51
|
Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen. mBio 2014; 5:mBio.01639-14. [PMID: 25139905 PMCID: PMC4147867 DOI: 10.1128/mbio.01639-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intestinal colonization by Vibrio parahaemolyticus—the most common cause of seafood-borne bacterial enteritis worldwide—induces extensive disruption of intestinal microvilli. In orogastrically infected infant rabbits, reorganization of the apical brush border membrane includes effacement of some microvilli and marked elongation of others. All diarrhea, inflammation, and intestinal pathology associated with V. parahaemolyticus infection are dependent upon one of its type 3 secretion systems (T3SS2); however, translocated effectors that directly mediate brush border restructuring and bacterial adhesion are not known. Here, we demonstrate that the effector VopV is essential for V. parahaemolyticus intestinal colonization and therefore its pathogenicity, that it induces effacement of brush border microvilli, and that this effacement is required for adhesion of V. parahaemolyticus to enterocytes. VopV contains multiple functionally independent and mechanistically distinct domains through which it disrupts microvilli. We show that interaction between VopV and filamin, as well as VopV’s previously noted interaction with actin, mediates enterocyte cytoskeletal reorganization. VopV’s multipronged approach to epithelial restructuring, coupled with its impact on colonization, suggests that remodeling of the epithelial brush border is a critical step in pathogenesis. Colonization of the small bowel by Vibrio parahaemolyticus, the most common bacterial agent of seafood-borne enteric disease, induces extensive structural changes in the intestinal epithelium. Here, we show that this diarrheal pathogen’s colonization and virulence depend upon VopV, a bacterial protein that is transferred into host epithelial cells. VopV induces marked rearrangement of the apical epithelial cell membrane, including elimination of microvilli, by two means: through interaction with actin and through a previously unrecognized interaction with the actin-cross-linking protein filamin. VopV-mediated “effacement” of microvilli enables V. parahaemolyticus to adhere to host cells, although VopV may not directly mediate adhesion. VopV’s effects on microvillus structure and bacterial adhesion likely account for its essential role in V. parahaemolyticus intestinal pathogenesis. Our findings suggest a new role for filamin in brush border maintenance and raise the possibility that microvillus effacement is a common strategy among enteric pathogens for enhancing adhesion to host cells.
Collapse
|
52
|
Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins. PLoS One 2014; 9:e104387. [PMID: 25099122 PMCID: PMC4123922 DOI: 10.1371/journal.pone.0104387] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 11/19/2022] Open
Abstract
Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.
Collapse
|
53
|
Waddell B, Southward CM, McKenna N, DeVinney R. Identification of VPA0451 as the specific chaperone for theVibrio parahaemolyticuschromosome 1 type III-secreted effector VPA0450. FEMS Microbiol Lett 2014; 353:141-50. [DOI: 10.1111/1574-6968.12416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; University of Calgary; Calgary AB Canada
| | - Carolyn M. Southward
- Department of Microbiology, Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; University of Calgary; Calgary AB Canada
| | - Neil McKenna
- Department of Microbiology, Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; University of Calgary; Calgary AB Canada
| | - Rebekah DeVinney
- Department of Microbiology, Immunology and Infectious Diseases; Snyder Institute for Chronic Diseases; University of Calgary; Calgary AB Canada
| |
Collapse
|
54
|
Ruhanen H, Hurley D, Ghosh A, O'Brien KT, Johnston CR, Shields DC. Potential of known and short prokaryotic protein motifs as a basis for novel peptide-based antibacterial therapeutics: a computational survey. Front Microbiol 2014; 5:4. [PMID: 24478765 PMCID: PMC3896991 DOI: 10.3389/fmicb.2014.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/05/2014] [Indexed: 11/13/2022] Open
Abstract
Short linear motifs (SLiMs) are functional stretches of protein sequence that are of crucial importance for numerous biological processes by mediating protein-protein interactions. These motifs often comprise peptides of less than 10 amino acids that modulate protein-protein interactions. While well-characterized in eukaryotic intracellular signaling, their role in prokaryotic signaling is less well-understood. We surveyed the distribution of known motifs in prokaryotic extracellular and virulence proteins across a range of bacterial species and conducted searches for novel motifs in virulence proteins. Many known motifs in virulence effector proteins mimic eukaryotic motifs and enable the pathogen to control the intracellular processes of their hosts. Novel motifs were detected by finding those that had evolved independently in three or more unrelated virulence proteins. The search returned several significantly over-represented linear motifs of which some were known motifs and others are novel candidates with potential roles in bacterial pathogenesis. A putative C-terminal G[AG].$ motif found in type IV secretion system proteins was among the most significant detected. A KK$ motif that has been previously identified in a plasminogen-binding protein, was demonstrated to be enriched across a number of adhesion and lipoproteins. While there is some potential to develop peptide drugs against bacterial infection based on bacterial peptides that mimic host components, this could have unwanted effects on host signaling. Thus, novel SLiMs in virulence factors that do not mimic host components but are crucial for bacterial pathogenesis, such as the type IV secretion system, may be more useful to develop as leads for anti-microbial peptides or drugs.
Collapse
Affiliation(s)
- Heini Ruhanen
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Daniel Hurley
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Ambarnil Ghosh
- Crystallography and Molecular Biology Department, Saha Institute of Nuclear Physics Kolkata, India
| | - Kevin T O'Brien
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | | | - Denis C Shields
- Complex and Adaptive Systems Laboratory, University College Dublin Dublin, Ireland ; Conway Institute of Biomolecular and Biomedical Science, University College Dublin Dublin, Ireland ; School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| |
Collapse
|
55
|
Nydam SD, Shah DH, Call DR. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions. Front Cell Infect Microbiol 2014; 4:1. [PMID: 24478989 PMCID: PMC3895804 DOI: 10.3389/fcimb.2014.00001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/02/2014] [Indexed: 12/16/2022] Open
Abstract
Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study.
Collapse
Affiliation(s)
- Seth D Nydam
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University Pullman, WA, USA ; Paul G. Allen School for Global Animal Health, Washington State University Pullman, WA, USA
| |
Collapse
|
56
|
O'Boyle N, Boyd A. Manipulation of intestinal epithelial cell function by the cell contact-dependent type III secretion systems of Vibrio parahaemolyticus. Front Cell Infect Microbiol 2014; 3:114. [PMID: 24455490 PMCID: PMC3887276 DOI: 10.3389/fcimb.2013.00114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Vibrio parahaemolyticus elicits gastroenteritis by deploying Type III Secretion Systems (TTSS) to deliver effector proteins into epithelial cells of the human intestinal tract. The bacteria must adhere to the human cells to allow colonization and operation of the TTSS translocation apparatus bridging the bacterium and the host cell. This article first reviews recent advances in identifying the molecules responsible for intercellular adherence. V. parahaemolyticus possesses two TTSS, each of which delivers an exclusive set of effectors and mediates unique effects on the host cell. TTSS effectors primarily target and alter the activation status of host cell signaling proteins, thereby bringing about changes in the regulation of cellular behavior. TTSS1 is responsible for the cytotoxicity of V. parahaemolyticus, while TTSS2 is necessary for the enterotoxicity of the pathogen. Recent publications have elucidated the function of several TTSS effectors and their importance in the virulence of the bacterium. This review will explore the ability of the TTSS to manipulate activities of human intestinal cells and how this modification of cell function favors bacterial colonization and persistence of V. parahaemolyticus in the host.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
57
|
Okada R, Zhou X, Hiyoshi H, Matsuda S, Chen X, Akeda Y, Kashimoto T, Davis BM, Iida T, Waldor MK, Kodama T. The Vibrio parahaemolyticus effector VopC mediates Cdc42-dependent invasion of cultured cells but is not required for pathogenicity in an animal model of infection. Cell Microbiol 2014; 16:938-47. [PMID: 24345190 DOI: 10.1111/cmi.12252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/31/2013] [Accepted: 12/10/2013] [Indexed: 01/18/2023]
Abstract
Vibrio parahaemolyticus is a Gram-negative marine bacterium that causes acute gastroenteritis in humans. The virulence of V. parahaemolyticus is dependent upon a type III secretion system (T3SS2). One effector for T3SS2, VopC, is a homologue of the catalytic domain of cytotoxic necrotizing factor (CNF), and was recently reported to be a Rho family GTPase activator and to be linked to internalization of V. parahaemolyticus by non-phagocytic cultured cells. Here, we provide direct evidence that VopC deamidates Rac1 and CDC42, but not RhoA, in vivo. Our results alsosuggest that VopC, through its activation of Rac1, contributes to formation of actin stress fibres in infected cells. Invasion of host cells, which occurs at a low frequency, does not seem linked to Rac1 activation, but instead appears to require CDC42. Finally, using an infant rabbit model of V. parahaemolyticus infection, we show that the virulence of V. parahaemolyticus is not dependent upon VopC-mediated invasion. Genetic inactivation of VopC did not impair intestinal colonization nor reduce signs of disease, including fluid accumulation, diarrhoea and tissue destruction. Thus, although VopC can promote host cell invasion, such internalization is not a critical step of the disease process, consistent with the traditional view of V. parahaemolyticus as an extracellular pathogen.
Collapse
Affiliation(s)
- Ryu Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Zahm JA, Padrick SB, Chen Z, Pak CW, Yunus AA, Henry L, Tomchick DR, Chen Z, Rosen MK. The bacterial effector VopL organizes actin into filament-like structures. Cell 2013; 155:423-34. [PMID: 24120140 DOI: 10.1016/j.cell.2013.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/22/2013] [Accepted: 09/11/2013] [Indexed: 12/28/2022]
Abstract
VopL is an effector protein from Vibrio parahaemolyticus that nucleates actin filaments. VopL consists of a VopL C-terminal domain (VCD) and an array of three WASP homology 2 (WH2) motifs. Here, we report the crystal structure of the VCD dimer bound to actin. The VCD organizes three actin monomers in a spatial arrangement close to that found in the canonical actin filament. In this arrangement, WH2 motifs can be modeled into the binding site of each actin without steric clashes. The data suggest a mechanism of nucleation wherein VopL creates filament-like structures, organized by the VCD with monomers delivered by the WH2 array, that can template addition of new subunits. Similarities with Arp2/3 complex and formin proteins suggest that organization of monomers into filament-like structures is a general and central feature of actin nucleation.
Collapse
Affiliation(s)
- Jacob A Zahm
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
The MSHA pilus of Vibrio parahaemolyticus has lectin functionality and enables TTSS-mediated pathogenicity. Int J Med Microbiol 2013; 303:563-73. [DOI: 10.1016/j.ijmm.2013.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023] Open
|
60
|
Renault L, Deville C, van Heijenoort C. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Cytoskeleton (Hoboken) 2013; 70:686-705. [DOI: 10.1002/cm.21140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Célia Deville
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Carine van Heijenoort
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| |
Collapse
|
61
|
Liu M, Yan M, Liu L, Chen S. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer. Front Cell Infect Microbiol 2013; 3:61. [PMID: 24133656 PMCID: PMC3794297 DOI: 10.3389/fcimb.2013.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/21/2013] [Indexed: 01/15/2023] Open
Abstract
Vibrio parahaemolyticus is a clinically important foodborne pathogen that causes acute gastroenteritis worldwide. It has been shown that horizontal gene transfer (HGT) contributes significantly to virulence development of V. parahaemolyticus. In this study, we identified a novel znuA homolog (vpa1307) that belongs to a novel subfamily of ZnuA, a bacterial zinc transporter. The vpa1307 gene is located upstream of the V. parahaemolyticus pathogenicity island (Vp-PAIs) in both tdh-positive and trh-positive V. parahaemolyticus strains. Phylogenetic analysis revealed the exogenous origin of vpa1307 with 40% of V. parahaemolyticus clinical isolates possessing this gene. The expression of vpa1307 gene in V. parahaemolyticus clinical strain VP3218 is induced under zinc limitation condition. Gene deletion and complementation assays confirmed that vpa1307 contributes to the growth of VP3218 under zinc depletion condition and that conserved histidine residues of Vpa1307 contribute to its activity. Importantly, vpa1307 contributes to the cytotoxicity of VP3218 in HeLa cells and a certain degree of virulence in murine model. These results suggest that the horizontally acquired znuA subfamily gene, vpa1307, contributes to the fitness and virulence of Vibrio species.
Collapse
Affiliation(s)
- Ming Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hong Kong, China ; Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute Shenzhen, China
| | | | | | | |
Collapse
|
62
|
Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus. Indian J Microbiol 2013; 54:143-50. [PMID: 25320414 DOI: 10.1007/s12088-013-0428-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022] Open
Abstract
Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow "needle" channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni(2+) affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10(8 )L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.
Collapse
|
63
|
Carlier MF, Pernier J, Avvaru BS. Control of actin filament dynamics at barbed ends by WH2 domains: From capping to permissive and processive assembly. Cytoskeleton (Hoboken) 2013; 70:540-9. [DOI: 10.1002/cm.21124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Julien Pernier
- Cytoskeleton Dynamics and Motility Team; LEBS; CNRS; Gif-Sur-Yvette France
| | | |
Collapse
|
64
|
Dimeric WH2 domains in Vibrio VopF promote actin filament barbed-end uncapping and assisted elongation. Nat Struct Mol Biol 2013; 20:1069-76. [DOI: 10.1038/nsmb.2639] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/21/2013] [Indexed: 12/14/2022]
|
65
|
Alanine-scanning mutagenesis of WH2 domains of VopF reveals residues important for conferring lethality in a Saccharomyces cerevisiae model. Gene 2013; 525:116-23. [DOI: 10.1016/j.gene.2013.04.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 03/22/2013] [Accepted: 04/19/2013] [Indexed: 12/25/2022]
|
66
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
67
|
A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation. Cell Rep 2013; 3:1690-702. [PMID: 23623501 DOI: 10.1016/j.celrep.2013.03.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
Vibrio parahaemolyticus type III secretion system 2 (T3SS2) is essential for the organism's virulence, but the effectors required for intestinal colonization and induction of diarrhea by this pathogen have not been identified. Here, we identify a type III secretion system (T3SS2)-secreted effector, VopZ, that is essential for V. parahaemolyticus pathogenicity. VopZ plays distinct, genetically separable roles in enabling intestinal colonization and diarrheagenesis. Truncation of VopZ prevents V. parahaemolyticus colonization, whereas deletion of VopZ amino acids 38-62 abrogates V. parahaemolyticus-induced diarrhea and intestinal pathology but does not impair colonization. VopZ inhibits activation of the kinase TAK1 and thereby prevents the activation of MAPK and NF-κB signaling pathways, which lie downstream. In contrast, the VopZ internal deletion mutant cannot counter the activation of pathways regulated by TAK1. Collectively, our findings suggest that VopZ's inhibition of TAK1 is critical for V. parahaemolyticus to induce diarrhea and intestinal pathology.
Collapse
|
68
|
Zhang L, Orth K. Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 2013; 16:70-7. [PMID: 23433802 DOI: 10.1016/j.mib.2013.02.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/22/2013] [Accepted: 02/03/2013] [Indexed: 12/31/2022]
Abstract
Vibrio parahaemolyticus is a marine microorganism that causes acute gastroenteritis associated with the consumption of contaminated raw or under cooked seafood. During infection, the bacterium utilizes a wide variety of virulence factors, including adhesins, toxins and type III secretion systems, to cause both cytotoxicity in cultured cells and enterotoxicity in animal models. Herein, we describe recent discoveries on the regulation and characterization of the virulence factors from V. para. Determining how this bacterial pathogen uses virulence factors to mediate pathogenicity improves our understanding of V. para. infections and more generally, host-pathogen interactions.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Biology, Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
69
|
Ham H, Orth K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogenicity. J Microbiol 2012; 50:719-25. [PMID: 23124738 DOI: 10.1007/s12275-012-2550-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 11/25/2022]
Abstract
Vibrio parahaemolyticus, a Gram-negative marine bacterial pathogen, is emerging as a major cause of food-borne illnesses worldwide due to the consumption of raw seafood leading to diseases including gastroenteritis, wound infection, and septicemia. The bacteria utilize toxins and type III secretion system (T3SS) to trigger virulence. T3SS is a multi-subunit needle-like apparatus used to deliver bacterial proteins, termed effectors, into the host cytoplasm which then target various eukaryotic signaling pathways. V. parahaemolyticus carries two T3SSs in each of its two chromosomes, named T3SS1 and T3SS2, both of which play crucial yet distinct roles during infection: T3SS1 causes cytotoxicity whereas T3SS2 is mainly associated with enterotoxicity. Each T3SS secretes a unique set of effectors that contribute to virulence by acting on different host targets and serving different functions. Emerging studies on T3SS2 of V. parahaemolyticus, reveal its regulation, translocation, discovery, characterization of its effectors, and development of animal models to understand the enterotoxicity. This review on recent findings for T3SS2 of V. parahaemolyticus highlights a novel mechanism of invasion that appears to be conserved by other marine bacteria.
Collapse
Affiliation(s)
- Hyeilin Ham
- Department of Molecular Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
70
|
Abstract
Pathogens exploit several eukaryotic signaling pathways during an infection. They have evolved specific effectors and toxins to hijack host cell machinery for their own benefit. Signaling molecules are preferentially targeted by pathogens because they globally regulate many cellular processes. Both viruses and bacteria manipulate and control pathways that regulate host cell survival and shape, including MAPK signaling, G-protein signaling, signals controlling cytoskeletal dynamics, and innate immune responses.
Collapse
Affiliation(s)
- Neal M Alto
- UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
71
|
The hydrophilic translocator for Vibrio parahaemolyticus, T3SS2, is also translocated. Infect Immun 2012; 80:2940-7. [PMID: 22585964 DOI: 10.1128/iai.00402-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of the diarrheal disease caused by Vibrio parahaemolyticus, a leading cause of seafood-associated enteritis worldwide, is dependent upon a type III secretion system, T3SS2. This apparatus enables the pathogen to inject bacterial proteins (effectors) into the cytosol of host cells and thereby modulate host processes. T3SS effector proteins transit into the host cell via a membrane pore (translocon) typically formed by 3 bacterial proteins. We have identified the third translocon protein for T3SS2: VopW, which was previously classified as an effector protein for a homologous T3SS in V. cholerae. VopW is a hydrophilic translocon protein; like other such proteins, it is not inserted into the host cell membrane but is required for insertion of the two hydrophobic translocators, VopB2 and VopD2, that constitute the membrane channel. VopW is not required for secretion of T3SS2 effectors into the bacterial culture medium; however, it is essential for transfer of these proteins into the host cell cytoplasm. Consequently, deletion of vopW abrogates the virulence of V. parahaemolyticus in several animal models of diarrheal disease. Unlike previously described hydrophilic translocators, VopW is itself translocated into the host cell cytoplasm, raising the possibility that it functions as both a translocator and an effector.
Collapse
|
72
|
Screening for a single-chain variable-fragment antibody that can effectively neutralize the cytotoxicity of the Vibrio parahaemolyticus thermolabile hemolysin. Appl Environ Microbiol 2012; 78:4967-75. [PMID: 22562997 DOI: 10.1128/aem.00435-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a halophilic bacterium that is widely distributed in water resources. The bacterium causes lethal food-borne diseases and poses a serious threat to human and animal health all over the world. The major pathogenic factor of V. parahaemolyticus is thermolabile hemolysin (TLH), encoded by the tlh gene, but its toxicity mechanisms are unknown. A high-affinity antibody that can neutralize TLH activity effectively is not available. In this study, we successfully expressed and purified the TLH antigen and discovered a high-affinity antibody to TLH, named scFv-LA3, by phage display screening. Cytotoxicity analysis showed that scFv-LA3 has strong neutralization effects on TLH-induced cell toxicity.
Collapse
|
73
|
Zhang L, Krachler AM, Broberg CA, Li Y, Mirzaei H, Gilpin CJ, Orth K. Type III effector VopC mediates invasion for Vibrio species. Cell Rep 2012; 1:453-60. [PMID: 22787576 DOI: 10.1016/j.celrep.2012.04.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/26/2012] [Accepted: 04/17/2012] [Indexed: 11/30/2022] Open
Abstract
Vibrio spp. are associated with infections caused by contaminated food and water. A type III secretion system (T3SS2) is a shared feature of all clinical isolates of V. parahaemolyticus and some V. cholerae strains. Despite its being responsible for enterotoxicity, no molecular mechanism has been determined for the T3SS2-dependent pathogenicity. Here, we show that although Vibrio spp. are typically thought of as extracellular pathogens, the T3SS2 of Vibrio mediates host cell invasion, vacuole formation, and replication of intracellular bacteria. The catalytically active effector VopC is critical for Vibrio T3SS2-mediated invasion. There are other marine bacteria encoding VopC homologs associated with a T3SS; therefore, we predict that these bacteria are also likely to use T3SS-mediated invasion as part of their pathogenesis mechanisms. These findings suggest a new molecular paradigm for Vibrio pathogenicity and modify our view of the roles of T3SS effectors that are translocated during infection.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Ritchie JM, Rui H, Zhou X, Iida T, Kodoma T, Ito S, Davis BM, Bronson RT, Waldor MK. Inflammation and disintegration of intestinal villi in an experimental model for Vibrio parahaemolyticus-induced diarrhea. PLoS Pathog 2012; 8:e1002593. [PMID: 22438811 PMCID: PMC3305451 DOI: 10.1371/journal.ppat.1002593] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms. The marine bacterium Vibrio parahaemolyticus is a leading cause worldwide of gastroenteritis linked to the consumption of contaminated seafood. Despite the prevalence of V. parahaemolyticus-induced gastroenteritis, there is limited understanding of how this pathogen causes disease in the intestine. In part, the paucity of knowledge results from the absence of an oral infection-based animal model of the human disease. We developed a simple oral infection-based infant rabbit model of V. parahaemolyticus-induced intestinal pathology and diarrhea. This experimental model enabled us to define several previously unknown but key features of the pathology elicited by this organism. We found that V. parahaemolyticus chiefly colonizes the distal small intestine and that the organism's second type III secretion system is essential for colonization. The epithelial surface of the distal small intestine is also the major site of V. parahaemolyticus-induced damage, which arises via a characteristic sequence of events culminating in the formation of V. parahaemolyticus-filled cavities in the epithelial surface. This experimental model will transform future studies aimed at deciphering the bacterial and host factors/processes that contribute to disease, as well as enable testing of new therapeutics to prevent and/or combat infection.
Collapse
Affiliation(s)
- Jennifer M. Ritchie
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| | - Haopeng Rui
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Xiaohui Zhou
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Tetsuya Iida
- Department of Bacterial Infections, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Toshio Kodoma
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Osaka University, Suita, Osaka, Japan
| | - Susuma Ito
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
| | - Roderick T. Bronson
- Department of Microbiology & Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Brigham and Women's Hospital/Harvard Medical School and HHMI, Boston, Massachusetts, United States of America
- * E-mail: (MKW); (JMR)
| |
Collapse
|
75
|
The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 2012; 80:1834-45. [PMID: 22392925 DOI: 10.1128/iai.06284-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a nonpolar mutation in toxRS to determine the role of these genes in V. parahaemolyticus RIMD2210633, an O3:K6 isolate, and showed that compared to the wild type, ΔtoxRS was significantly more sensitive to acid, bile salts, and sodium dodecyl sulfate stresses. We demonstrated that ToxRS is a positive regulator of ompU expression, and that the complementation of ΔtoxRS with ompU restores stress tolerance. Furthermore, we showed that ToxRS also regulates type III secretion system genes in chromosome I via the regulation of the leuO homologue VP0350. We examined the effect of ΔtoxRS in vivo using a new orogastric adult murine model of colonization. We demonstrated that streptomycin-treated adult C57BL/6 mice experienced prolonged intestinal colonization along the entire intestinal tract by the streptomycin-resistant V. parahaemolyticus. In contrast, no colonization occurred in non-streptomycin-treated mice. A competition assay between the ΔtoxRS and wild-type V. parahaemolyticus strains marked with the β-galactosidase gene lacZ demonstrated that the ΔtoxRS strain was defective in colonization compared to the wild-type strain. This defect was rescued by ectopically expressing ompU. Thus, the defect in stress tolerance and colonization in ΔtoxRS is solely due to OmpU. To our knowledge, the orogastric adult murine model reported here is the first showing sustained intestinal colonization by V. parahaemolyticus.
Collapse
|
76
|
Chen CK, Sawaya MR, Phillips ML, Reisler E, Quinlan ME. Multiple forms of Spire-actin complexes and their functional consequences. J Biol Chem 2012; 287:10684-10692. [PMID: 22334675 DOI: 10.1074/jbc.m111.317792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spire is a WH2 domain-containing actin nucleator essential for establishing an actin mesh during oogenesis. In vitro, in addition to nucleating filaments, Spire can sever them and sequester actin monomers. Understanding how Spire is capable of these disparate functions and which are physiologically relevant is an important goal. To study severing, we examined the effect of Drosophila Spire on preformed filaments in bulk and single filament assays. We observed rapid depolymerization of actin filaments by Spire, which we conclude is largely due to its sequestration activity and enhanced by its weak severing activity. We also studied the solution and crystal structures of Spire-actin complexes. We find structural and functional differences between constructs containing four WH2 domains (Spir-ABCD) and two WH2 domains (Spir-CD) that may provide insight into the mechanisms of nucleation and sequestration. Intriguingly, we observed lateral interactions between actin monomers associated with Spir-ABCD, suggesting that the structures built by these four tandem WH2 domains are more complex than originally imagined. Finally, we propose that Spire-actin mixtures contain both nuclei and sequestration structures.
Collapse
Affiliation(s)
- Christine K Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Michael R Sawaya
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Martin L Phillips
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095
| | - Margot E Quinlan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
77
|
Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546. [PMID: 22383880 PMCID: PMC3285593 DOI: 10.1371/journal.ppat.1002546] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/09/2012] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
78
|
How a single residue in individual β-thymosin/WH2 domains controls their functions in actin assembly. EMBO J 2011; 31:1000-13. [PMID: 22193718 DOI: 10.1038/emboj.2011.461] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
β-Thymosin (βT) and WH2 domains are widespread, intrinsically disordered actin-binding peptides that display significant sequence variability and different regulations of actin self-assembly in motile and morphogenetic processes. Here, we reveal the structural mechanisms by which, in their 1:1 stoichiometric complexes with actin, they either inhibit assembly by sequestering actin monomers like Thymosin-β4, or enhance motility by directing polarized filament assembly like Ciboulot βT. We combined mutational, functional or structural analysis by X-ray crystallography, SAXS (small angle X-ray scattering) and NMR on Thymosin-β4, Ciboulot, TetraThymosinβ and the long WH2 domain of WASP-interacting protein. The latter sequesters G-actin with the same molecular mechanisms as Thymosin-β4. Functionally different βT/WH2 domains differ by distinct dynamics of their C-terminal half interactions with G-actin pointed face. These C-terminal interaction dynamics are controlled by the strength of electrostatic interactions with G-actin. At physiological ionic strength, a single salt bridge with actin located next to their central LKKT/V motif induces G-actin sequestration in both isolated long βT and WH2 domains. The results open perspectives for elucidating the functions of βT/WH2 domains in other modular proteins.
Collapse
|
79
|
Heimsath EG, Higgs HN. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends. J Biol Chem 2011; 287:3087-98. [PMID: 22094460 DOI: 10.1074/jbc.m111.312207] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
80
|
Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect 2011; 13:992-1001. [PMID: 21782964 PMCID: PMC3384537 DOI: 10.1016/j.micinf.2011.06.013] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus is a significant cause of gastroenteritis worldwide. Characterization of this pathogen has revealed a unique repertoire of virulence factors that allow for colonization of the human host and disease. The following describes the known pathogenicity determinants while establishing the need for continued research.
Collapse
Affiliation(s)
- Christopher A. Broberg
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Thomas J. Calder
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas TX 75390-9148, USA
| |
Collapse
|
81
|
Hiyoshi H, Kodama T, Saito K, Gotoh K, Matsuda S, Akeda Y, Honda T, Iida T. VopV, an F-Actin-Binding Type III Secretion Effector, Is Required for Vibrio parahaemolyticus-Induced Enterotoxicity. Cell Host Microbe 2011; 10:401-9. [DOI: 10.1016/j.chom.2011.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/20/2011] [Accepted: 08/22/2011] [Indexed: 01/21/2023]
|
82
|
Akeda Y, Kodama T, Saito K, Iida T, Oishi K, Honda T. Identification of the Vibrio parahaemolyticus type III secretion system 2-associated chaperone VocC for the T3SS2-specific effector VopC. FEMS Microbiol Lett 2011; 324:156-64. [PMID: 22092817 DOI: 10.1111/j.1574-6968.2011.02399.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/24/2011] [Accepted: 08/24/2011] [Indexed: 01/02/2023] Open
Abstract
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
83
|
|
84
|
Namgoong S, Boczkowska M, Glista MJ, Winkelman JD, Rebowski G, Kovar DR, Dominguez R. Mechanism of actin filament nucleation by Vibrio VopL and implications for tandem W domain nucleation. Nat Struct Mol Biol 2011; 18:1060-7. [PMID: 21873985 PMCID: PMC3173040 DOI: 10.1038/nsmb.2109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 11/09/2022]
Abstract
Pathogen proteins targeting the actin cytoskeleton often serve as model systems to understand their more complex eukaryotic analogs. We show that the strong actin filament nucleation activity of Vibrio parahaemolyticus VopL depends on its three W domains and on its dimerization through a unique VopL C-terminal domain (VCD). The VCD shows a previously unknown all-helical fold and interacts with the pointed end of the actin nucleus, contributing to the nucleation activity directly and through duplication of the W domain repeat. VopL promotes rapid cycles of filament nucleation and detachment but generally has no effect on elongation. Profilin inhibits VopL-induced nucleation by competing for actin binding to the W domains. Combined, the results suggest that VopL stabilizes a hexameric double-stranded pointed end nucleus. Analysis of hybrid constructs of VopL and the eukaryotic nucleator Spire suggest that Spire may also function as a dimer in cells.
Collapse
Affiliation(s)
- Suk Namgoong
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Mechanism of actin filament nucleation by the bacterial effector VopL. Nat Struct Mol Biol 2011; 18:1068-74. [PMID: 21873984 PMCID: PMC3168117 DOI: 10.1038/nsmb.2110] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/30/2011] [Indexed: 12/21/2022]
Abstract
Vibrio parahaemolyticus protein L (VopL) is an actin nucleation factor that induces stress fibers when injected by bacteria into eukaryotic host cells. VopL contains three N-terminal Wiskott-Aldrich Homology 2 (WH2) motifs and a unique VopL C-terminal domain (VCD). We describe crystallographic and biochemical analyses of filament nucleation by VopL. The WH2 element of VopL does not nucleate on its own, and requires the VCD for activity. The VCD forms a U-shaped dimer in the crystal, which is stabilized by a terminal coiled-coil. Dimerization of the WH2 motifs contributes strongly to nucleation activity, as do contacts of the VCD to actin. Our data lead to a model where VopL stabilizes primarily lateral (short-pitch) contacts between actin monomers to create the base of a two-stranded filament. Stabilization of lateral contacts may be a common feature of actin filament nucleation by WH2-based factors.
Collapse
|
86
|
Husson C, Renault L, Didry D, Pantaloni D, Carlier MF. Cordon-Bleu Uses WH2 Domains as Multifunctional Dynamizers of Actin Filament Assembly. Mol Cell 2011; 43:464-77. [DOI: 10.1016/j.molcel.2011.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 03/18/2011] [Accepted: 07/19/2011] [Indexed: 11/26/2022]
|
87
|
Matz C, Nouri B, McCarter L, Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 2011; 6:e20275. [PMID: 21629787 PMCID: PMC3100340 DOI: 10.1371/journal.pone.0020275] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 04/28/2011] [Indexed: 11/23/2022] Open
Abstract
Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs), many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS) to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2) promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments.
Collapse
Affiliation(s)
- Carsten Matz
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bianka Nouri
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Linda McCarter
- Microbiology Department, University of Iowa, Iowa City, Iowa, United States of America
| | - Jaime Martinez-Urtaza
- Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- * E-mail:
| |
Collapse
|
88
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
89
|
Sitthidet C, Korbsrisate S, Layton AN, Field TR, Stevens MP, Stevens JM. Identification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerization. J Bacteriol 2011; 193:1901-10. [PMID: 21335455 PMCID: PMC3133048 DOI: 10.1128/jb.01455-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/09/2011] [Indexed: 01/03/2023] Open
Abstract
Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP₇ proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei.
Collapse
Affiliation(s)
- Chayada Sitthidet
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Abigail N. Layton
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | - Terence R. Field
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | - Mark P. Stevens
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Joanne M. Stevens
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
90
|
Human spire interacts with the barbed end of the actin filament. J Mol Biol 2011; 408:18-25. [PMID: 21315084 DOI: 10.1016/j.jmb.2010.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/24/2022]
Abstract
Spire is an actin nucleator that initiates actin polymerization at a specific place in the cell. Similar to the Arp2/3 complex, spire was initially considered to bind to the pointed end of the actin filament when it generates a new actin filament. Subsequently, spire was reported to be associated with the barbed end (B-end); thus, there is still no consensus regarding the end with which spire interacts. Here, we report direct evidence that spire binds to the B-end of the actin filament, under conditions where spire accelerates actin polymerization. Using electron microscopy, we visualized the location of spire bound to the filament by gold nanoparticle labeling of the histidine-tagged spire, and the polarity of the actin filament was determined by image analysis. In addition, our results suggest that multiple spires, linked through one gold nanoparticle, enhance the acceleration of actin polymerization. The B-end binding of spire provides the basis for understanding its functional mechanism in the cell.
Collapse
|
91
|
Identification of Vibrio cholerae type III secretion system effector proteins. Infect Immun 2011; 79:1728-40. [PMID: 21282418 DOI: 10.1128/iai.01194-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AM-19226 is a pathogenic O39 serogroup Vibrio cholerae strain that lacks the typical virulence factors for colonization (toxin-coregulated pilus [TCP]) and toxin production (cholera toxin [CT]) and instead encodes a type III secretion system (T3SS). The mechanism of pathogenesis is unknown, and few effector proteins have been identified. We therefore undertook a survey of the open reading frames (ORFs) within the ∼49.7-kb T3SS genomic island to identify potential effector proteins. We identified 15 ORFs for their ability to inhibit growth when expressed in yeast and then used a β-lactamase (TEM1) fusion reporter system to demonstrate that 11 proteins were bona fide effectors translocated into HeLa cells in vitro in a T3SS-dependent manner. One effector, which we named VopX (A33_1663), is conserved only in V. cholerae and Vibrio parahaemolyticus T3SS-positive strains and has not been previously studied. A vopX deletion reduces the ability of strain AM-19226 to colonize in vivo, and the bile-induced expression of a vopX-lacZ transcriptional fusion in vitro is regulated by the T3SS-encoded transcriptional regulators VttR(A) and VttR(B). An RLM1 yeast deletion strain rescued the growth inhibition induced by VopX expression, suggesting that VopX interacts with components of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway. The collective results show that the V. cholerae T3SS encodes multiple effector proteins, one of which likely has novel activities that contribute to disease via interference with eukaryotic signaling pathways.
Collapse
|
92
|
Day B, Henty JL, Porter KJ, Staiger CJ. The pathogen-actin connection: a platform for defense signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:483-506. [PMID: 21495845 DOI: 10.1146/annurev-phyto-072910-095426] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.
Collapse
Affiliation(s)
- Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1311, USA.
| | | | | | | |
Collapse
|
93
|
Carlier MF, Husson C, Renault L, Didry D. Control of Actin Assembly by the WH2 Domains and Their Multifunctional Tandem Repeats in Spire and Cordon-Bleu. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:55-85. [DOI: 10.1016/b978-0-12-386037-8.00005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
94
|
Functional analysis of VopF activity required for colonization in Vibrio cholerae. mBio 2010; 1. [PMID: 21151774 PMCID: PMC2999938 DOI: 10.1128/mbio.00289-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 11/09/2010] [Indexed: 01/01/2023] Open
Abstract
Vibrio cholerae, a Gram-negative facultative pathogen, is the etiologic agent for the diarrheal disease cholera. We previously characterized a clinical isolate, AM-19226, that translocates a type III secretion system (T3SS) effector protein with actin-nucleating activity, VopF, into the host cells. From comparative genomic studies, we identified a divergent T3SS island in additional isolates which possess a VopF homolog, VopN. Unlike the VopF-mediated protrusion formation, VopN localizes to stress fiber in host cells similarly to VopL, which is present in the pandemic strain of Vibrio parahaemolyticus. Chimera and yeast two-hybrid studies indicated that the amino-terminal regions of VopF and VopN proteins interact with distinct host cell factors. We determined that AM-19226-infected cells are arrested at S phase of the cell cycle and that VopF/VopN are antiapoptotic factors. To understand how VopF may contribute to the pathogenesis of AM-19226, we examined the effect of VopF in an in vitro polarized-epithelial model and an in vivo adult rabbit diarrheal model. Within the T3SS pathogenicity island is VopE, a homolog of YopE from Yersinia, which has been shown to loosen tight junctions. In polarized intestinal epithelia, VopF and VopE compromised the integrity of tight junctions by inducing cortical actin depolymerization and aberrant localization of the tight-junction protein ZO-1. An assay for pathogenicity in the adult rabbit diarrhea model suggested that these effectors are involved in eliciting the diarrheal response in infected rabbits. Vibrio cholerae is a bacterial pathogen that causes the diarrheal disease cholera, which remains a major public health problem in many developing countries. While the major virulence factors of the pandemic V. cholerae strains have been characterized, new clinical strains of V. cholerae have arisen, causing sporadic cholera-like diseases using unknown pathogenic mechanisms. Previously, we discovered the type III secretion system in a new clinical strain of V. cholerae and also identified an effector protein, VopF, which is injected into the host cells and induces changes in the actin cytoskeleton. In this work, we identified a homolog of VopF that causes a distinct cellular phenotype and interactions between the effectors and host proteins. We also discovered that both effectors prevent bacterium-induced cell death in infected cells. In our tissue culture and animal models, we showed that VopF contributes to the disruption of epithelial integrity and the diarrheal response.
Collapse
|
95
|
Okada N, Matsuda S, Matsuyama J, Park KS, de los Reyes C, Kogure K, Honda T, Iida T. Presence of genes for type III secretion system 2 in Vibrio mimicus strains. BMC Microbiol 2010; 10:302. [PMID: 21110901 PMCID: PMC3004890 DOI: 10.1186/1471-2180-10-302] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022] Open
Abstract
Background Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. Vibrio cholerae, V. parahaemolyticus, V. vulnificus and V. mimicus, are pathogens for humans. Pathogenic V. parahaemolyticus strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2α and T3SS2β, which are reportedly also found in pathogenic V. cholerae non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other Vibrio species remains unclear. Results We therefore examined the distribution of the genes for T3SS2 in vibrios other than V. parahaemolyticus by using a PCR assay targeting both T3SS2α and T3SS2β genes. Among the 32 Vibrio species tested in our study, several T3SS2-related genes were detected in three species, V. cholerae, V. mimicus and V. hollisae, and most of the essential genes for type III secretion were present in T3SS2-positive V. cholerae and V. mimicus strains. Moreover, both V. mimicus strains possessing T3SS2α and T3SS2β were identified. The gene organization of the T3SS2 gene clusters in V. mimicus strains was fundamentally similar to that of V. parahaemolyticus and V. cholerae in both T3SS2α- and T3SS2β-possessing strains. Conclusions This study is the first reported evidence of the presence of T3SS2 gene clusters in V. mimicus strains. This finding thus provides a new insight into the pathogenicity of the V. mimicus species.
Collapse
Affiliation(s)
- Natsumi Okada
- Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 2010; 12:1057-63. [PMID: 20972427 PMCID: PMC3136050 DOI: 10.1038/ncb2109] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/15/2022]
Abstract
Diverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. However, a second bacterial gene, sca2, was recently implicated in actin-tail formation by R. rickettsii. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators.
Collapse
Affiliation(s)
- Cat M. Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Julie E. Choe
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Colleen T. Skau
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
97
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
98
|
Rebowski G, Namgoong S, Boczkowska M, Leavis PC, Navaza J, Dominguez R. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation. J Mol Biol 2010; 403:11-23. [PMID: 20804767 DOI: 10.1016/j.jmb.2010.08.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/30/2010] [Accepted: 08/20/2010] [Indexed: 12/29/2022]
Abstract
Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.
Collapse
Affiliation(s)
- Grzegorz Rebowski
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - Suk Namgoong
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - Malgorzata Boczkowska
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | - Paul C Leavis
- Boston Biomedical Research Institute, Watertown, MA 02472-2899, USA
| | - Jorge Navaza
- Institut de Biologie Structurale, F-38027 Grenoble, France
| | - Roberto Dominguez
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
99
|
Jewett TJ, Miller NJ, Dooley CA, Hackstadt T. The conserved Tarp actin binding domain is important for chlamydial invasion. PLoS Pathog 2010; 6:e1000997. [PMID: 20657821 PMCID: PMC2904776 DOI: 10.1371/journal.ppat.1000997] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/11/2010] [Indexed: 11/19/2022] Open
Abstract
The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells. Chlamydiae are bacterial obligate intracellular pathogens responsible for multiple human and veterinary diseases. The induction of cytoskeletal rearrangements to promote chlamydial internalization is partially mediated by a type III secreted effector protein called Tarp that is translocated upon contact with host cells and independently nucleates actin filament formation. Tarp from a C. trachomatis lymphogranuloma venereum (LGV) strain consists of a tyrosine-rich repeat domain, a proline-rich domain required for oligomerization, and a single actin binding domain. Oligomerization is required to bring multiple actin monomers together to initiate actin filament formation by a mechanism distinct from host actin nucleators. Here we have examined Tarp from several other strains of chlamydiae and find that certain of these contain up to four actin binding domains. Tarp fragments bearing multiple actin binding domains nucleate actin in in vitro assays even in the absence of the oligomerization domain. This suggests that Tarp from different chlamydial species may utilize hybrid mechanisms to induce actin nucleation. Determination of virulence determinants in chlamydiae is challenging due to the lack of tractable genetic systems. The direct introduction of anti-Tarp actin binding domain antibodies into the cytosol of host cells inhibited entry and thus demonstrates an essential role for Tarp in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Travis J. Jewett
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Natalie J. Miller
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cheryl A. Dooley
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
100
|
Zhou X, Konkel ME, Call DR. Regulation of type III secretion system 1 gene expression in Vibrio parahaemolyticus is dependent on interactions between ExsA, ExsC, and ExsD. Virulence 2010; 1:260-72. [PMID: 21178451 PMCID: PMC3073295 DOI: 10.4161/viru.1.4.12318] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 01/12/2023] Open
Abstract
Vibrio parahaemolyticus ExsA is the transcriptional regulator for type III secretion system 1 (T3SS1) while ExsD blocks T3SS1 expression. Herein we show that deletion of exsC from V. parahaemolyticus blocked synthesis of T3SS1-dependent proteins under inducing conditions (contact with HeLa cells), while in trans complementation of the ΔexsC strain with wild-type exsC restored protein synthesis. Under non-inducing conditions (Luria broth plus salt), in trans expression of exsC in a wild-type strain resulted in synthesis and secretion of T3SS1-dependent proteins. Deletion of exsC does not affect the synthesis of ExsA while expression of T3SS1 genes is independent of ExsC in the absence of ExsD. Co-expression of recombinant proteins with different antigenic tags demonstrated that ExsC binds ExsD and that the N-terminal amino acids of ExsC (positions 7 to 12) are required for binding. Co-expression and purification of antigentically tagged ExsA and ExsD demonstrated that ExsD directly binds ExsA and presumably prevents ExsA from binding promoter regions of T3SS1 genes. Collectively these data demonstrate that ExsD binds ExsA to block expression of T3SS1 genes, while ExsC binds ExsD to permit expression of T3SS1 genes. ExsA, ExsC, and ExsD from V. parahaemolyticus appear to be functional orthologues of their Pseudomonas aeruginosa counterparts.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|