital Oakland Research Institute (CHORI) , 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States , and Department of Molecular and Structural Biochemistry, North Carolina State University , Raleigh, North Carolina 2765-7622, United States
| |
Collapse
|
82
|
Linder MC. Mobilization of stored iron in mammals: a review. Nutrients 2013; 5:4022-50. [PMID: 24152745 PMCID: PMC3820057 DOI: 10.3390/nu5104022] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
From the nutritional standpoint, several aspects of the biochemistry and physiology of iron are unique. In stark contrast to most other elements, most of the iron in mammals is in the blood attached to red blood cell hemoglobin and transporting oxygen to cells for oxidative phosphorylation and other purposes. Controlled and uncontrolled blood loss thus has a major impact on iron availability. Also, in contrast to most other nutrients, iron is poorly absorbed and poorly excreted. Moreover, amounts absorbed (~1 mg/day in adults) are much less than the total iron (~20 mg/day) cycling into and out of hemoglobin, involving bone marrow erythropoiesis and reticuloendothelial cell degradation of aged red cells. In the face of uncertainties in iron bioavailability, the mammalian organism has evolved a complex system to retain and store iron not immediately in use, and to make that iron available when and where it is needed. Iron is stored innocuously in the large hollow protein, ferritin, particularly in cells of the liver, spleen and bone marrow. Our current understanding of the molecular, cellular and physiological mechanisms by which this stored iron in ferritin is mobilized and distributed-within the cell or to other organs-is the subject of this review.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
83
|
Carmona F, Palacios Ò, Gálvez N, Cuesta R, Atrian S, Capdevila M, Domínguez-Vera JM. Ferritin iron uptake and release in the presence of metals and metalloproteins: Chemical implications in the brain. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
84
|
Konz T, Añón Alvarez E, Montes-Bayon M, Sanz-Medel A. Antibody Labeling and Elemental Mass Spectrometry (Inductively Coupled Plasma-Mass Spectrometry) Using Isotope Dilution for Highly Sensitive Ferritin Determination and Iron-Ferritin Ratio Measurements. Anal Chem 2013; 85:8334-40. [DOI: 10.1021/ac401692k] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tobias Konz
- Department of Physical
and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006
Oviedo, Spain
| | - Elena Añón Alvarez
- Biochemistry
Laboratory, Central University Hospital of Asturias, Celestino
Villamil s/n, 33006 Oviedo, Spain
| | - Maria Montes-Bayon
- Department of Physical
and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006
Oviedo, Spain
| | - A. Sanz-Medel
- Department of Physical
and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Clavería 8, 33006
Oviedo, Spain
| |
Collapse
|
85
|
Dwivedi AK, Iyer PK. Therapeutic Strategies to Prevent Alzheimer's Disease Pathogenesis Using A Fluorescent Conjugated Polyelectrolyte. Macromol Biosci 2013; 14:508-14. [DOI: 10.1002/mabi.201300107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/02/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Atul K. Dwivedi
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781 039 Assam India
| | - Parameswar K. Iyer
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781 039 Assam India
| |
Collapse
|
86
|
Melman G, Bou-Abdallah F, Vane E, Maura P, Arosio P, Melman A. Iron release from ferritin by flavin nucleotides. Biochim Biophys Acta Gen Subj 2013; 1830:4669-74. [PMID: 23726988 DOI: 10.1016/j.bbagen.2013.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 05/21/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood. Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo. METHODS Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)-bipyridine complex using a Cary 50 Bio UV-Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode. RESULTS The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed. CONCLUSIONS Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin. GENERAL SIGNIFICANCE There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.
Collapse
Affiliation(s)
- Galina Melman
- Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
SIGNIFICANCE Lysosomes are acidic organelles containing more than fifty hydrolases that provide for the degradation of intracellular and endocytosed materials by autophagy and heterophagy, respectively. They digest a variety of macromolecules, as well as all organelles, and their integrity is crucial. As a result of the degradation of iron-containing macromolecules (e.g., ferritin and mitochondrial components) or endocytosed erythrocytes (by macrophages), lysosomes can accumulate large amounts of iron. This iron occurs often as Fe(II) due to the acidic and reducing lysosomal environment. Fe(II) is known to catalyze Fenton reactions, yielding extremely reactive hydroxyl radicals that may jeopardize lysosomal membrane integrity during oxidative stress. This results in the release of hydrolases and redox-active iron into the cytosol with ensuing damage or cell death. Lysosomes play key roles not only in apoptosis and necrosis but also in neurodegeneration, aging, and atherosclerosis. RECENT ADVANCES The damaging effect of intralysosomal iron can be hampered by endogenous or exogenous iron chelators that enter the lysosomal compartment by membrane permeation, endocytosis, or autophagy. CRITICAL ISSUES Cellular sensitivity to oxidative stress is enhanced by lysosomal redox-active iron or by lysosomal-targeted copper chelators binding copper (from degradation of copper-containing macromolecules) in redox-active complexes. Probably due to higher copper levels, lysosomes of malignant cells may be specifically sensitized by such chelators. FUTURE DIRECTIONS By increasing lysosomal redox-active iron or exposing cells to lysosomal-targeted copper chelators, it should be possible to enhance the sensitivity of cancer cells to radiation-induced oxidative stress or treatment with cytostatics that induce such stress.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | | |
Collapse
|
88
|
Abstract
Ferritins, highly symmetrical protein nanocages, are reactors for Fe2+ and dioxygen or hydrogen peroxide that are found in all kingdoms of life and in many different cells of multicellular organisms. They synthesize iron concentrates required for cells to make cofactors of iron proteins (heme, FeS, mono and diiron). The caged ferritin biominerals, Fe2O3•H2O are also antioxidants, acting as sinks for iron and oxidants scavenged from damaged proteins; genetic regulation of ferritin biosynthesis is sensitive to both iron and oxidants. Here, the emphasis here is ferritin oxidoreductase chemistry, ferritin ion channels for Fe 2+ transit into and out of the protein cage and Fe 3+ O mineral nucleation, and uses of ferritin cages in nanocatalysis and nanomaterial synthesis. The Fe2+ and O ferritin protein reactors, likely critical in the transition from anaerobic to aerobic life on earth, play central, contemporary roles that balance iron and oxygen chemistry in biology and have emerging roles in nanotechnology.
Collapse
Affiliation(s)
- Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| | | | | |
Collapse
|
89
|
Liebal UW, Millat T, Marles-Wright J, Lewis RJ, Wolkenhauer O. Simulations of stressosome activation emphasize allosteric interactions between RsbR and RsbT. BMC SYSTEMS BIOLOGY 2013; 7:3. [PMID: 23320651 PMCID: PMC3556497 DOI: 10.1186/1752-0509-7-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND The stressosome is a bacterial signalling complex that responds to environmental changes by initiating a protein partner switching cascade, which leads to the release of the alternative sigma factor, σB. Stress perception increases the phosphorylation of the stressosome sensor protein, RsbR, and the scaffold protein, RsbS, by the protein kinase, RsbT. Subsequent dissociation of RsbT from the stressosome activates the σB cascade. However, the sequence of physical events that occur in the stressosome during signal transduction is insufficiently understood. RESULTS Here, we use computational modelling to correlate the structure of the stressosome with the efficiency of the phosphorylation reactions that occur upon activation by stress. In our model, the phosphorylation of any stressosome protein is dependent upon its nearest neighbours and their phosphorylation status. We compare different hypotheses about stressosome activation and find that only the model representing the allosteric activation of the kinase RsbT, by phosphorylated RsbR, qualitatively reproduces the experimental data. CONCLUSIONS Our simulations and the associated analysis of published data support the following hypotheses: (i) a simple Boolean model is capable of reproducing stressosome dynamics, (ii) different stressors induce identical stressosome activation patterns, and we also confirm that (i) phosphorylated RsbR activates RsbT, and (ii) the main purpose of RsbX is to dephosphorylate RsbS-P.
Collapse
Affiliation(s)
- Ulf W Liebal
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
| | - Thomas Millat
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
| | - Jon Marles-Wright
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
- Institute of Structural and Molecular Biology, School of Biological Sciences, Edinburgh University, Edinburgh, EH9 3JR, UK
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, Institute of Computer Science, University of Rostock, 18051, Rostock, Germany
- Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
90
|
Tosha T, Behera RK, Theil EC. Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites. Inorg Chem 2012; 51:11406-11. [PMID: 23092300 PMCID: PMC3508004 DOI: 10.1021/ic3010135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferritins, a complex, mineralized, protein nanocage family essential for life, provide iron concentrates and oxidant protection. Protein-based ion channels and Fe(II)/O(2) catalysis initiate conversion of thousands of Fe atoms to caged, ferritin Fe(2)O(3)·H(2)O minerals. The ion channels consist of six helical segments, contributed by 3 of 12 or 24 polypeptide subunits, around the 3-fold cage axes. The channel structure guides entering Fe(II) ions toward multiple, catalytic, diiron sites buried inside ferritin protein helices, ~20 Å away from channel internal exits. The catalytic product, Fe(III)-O(H)-Fe(III), is a mineral precursor; mineral nucleation begins inside the protein cage with mineral growth in the central protein cavity (5-8 nm diameter). Amino acid substitutions that changed ionic or hydrophobic channel interactions R72D, D122R, and L134P increased ion channel structural disorder (protein crystallographic analyses) and increased Fe(II) exit [chelated Fe(II) after ferric mineral reduction/dissolution]. Since substitutions of some channel carboxylate residues diminished ferritin catalysis with no effect on Fe(II) exit, such as E130A and D127A, we investigated catalysis in ferritins with altered Fe(II) exit, R72D, D122R and L134P. The results indicate that simply changing the ionic properties of the channels, as in the R72D variant, need not change the forward catalytic rate. However, both D122R and L134P, which had dramatic effects on ferritin catalysis, also caused larger effects on channel structure and order, contrasting with R72D. All three amino acid substitutions, however, decreased the stability of the catalytic intermediate, diferric peroxo, even though overall ferritin cage structure is very stable, resisting 80 °C and 6 M urea. The localized structural changes in ferritin subdomains that affect ferritin function over long distances illustrate new properties of the protein cage in natural ferritin function and for applied ferritin uses.
Collapse
Affiliation(s)
- Takehiko Tosha
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
| | - Rabindra K. Behera
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
| | - Elizabeth C. Theil
- Children’s Hospital Oakland Research Institute, University of California, Berkeley
- Department of Nutritional Science and Toxicology, University of California, Berkeley
| |
Collapse
|
91
|
Zhang Y, Xu YH, Yi HY, Gong JM. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:400-10. [PMID: 22731699 DOI: 10.1111/j.1365-313x.2012.05088.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant vacuole is an important organelle for storing excess iron (Fe), though its contribution to increasing the Fe content in staple foods remains largely unexplored. In this study we report the isolation and functional characterization of two rice genes OsVIT1 and OsVIT2, orthologs of the Arabidopsis VIT1. Transient expression of OsVIT1:EGFP and OsVIT2:EGFP protein fusions revealed that OsVIT1 and OsVIT2 are localized to the vacuolar membrane. Ectopic expression of OsVIT1 and OsVIT2 partially rescued the Fe(2+) - and Zn(2+) -sensitive phenotypes in yeast mutant Δccc1 and Δzrc1, and further increased vacuolar Fe(2+) , Zn(2+) and Mn(2+) accumulation. These data together suggest that OsVIT1 and OsVIT2 function to transport Fe(2+) , Zn(2+) and Mn(2+) across the tonoplast into vacuoles in yeast. In rice, OsVIT1 and OsVIT2 are highly expressed in flag leaf blade and sheath, respectively, and in contrast to OsVIT1, OsVIT2 is highly responsive to Fe treatments. Interestingly, functional disruption of OsVIT1 and OsVIT2 leads to increased Fe/Zn accumulation in rice seeds and a corresponding decrease in the source organ flag leaves, indicating an enhanced Fe/Zn translocation between source and sink organs, which might represent a novel strategy to biofortify Fe/Zn in staple foods.
Collapse
Affiliation(s)
- Yu Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
92
|
Wahlgren WY, Omran H, von Stetten D, Royant A, van der Post S, Katona G. Structural characterization of bacterioferritin from Blastochloris viridis. PLoS One 2012; 7:e46992. [PMID: 23056552 PMCID: PMC3467274 DOI: 10.1371/journal.pone.0046992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/07/2012] [Indexed: 12/02/2022] Open
Abstract
Iron storage and elimination of toxic ferrous iron are the responsibility of bacterioferritins in bacterial species. Bacterioferritins are capable of oxidizing iron using molecular oxygen and import iron ions into the large central cavity of the protein, where they are stored in a mineralized form. We isolated, crystallized bacterioferritin from the microaerophilic/anaerobic, purple non-sulfur bacterium Blastochloris viridis and determined its amino acid sequence and X-ray structure. The structure and sequence revealed similarity to other purple bacterial species with substantial differences in the pore regions. Static 3- and 4-fold pores do not allow the passage of iron ions even though structural dynamics may assist the iron gating. On the other hand the B-pore is open to water and larger ions in its native state. In order to study the mechanism of iron import, multiple soaking experiments were performed. Upon Fe(II) and urea treatment the ferroxidase site undergoes reorganization as seen in bacterioferritin from Escherichia coli and Pseudomonas aeruginosa. When soaking with Fe(II) only, a closely bound small molecular ligand is observed close to Fe1 and the coordination of Glu94 to Fe2 changes from bidentate to monodentate. DFT calculations indicate that the bound ligand is most likely a water or a hydroxide molecule representing a product complex. On the other hand the different soaking treatments did not modify the conformation of other pore regions.
Collapse
Affiliation(s)
- Weixiao Y. Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Hadil Omran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | | | - Antoine Royant
- European Synchrotron Radiation Facility, Grenoble, France
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS CEA Université Joseph Fourier, Grenoble, France
| | | | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
93
|
Subramanian V, Evans DG. A Molecular Dynamics and Computational Study of Ligand Docking and Electron Transfer in Ferritins. J Phys Chem B 2012; 116:9287-302. [DOI: 10.1021/jp301055x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijaya Subramanian
- The Nanoscience and Microsystems
Program and the Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico
| | - Deborah G. Evans
- The Nanoscience and Microsystems
Program and the Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
94
|
Ebrahimi KH, Hagedoorn PL, van der Weel L, Verhaert PDEM, Hagen WR. A novel mechanism of iron-core formation by Pyrococcus furiosus archaeoferritin, a member of an uncharacterized branch of the ferritin-like superfamily. J Biol Inorg Chem 2012; 17:975-85. [PMID: 22739810 PMCID: PMC3401498 DOI: 10.1007/s00775-012-0913-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage proteins is constitutive to many organisms to sustain life, the genome of some organisms appears not to encode any of these proteins. In an attempt to identify new iron-storage systems, we have found and characterized a new member of the ferritin-like superfamily of proteins, which unlike the multimeric storage system of ferritin, bacterioferritin, and Dps is monomeric in the absence of iron. Monomers catalyze oxidation of Fe(II) and they store the Fe(III) product as they assemble to form structures comparable to those of 24-meric ferritin. We propose that this mechanism is an alternative method of iron storage by the ferritin-like superfamily of proteins in organisms that lack the regular preassociated 24-meric/12-meric ferritins.
Collapse
|
95
|
Tosha T, Behera RK, Ng HL, Bhattasali O, Alber T, Theil EC. Ferritin protein nanocage ion channels: gating by N-terminal extensions. J Biol Chem 2012; 287:13016-25. [PMID: 22362775 DOI: 10.1074/jbc.m111.332734] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe(2+) and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe(2+) ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3-1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe(2+) exit from dissolved, ferric minerals inside ferritin protein cages; Fe(2+) exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe(2+) exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe(2+) exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.
Collapse
Affiliation(s)
- Takehiko Tosha
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Nanostructured materials are increasingly important for the construction of electrochemical energy storage devices that will meet the needs of portable nanodevices. Here we describe the development of a nanoenergy storage system based on inorganic mineral phases contained in ferritin proteins. The electrochemical cell consists of an anode containing~2000 iron atoms as Fe(OH)2in the hollow protein interior of ferritin and a cathode containing~2000 of Co(OH)3in a separate ferritin molecule. The achieved initial voltage output from a combination of Fe2+- and Co3+-ferritins adsorbed on gold electrodes was~500 mV, while a combination of Fe2+- and Co3+-ferritins immobilized on gold produced a voltage of 350–405 mV. When fully discharged, Fe(OH)3and Co(OH)2are the products of a single electron transfer per metal atom from anode to cathode. The spent components can be regenerated by chemical or electrochemical methods restoring battery function. The properties of ferritins are presented and their unique characteristics are described, which have led to the development of a functional bio-nanobattery.
Collapse
|
97
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
98
|
Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97. [PMID: 21907822 DOI: 10.1016/j.biocel.2011.08.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Iron is the most abundant transition metal in the earth's crust. It cycles easily between ferric (oxidized; Fe(III)) and ferrous (reduced; Fe(II)) and readily forms complexes with oxygen, making this metal a central player in respiration and related redox processes. However, 'loose' iron, not within heme or iron-sulfur cluster proteins, can be destructively redox-active, causing damage to almost all cellular components, killing both cells and organisms. This may explain why iron is so carefully handled by aerobic organisms. Iron uptake from the environment is carefully limited and carried out by specialized iron transport mechanisms. One reason that iron uptake is tightly controlled is that most organisms and cells cannot efficiently excrete excess iron. When even small amounts of intracellular free iron occur, most of it is safely stored in a non-redox-active form in ferritins. Within nucleated cells, iron is constantly being recycled from aged iron-rich organelles such as mitochondria and used for construction of new organelles. Much of this recycling occurs within the lysosome, an acidic digestive organelle. Because of this, most lysosomes contain relatively large amounts of redox-active iron and are therefore unusually susceptible to oxidant-mediated destabilization or rupture. In many cell types, iron transit through the lysosomal compartment can be remarkably brisk. However, conditions adversely affecting lysosomal iron handling (or oxidant stress) can contribute to a variety of acute and chronic diseases. These considerations make normal and abnormal lysosomal handling of iron central to the understanding and, perhaps, therapy of a wide range of diseases.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| | | | | |
Collapse
|
99
|
Kurz T, Gustafsson B, Brunk UT. Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med 2011; 50:1647-58. [PMID: 21419217 DOI: 10.1016/j.freeradbiomed.2011.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 12/19/2022]
Abstract
To test the consequences of lysosomal degradation of differently iron-loaded ferritin molecules and to mimic ferritin autophagy under iron-overload and normal conditions, J774 cells were allowed to endocytose heavily iron loaded ferritin, probably with some adventitious iron (Fe-Ft), or iron-free apo-ferritin (apo-Ft). When cells subsequently were exposed to a bolus dose of hydrogen peroxide, apo-Ft prevented lysosomal membrane permeabilization (LMP), whereas Fe-Ft enhanced LMP. A 4-h pulse of Fe-Ft initially increased oxidative stress-mediated LMP that was reversed after another 3h under standard culture conditions, suggesting that lysosomal iron is rapidly exported from lysosomes, with resulting upregulation of apo-ferritin that supposedly is autophagocytosed, thereby preventing LMP by binding intralysosomal redox-active iron. The obtained data suggest that upregulation of the stress protein ferritin is a rapid adaptive mechanism that counteracts LMP and ensuing apoptosis during oxidative stress. In addition, prolonged iron starvation was found to induce apoptotic cell death that, interestingly, was preceded by LMP, suggesting that LMP is a more general phenomenon in apoptosis than so far recognized. The findings provide new insights into aging and neurodegenerative diseases that are associated with enhanced amounts of cellular iron and show that lysosomal iron loading sensitizes to oxidative stress.
Collapse
Affiliation(s)
- Tino Kurz
- Division of Pharmacology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | |
Collapse
|
100
|
Haldar S, Bevers LE, Tosha T, Theil EC. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit. J Biol Chem 2011; 286:25620-7. [PMID: 21592958 DOI: 10.1074/jbc.m110.205278] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.
Collapse
Affiliation(s)
- Suranjana Haldar
- Children's Hospital Oakland Research Institute, Oakland, California 94609 , USA
| | | | | | | |
Collapse
|