51
|
Arratia-Quijada J, Sánchez O, Scazzocchio C, Aguirre J. FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. EUKARYOTIC CELL 2012; 11:1132-42. [PMID: 22798393 PMCID: PMC3445977 DOI: 10.1128/ec.00101-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/06/2012] [Indexed: 01/01/2023]
Abstract
In the fungus Aspergillus nidulans, inactivation of the flbA to -E, fluG, fluF, and tmpA genes results in similar phenotypes, characterized by a delay in conidiophore and asexual spore production. flbB to -D encode transcription factors needed for proper expression of the brlA gene, which is essential for asexual development. However, recent evidence indicates that FlbB and FlbE also have nontranscriptional functions. Here we show that fluF1 is an allele of flbD which results in an R47P substitution. Amino acids C46 and R47 are highly conserved in FlbD and many other Myb proteins, and C46 has been proposed to mediate redox regulation. Comparison of ΔflbD and flbD(R47P) mutants uncovered a new and specific role for flbD during sexual development. While flbD(R47P) mutants retain partial function during conidiation, both ΔflbD and flbD(R47P) mutants are unable to develop the peridium, a specialized external tissue that differentiates during fruiting body formation and ends up surrounding the sexual spores. This function, unique among other fluffy genes, does not affect the viability of the naked ascospores produced by mutant strains. Notably, ascospore development in these mutants is still dependent on the NADPH oxidase NoxA. We generated R47K, C46D, C46S, and C46A mutant alleles and evaluated their effects on asexual and sexual development. Conidiation defects were most severe in ΔflbD mutants and stronger in R47P, C46D, and C46S strains than in R47K strains. In contrast, mutants carrying the flbD(C46A) allele exhibited conidiation defects in liquid culture only under nitrogen starvation conditions. The R47K, R47P, C46D, and C46S mutants failed to develop any peridial tissue, while the flbD(C46A) strain showed normal peridium development and increased cleistothecium formation. Our results show that FlbD regulates both asexual and sexual differentiation, suggesting that both processes require FlbD DNA binding activity and that FlbD is involved in the response to nitrogen starvation.
Collapse
Affiliation(s)
- Jenny Arratia-Quijada
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudio Scazzocchio
- Institut de Génétique et Microbiologie, Université Paris-Sud (XI), Orsay, France
- Department of Microbiology, Imperial College London, London, United Kingdom
| | - Jesús Aguirre
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
52
|
McPhee CK, Balgley BM, Nelson C, Hill JH, Batlevi Y, Fang X, Lee CS, Baehrecke EH. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics. Cell Death Differ 2012; 20:218-25. [PMID: 22935612 DOI: 10.1038/cdd.2012.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.
Collapse
Affiliation(s)
- C K McPhee
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhou Z, Wang Y, Cai G, He Q. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet 2012; 8:e1002712. [PMID: 22589747 PMCID: PMC3349749 DOI: 10.1371/journal.pgen.1002712] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
The COP9 signalosome (CSN) is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(n)HXHX(10)D) of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1) complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ) in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.
Collapse
Affiliation(s)
- Zhipeng Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaihong Cai
- National Institute of Biological Sciences, Beijing, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
54
|
Gesing S, Schindler D, Fränzel B, Wolters D, Nowrousian M. The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2012; 84:748-65. [PMID: 22463819 DOI: 10.1111/j.1365-2958.2012.08058.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ascomycetes develop four major types of fruiting bodies that share a common ancestor, and a set of common core genes most likely controls this process. One way to identify such genes is to search for conserved expression patterns. We analysed microarray data of Fusarium graminearum and Sordaria macrospora, identifying 78 genes with similar expression patterns during fruiting body development. One of these genes was asf1 (anti-silencing function 1), encoding a predicted histone chaperone. asf1 expression is also upregulated during development in the distantly related ascomycete Pyronema confluens. To test whether asf1 plays a role in fungal development, we generated an S. macrospora asf1 deletion mutant. The mutant is sterile and can be complemented to fertility by transformation with the wild-type asf1 and its P. confluens homologue. An ASF1-EGFP fusion protein localizes to the nucleus. By tandem-affinity purification/mass spectrometry as well as yeast two-hybrid analysis, we identified histones H3 and H4 as ASF1 interaction partners. Several developmental genes are dependent on asf1 for correct transcriptional expression. Deletion of the histone chaperone genes rtt106 and cac2 did not cause any developmental phenotypes. These data indicate that asf1 of S. macrospora encodes a conserved histone chaperone that is required for fruiting body development.
Collapse
Affiliation(s)
- Stefan Gesing
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
55
|
Rodríguez-Urra AB, Jiménez C, Nieto MI, Rodríguez J, Hayashi H, Ugalde U. Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 2012; 7:599-606. [PMID: 22234162 DOI: 10.1021/cb200455u] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When growing Aspergillus nidulans hyphae encounter the atmosphere, they initiate a morphogenetic program leading to the production of spores. Mutants that are defective in the fluG gene fail to undergo sporulation because they lack an endogenous diffusible factor that purportedly accumulates on aerial hyphae, thus signaling the initiation of development. In this study, the defect could be reversed by adding culture extracts from a wild-type strain onto a mutant colony. Moreover, a bioassay-guided purification of the active culture extract resulted in the identification of the active agent as dehydroaustinol. However, this meroterpenoid was active only when administered in conjunction with the orsellinic acid derivative diorcinol. These two compounds formed an adduct that was detected by HRMS in an LC-MS experiment. The diorcinol-dehydroaustinol adduct prevented crystal formation of the signal on the surface of aerial hyphae and on an artificially prepared aqueous film and also increased the signal lipophilicity.
Collapse
Affiliation(s)
- Ana Belén Rodríguez-Urra
- Department
of Applied Chemistry,
Faculty of Chemistry, University of The Basque Country, San Sebastian 20018, Spain
| | - Carlos Jiménez
- Departament of Fundamental Chemistry,
Faculty of Sciences Campus da Zapateira, University of A Coruña, 15071 A Coruña, Spain
| | - María Isabel Nieto
- Departament of Fundamental Chemistry,
Faculty of Sciences Campus da Zapateira, University of A Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- Departament of Fundamental Chemistry,
Faculty of Sciences Campus da Zapateira, University of A Coruña, 15071 A Coruña, Spain
| | - Hideo Hayashi
- Graduate School of Life and Environmental
Sciences, Osaka Prefecture University,
1-1 Gakuen-chou, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Unai Ugalde
- Department
of Applied Chemistry,
Faculty of Chemistry, University of The Basque Country, San Sebastian 20018, Spain
| |
Collapse
|
56
|
Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U. A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 2012; 84:310-23. [PMID: 22375702 DOI: 10.1111/j.1365-2958.2012.08024.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sexual development in fungi is a complex process involving the generation of new cell types and tissues - an essential step for all eukaryotic life. The characterization of sterile mutants in the ascomycete Sordaria macrospora has led to a number of proteins involved in sexual development, but a link between these proteins is still missing. Using a combined tandem-affinity purification/mass spectrometry approach, we showed in vivo association of developmental protein PRO22 with PRO11, homologue of mammalian striatin, and SmPP2AA, scaffolding subunit of protein phosphatase 2A. Further experiments extended the protein network to the putative kinase activator SmMOB3, known to be involved in sexual development. Extensive yeast two-hybrid studies allowed us to pinpoint functional domains involved in protein-protein interaction. We show for the first time that a number of already known factors together with new components associate in vivo to form a highly conserved multi-subunit complex. Strikingly, a similar complex has been described in humans, but the function of this so-called striatin interacting phosphatase and kinase (STRIPAK) complex is largely unknown. In S. macrospora, truncation of PRO11 and PRO22 leads to distinct defects in sexual development and cell fusion, indicating a role for the fungal STRIPAK complex in both processes.
Collapse
Affiliation(s)
- Sandra Bloemendal
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
von Zeska Kress MR, Harting R, Bayram Ö, Christmann M, Irmer H, Valerius O, Schinke J, Goldman GH, Braus GH. The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Mol Microbiol 2012; 83:1162-77. [PMID: 22329854 DOI: 10.1111/j.1365-2958.2012.07999.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Defects in the COP9 signalosome (CSN) impair multicellular development, including embryonic plant or animal death or a block in sexual development of the fungus Aspergillus nidulans. CSN deneddylates cullin-RING ligases (CRLs), which are activated by covalent linkage to ubiquitin-like NEDD8. Deneddylation allows CRL disassembly for subsequent reassembly. An attractive hypothesis is a consecutive order of CRLs for development, which demands repeated cycles of neddylation and deneddylation for reassembling CRLs. Interruption of these cycles could explain developmental blocks caused by csn mutations. This predicts an accumulation of neddylated CRLs exhibiting developmental functions when CSN is dysfunctional. We tested this hypothesis in A. nidulans, which tolerates reduced levels of neddylation for growth. We show that only genes for CRL subunits or neddylation are essential, whereas CSN is primarily required for development. We used functional tagged NEDD8, recruiting all three fungal cullins. Cullins are associated with the CSN1/CsnA subunit when deneddylation is defective. Two CRLs were identified which are specifically involved in differentiation and accumulate during the developmental block. This suggests that an active CSN complex is required to counteract the accumulation of specific CRLs during development.
Collapse
Affiliation(s)
- Marcia Regina von Zeska Kress
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Identification of protein complexes from filamentous fungi with tandem affinity purification. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 944:191-205. [PMID: 23065618 DOI: 10.1007/978-1-62703-122-6_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fungal molecular biology has benefited from the enormous advances in understanding protein-protein interactions in prokaryotic or eukaryotic organisms of the past decade. Tandem affinity purification (TAP) allows the enrichment of native protein complexes from cell extracts under mild conditions. We codon-optimized tags and established TAP, previously not applicable to filamentous fungi, for the model organism Aspergillus nidulans. We could identify by this method the trimeric Velvet complex VelB/VeA/LaeA or the eight subunit COP9 signalosome. Here, we describe an optimized protocol for A. nidulans which can also be adapted to other filamentous fungi.
Collapse
|
59
|
Dyer PS, O'Gorman CM. Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 2011; 36:165-92. [PMID: 22091779 DOI: 10.1111/j.1574-6976.2011.00308.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/04/2011] [Indexed: 11/30/2022] Open
Abstract
Major insights into sexual development and cryptic sexuality within filamentous fungi have been gained from investigations using Aspergillus species. Here, an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is influenced by a variety of environmental and nutritional factors. It is argued that the formation of cleistothecia and accessory tissues, such as Hülle cells and sclerotia, should be viewed as two independent but co-ordinated developmental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Aspergillus nidulans, but an increasing number of studies have now in addition characterized 'sex-related' genes from the heterothallic species Aspergillus fumigatus and Aspergillus flavus. A schematic developmental genetic network is proposed showing the inter-relatedness between these genes. Finally, the discovery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these findings for cryptic sexuality in the aspergilli as a whole is discussed.
Collapse
Affiliation(s)
- Paul S Dyer
- School of Biology, University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
60
|
Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 2011; 36:1-24. [PMID: 21658084 DOI: 10.1111/j.1574-6976.2011.00285.x] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
61
|
Post-transcriptional fine-tuning of COP9 signalosome subunit biosynthesis is regulated by the c-Myc/Lin28B/let-7 pathway. J Mol Biol 2011; 409:710-21. [PMID: 21530537 DOI: 10.1016/j.jmb.2011.04.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 01/30/2023]
Abstract
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.
Collapse
|
62
|
Yu Z, Kleifeld O, Lande-Atir A, Bsoul M, Kleiman M, Krutauz D, Book A, Vierstra RD, Hofmann K, Reis N, Glickman MH, Pick E. Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Mol Biol Cell 2011; 22:911-20. [PMID: 21289098 PMCID: PMC3069016 DOI: 10.1091/mbc.e10-08-0655] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/13/2011] [Accepted: 01/19/2011] [Indexed: 01/08/2023] Open
Abstract
Subunit composition and architectural structure of the 26S proteasome lid is strictly conserved between all eukaryotes. This eight-subunit complex bears high similarity to the eukaryotic translation initiation factor 3 and to the COP9 signalosome (CSN), which together define the proteasome CSN/COP9/initiation factor (PCI) troika. In some unicellular eukaryotes, the latter two complexes lack key subunits, encouraging questions about the conservation of their structural design. Here we demonstrate that, in Saccharomyces cerevisiae, Rpn5 plays dual roles by stabilizing proteasome and CSN structures independently. Proteasome and CSN complexes are easily dissected, with Rpn5 the only subunit in common. Together with Rpn5, we identified a total of six bona fide subunits at roughly stoichiometric ratios in isolated, affinity-purified CSN. Moreover, the copy of Rpn5 associated with the CSN is required for enzymatic hydrolysis of Rub1/Nedd8 conjugated to cullins. We propose that multitasking by a single subunit, Rpn5 in this case, allows it to function in different complexes simultaneously. These observations demonstrate that functional substitution of subunits by paralogues is feasible, implying that the canonical composition of the three PCI complexes in S. cerevisiae is more robust than hitherto appreciated.
Collapse
Affiliation(s)
- Zanlin Yu
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Oded Kleifeld
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Avigail Lande-Atir
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Maisa Bsoul
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - Maya Kleiman
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Daria Krutauz
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Adam Book
- Department of Genetics, University of Wisconsin, Madison, WI 53706
| | | | - Kay Hofmann
- Miltenyi Biotec, 51429 Bergisch-Gladbach, Germany
| | - Noa Reis
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Michael H. Glickman
- Department of Biology, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Elah Pick
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa 31905, Israel
- Department of Biology, University of Haifa at Oranim, Tivon 36006, Israel
| |
Collapse
|
63
|
Su H, Li J, Menon S, Liu J, Kumarapeli AR, Wei N, Wang X. Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res 2011; 108:40-50. [PMID: 21051661 PMCID: PMC3017673 DOI: 10.1161/circresaha.110.230607] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/27/2010] [Indexed: 12/20/2022]
Abstract
RATIONALE Ubiquitin-proteasome system (UPS) dysfunction has been implicated in cardiac pathogenesis. Understanding how cardiac UPS function is regulated will facilitate delineating the pathophysiological significance of UPS dysfunction and developing new therapeutic strategies. The COP9 (constitutive photomorphogenesis mutant 9) signalosome (CSN) may regulate the UPS, but this has not been tested in a critical vertebrate organ. Moreover, the role of CSN in a postmitotic organ and the impact of cardiomyocyte-restricted UPS dysfunction on the heart have not been reported. OBJECTIVE We sought to determine the role of CSN-mediated deneddylation in UPS function and postnatal cardiac development and function. METHODS AND RESULTS Cardiomyocyte-restricted Csn8 gene knockout (CR-Csn8KO) in mice was achieved using a Cre-LoxP system. CR-Csn8KO impaired CSN holocomplex formation and cullin deneddylation and resulted in decreases in F-box proteins. Probing with a surrogate misfolded protein revealed severe impairment of UPS function in CR-Csn8KO hearts. Consequently, CR-Csn8KO mice developed cardiac hypertrophy, which rapidly progressed to heart failure and premature death. Massive cardiomyocyte necrosis rather than apoptosis appears to be the primary cause of the heart failure. This is because (1) massive necrotic cell death and increased infiltration of leukocytes were observed before increased apoptosis; (2) increased apoptosis was not detectable until overt heart failure was observed; and (3) cardiac overexpression of Bcl2 failed to ameliorate CR-Csn8KO mouse premature death. CONCLUSIONS Csn8/CSN plays an essential role in cullin deneddylation, UPS-mediated degradation of a subset of proteins, and the survival of cardiomyocytes and, therefore, is indispensable in postnatal development and function of the heart. Cardiomyocyte-restricted UPS malfunction can cause heart failure.
Collapse
Affiliation(s)
- Huabo Su
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jie Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Suchithra Menon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jinbao Liu
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Department of Pathophysiology, Guangzhou Medical College, Guangzhou, Guangdong, China
| | - Asangi R. Kumarapeli
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Ning Wei
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
- Cardiovascular Research Institute, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| |
Collapse
|
64
|
Wang J, Hu Q, Chen H, Zhou Z, Li W, Wang Y, Li S, He Q. Role of individual subunits of the Neurospora crassa CSN complex in regulation of deneddylation and stability of cullin proteins. PLoS Genet 2010; 6:e1001232. [PMID: 21151958 PMCID: PMC2996332 DOI: 10.1371/journal.pgen.1001232] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
The Cop9 signalosome (CSN) is an evolutionarily conserved multifunctional complex that controls ubiquitin-dependent protein degradation in eukaryotes. We found seven CSN subunits in Neurospora crassa in a previous study, but only one subunit, CSN-2, was functionally characterized. In this study, we created knockout mutants for the remaining individual CSN subunits in N. crassa. By phenotypic observation, we found that loss of CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, or CSN-7 resulted in severe defects in growth, conidiation, and circadian rhythm; the defect severity was gene-dependent. Unexpectedly, CSN-3 knockout mutants displayed the same phenotype as wild-type N. crassa. Consistent with these phenotypic observations, deneddylation of cullin proteins in csn-1, csn-2, csn-4, csn-5, csn-6, or csn-7 mutants was dramatically impaired, while deletion of csn-3 did not cause any alteration in the neddylation/deneddylation state of cullins. We further demonstrated that CSN-1, CSN-2, CSN-4, CSN-5, CSN-6, and CSN-7, but not CSN-3, were essential for maintaining the stability of Cul1 in SCF complexes and Cul3 and BTB proteins in Cul3-BTB E3s, while five of the CSN subunits, but not CSN-3 and CSN-5, were also required for maintaining the stability of SKP-1 in SCF complexes. All seven CSN subunits were necessary for maintaining the stability of Cul4-DDB1 complexes. In addition, CSN-3 was also required for maintaining the stability of the CSN-2 subunit and FWD-1 in the SCFFWD-1 complex. Together, these results not only provide functional insights into the different roles of individual subunits in the CSN complex, but also establish a functional framework for understanding the multiple functions of the CSN complex in biological processes. Protein degradation is precisely controlled in cells. The ubiquitin-mediated protein degradation pathway is highly conserved in eukaryotes, and the activity of ubiquitin ligases is regulated by the Cop9 signalosome (CSN), a multisubunit complex that is evolutionarily conserved from yeast to humans. Determining how the CSN complex functions biologically is crucial for understanding regulation of the ubiquitin-mediated protein degradation pathway. The filamentous fungus N. crassa is commonly used to study protein degradation. Its CSN complex contains seven subunits (CSN-1 to CSN-7). In this study, we generated knockout mutants of individual CSN subunits and observed the phenotypes of each mutant. We demonstrated that six of the seven CSN subunits were essential for cleaving the ubiquitin-like protein Nedd8 from cullin proteins (which act as scaffolds for ubiquitin ligases). In contrast, loss of the CSN-3 subunit had no effect on cullin neddylation. We also found that each CSN subunit had distinct roles in maintaining the stability of key components of cullin-based ubiquitin ligases. In summary, we systematically investigated the unequal contributions of CSN subunits to deneddylation and the maintenance of cullin-based ubiquitin ligases in N. crassa. Our work establishes a framework for understanding the function of CSN subunits in other eukaryotes.
Collapse
Affiliation(s)
- Jiyong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiwen Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huijie Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhipeng Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Weihua Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shaojie Li
- Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (Q. He); (S. Li)
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (Q. He); (S. Li)
| |
Collapse
|
65
|
Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 2010; 22:153-64. [PMID: 21119001 PMCID: PMC3016973 DOI: 10.1091/mbc.e10-08-0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Institute of Microbiology and Genetics, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Braus GH, Irniger S, Bayram O. Fungal development and the COP9 signalosome. Curr Opin Microbiol 2010; 13:672-6. [PMID: 20934903 DOI: 10.1016/j.mib.2010.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The conserved COP9 signalosome (CSN) multiprotein complex is located at the interface between cellular signaling, protein modification, life span and the development of multicellular organisms. CSN is required for light-controlled responses in filamentous fungi. This includes the circadian rhythm of Neurospora crassa or the repression of sexual development by light in Aspergillus nidulans. In contrast to plants and animals, CSN is not essential for fungal viability. Therefore fungi are suitable models to study CSN composition, activity and cellular functions and its role in light controlled development.
Collapse
Affiliation(s)
- Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
67
|
Nahlik K, Dumkow M, Bayram O, Helmstaedt K, Busch S, Valerius O, Gerke J, Hoppert M, Schwier E, Opitz L, Westermann M, Grond S, Feussner K, Goebel C, Kaever A, Meinicke P, Feussner I, Braus GH. The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol 2010; 78:964-79. [PMID: 21062371 DOI: 10.1111/j.1365-2958.2010.07384.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The COP9 signalosome complex (CSN) is a crucial regulator of ubiquitin ligases. Defects in CSN result in embryonic impairment and death in higher eukaryotes, whereas the filamentous fungus Aspergillus nidulans survives without CSN, but is unable to complete sexual development. We investigated overall impact of CSN activity on A. nidulans cells by combined transcriptome, proteome and metabolome analysis. Absence of csn5/csnE affects transcription of at least 15% of genes during development, including numerous oxidoreductases. csnE deletion leads to changes in the fungal proteome indicating impaired redox regulation and hypersensitivity to oxidative stress. CSN promotes the formation of asexual spores by regulating developmental hormones produced by PpoA and PpoC dioxygenases. We identify more than 100 metabolites, including orsellinic acid derivatives, accumulating preferentially in the csnE mutant. We also show that CSN is required to activate glucanases and other cell wall recycling enzymes during development. These findings suggest a dual role for CSN during development: it is required early for protection against oxidative stress and hormone regulation and is later essential for control of the secondary metabolism and cell wall rearrangement.
Collapse
Affiliation(s)
- Krystyna Nahlik
- Institut für Mikrobiologie & Genetik, Georg-August-Universität, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Engh I, Nowrousian M, Kück U. Sordaria macrospora, a model organism to study fungal cellular development. Eur J Cell Biol 2010; 89:864-72. [PMID: 20739093 DOI: 10.1016/j.ejcb.2010.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development.
Collapse
Affiliation(s)
- Ines Engh
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
69
|
Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. EUKARYOTIC CELL 2010; 9:1236-50. [PMID: 20543063 DOI: 10.1128/ec.00077-10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here, we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, which we have named P. chrysogenum velA (PcvelA) and PclaeA. Data from array analysis using a DeltaPcvelA deletion strain indicate a significant role of PcVelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and high-performance liquid chromatography quantifications of penicillin titers clearly show that both PcVelA and PcLaeA play a major role in penicillin biosynthesis in a producer strain that underwent several rounds of UV mutagenesis during a strain improvement program. Both regulators are further involved in different developmental processes. While PcvelA deletion leads to light-independent conidial formation, dichotomous branching of hyphae, and pellet formation in shaking cultures, a DeltaPclaeA strain shows a severe impairment in conidiophore formation under both light and dark conditions. Bimolecular fluorescence complementation assays provide evidence for a velvet-like complex in P. chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators in genera other than Aspergillus.
Collapse
|
70
|
Araújo-Bazán L, Dhingra S, Chu J, Fernández-Martínez J, Calvo AM, Espeso EA. Importin alpha is an essential nuclear import carrier adaptor required for proper sexual and asexual development and secondary metabolism in Aspergillus nidulans. Fungal Genet Biol 2009; 46:506-15. [PMID: 19318129 DOI: 10.1016/j.fgb.2009.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 12/23/2022]
Abstract
In eukaryotes, the principal nuclear import pathway is driven by the importin alpha/beta1 heterodimer. KapA, the Aspergillus nidulans importin alpha, is an essential protein. We generated a conditional allele, kapA31, mimicking the srp1-31 allele in Saccharomyces cerevisiae. KapA31 carries a Ser111Phe amino acid substitution which, at the restrictive temperature of 42 degrees C, reduces nuclear import of cargos containing classical nuclear-localization-sequences, cNLS. Using kapA31, we have demonstrated the role of the importin alpha in the nuclear accumulation of the light-dependent developmental regulator VeA. KapA have additional tasks in the cell, as reported for other members of the importin alpha family. KapA participates at different regulatory stages of asexual and sexual development, being required for the completion of both reproductive cycles with the formation of conidiospores and ascospores, respectively. Finally, KapA also mediates in different pathways of secondary metabolism having a dual role: positively for penicillin production and negatively for mycotoxin biosynthesis.
Collapse
Affiliation(s)
- Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas (C.S.I.C.), Microbiología Molecular, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Bayram Ö, Sari F, Braus GH, Irniger S. The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production inAspergillus nidulans. Mol Microbiol 2009; 71:1278-95. [DOI: 10.1111/j.1365-2958.2009.06606.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Stuttmann J, Lechner E, Guérois R, Parker JE, Nussaume L, Genschik P, Noël LD. COP9 signalosome- and 26S proteasome-dependent regulation of SCFTIR1 accumulation in Arabidopsis. J Biol Chem 2009; 284:7920-30. [PMID: 19147500 DOI: 10.1074/jbc.m809069200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ubiquitination and proteasome-mediated degradation of proteins are crucial for eukaryotic physiology and development. The largest class of E3 ubiquitin ligases is made up of the cullin-RING ligases (CRLs), which themselves are positively regulated through conjugation of the ubiquitin-like peptide RUB/NEDD8 to cullins. RUB modification is antagonized by the COP9 signalosome (CSN), an evolutionarily conserved eight-subunit complex that is essential in most eukaryotes and cleaves RUB from cullins. The CSN behaves genetically as an activator of CRLs, although it abolishes CRL activity in vitro. This apparent paradox was recently reconciled in different organisms, as the CSN was shown to prevent autocatalytic degradation of several CRL substrate adaptors. We tested for such a mechanism in the model plant Arabidopsis by measuring the impact of a newly identified viable csn2 mutant on the activity and stability of SCF(TIR1), a receptor to the phytohormone auxin and probably the best characterized plant CRL. Our analysis reveals that not only the F-box protein TIR1 but also relevant cullins are destabilized in csn2 and other Arabidopsis csn mutants. These results provide an explanation for the auxin resistance of csn mutants. We further observed in vivo a post-translational modification of TIR1 dependent on the proteasome inhibitor MG-132 and provide evidence for proteasome-mediated degradation of TIR1, CUL1, and ASK1 (Arabidopsis SKP1 homolog). These results are consistent with CSN-dependent protection of Arabidopsis CRLs from autocatalytic degradation, as observed in other eukaryotes, and provide evidence for antagonist roles of the CSN and 26S proteasome in modulating accumulation of the plant CRL SCF(TIR1).
Collapse
Affiliation(s)
- Johannes Stuttmann
- Institut de Biologie Environnementale et Biotechnologie, UMR 6191, CNRS-Commissariat à l'Energie Atomique, UniversitédelaMéditerranée Aix-Marseille II, Centre d'Etudes Nucléaires Cadarache, F-13108 Saint Paul lez Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
74
|
Peraza-Reyes L, Zickler D, Berteaux-Lecellier V. The peroxisome RING-finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 2008; 9:1998-2009. [PMID: 18785921 DOI: 10.1111/j.1600-0854.2008.00812.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peroxisomes are involved in a variety of metabolic pathways and developmental processes. In the filamentous fungus Podospora anserina, absence of different peroxins implicated in peroxisome matrix protein import leads to different developmental defects. Lack of the RING-finger complex peroxin PEX2 blocks sexual development at the dikaryotic stage, while in absence of both receptors, PEX5 and PEX7, karyogamy and meiosis can proceed and sexual spores are formed. This suggests a complex role for PEX2 that prompted us to study the developmental involvement of the RING-finger complex. We show that, like PEX2, the two other proteins of the complex, PEX10 and PEX12, are equally implicated in peroxisome biogenesis and that absence of each or all these proteins lead to the same developmental defect. Moreover, we demonstrate that peroxisome localization of PEX2 is not drastically affected in the absence of PEX10 and PEX12 and that the upregulation of these latter RING-finger peroxins does not compensate for the lack of a second one, suggesting that the three proteins work together in development but independent of their function in peroxisome biogenesis.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- Univ. Paris-Sud, CNRS UMR8621, Institut de Génétique et Microbiologie, 91405 Orsay, France
| | | | | |
Collapse
|
75
|
Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008; 320:1504-6. [PMID: 18556559 DOI: 10.1126/science.1155888] [Citation(s) in RCA: 669] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans, light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Helmstaedt K, Laubinger K, Vosskuhl K, Bayram O, Busch S, Hoppert M, Valerius O, Seiler S, Braus GH. The nuclear migration protein NUDF/LIS1 forms a complex with NUDC and BNFA at spindle pole bodies. EUKARYOTIC CELL 2008; 7:1041-52. [PMID: 18390647 PMCID: PMC2446659 DOI: 10.1128/ec.00071-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/25/2008] [Indexed: 11/20/2022]
Abstract
Nuclear migration depends on microtubules, the dynein motor complex, and regulatory components like LIS1 and NUDC. We sought to identify new binding partners of the fungal LIS1 homolog NUDF to clarify its function in dynein regulation. We therefore analyzed the association between NUDF and NUDC in Aspergillus nidulans. NUDF and NUDC directly interacted in yeast two-hybrid experiments via NUDF's WD40 domain. NUDC-green fluorescent protein (NUDC-GFP) was localized to immobile dots in the cytoplasm and at the hyphal cortex, some of which were spindle pole bodies (SPBs). We showed by bimolecular fluorescence complementation microscopy that NUDC directly interacted with NUDF at SPBs at different stages of the cell cycle. Applying tandem affinity purification, we isolated the NUDF-associated protein BNFA (for binding to NUDF). BNFA was dispensable for growth and for nuclear migration. GFP-BNFA fusions localized to SPBs at different stages of the cell cycle. This localization depended on NUDF, since the loss of NUDF resulted in the cytoplasmic accumulation of BNFA. BNFA did not bind to NUDC in a yeast two-hybrid assay. These results show that the conserved NUDF and NUDC proteins play a concerted role at SPBs at different stages of the cell cycle and that NUDF recruits additional proteins specifically to the dynein complex at SPBs.
Collapse
Affiliation(s)
- Kerstin Helmstaedt
- Molekulare Mikrobiologie und Genetik, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Hetfeld BKJ, Peth A, Sun XM, Henklein P, Cohen GM, Dubiel W. The COP9 signalosome-mediated deneddylation is stimulated by caspases during apoptosis. Apoptosis 2007; 13:187-95. [DOI: 10.1007/s10495-007-0164-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
78
|
|