51
|
Lee HC, Lin BL, Chang WH, Tu IP. Toward automated denoising of single molecular Förster resonance energy transfer data. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:011007. [PMID: 22352641 DOI: 10.1117/1.jbo.17.1.011007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A wide-field two-channel fluorescence microscope is a powerful tool as it allows for the study of conformation dynamics of hundreds to thousands of immobilized single molecules by Förster resonance energy transfer (FRET) signals. To date, the data reduction from a movie to a final set containing meaningful single-molecule FRET (smFRET) traces involves human inspection and intervention at several critical steps, greatly hampering the efficiency at the post-imaging stage. To facilitate the data reduction from smFRET movies to smFRET traces and to address the noise-limited issues, we developed a statistical denoising system toward fully automated processing. This data reduction system has embedded several novel approaches. First, as to background subtraction, high-order singular value decomposition (HOSVD) method is employed to extract spatial and temporal features. Second, to register and map the two color channels, the spots representing bleeding through the donor channel to the acceptor channel are used. Finally, correlation analysis and likelihood ratio statistic for the change point detection (CPD) are developed to study the two channels simultaneously, resolve FRET states, and report the dwelling time of each state. The performance of our method has been checked using both simulation and real data.
Collapse
Affiliation(s)
- Hao-Chih Lee
- Academia Sinica, Institute of Statistical Science, Taipei, Taiwan
| | | | | | | |
Collapse
|
52
|
Balci H, Arslan S, Myong S, Lohman TM, Ha T. Single-molecule nanopositioning: structural transitions of a helicase-DNA complex during ATP hydrolysis. Biophys J 2011; 101:976-84. [PMID: 21843490 DOI: 10.1016/j.bpj.2011.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/17/2011] [Accepted: 07/07/2011] [Indexed: 01/02/2023] Open
Abstract
The conformational states of Escherichia coli Rep helicase undergoing ATP hydrolysis while bound to a partial-duplex DNA (pdDNA) were studied using single-molecule FRET. Crystallographic studies showed that Rep bound to single-stranded DNA can exist in open and closed conformations that differ in the orientation of the 2B subdomain. FRET measurements between eight Rep mutants donor-labeled at different residues and pdDNA acceptor-labeled at the junction were conducted at each of the four nucleotide states. The positions of donor-labeled residues, based on crystal structure, and FRET measurements between these donor molecules and the acceptor fluorophore at the DNA junction were used to predict the most likely position for the DNA junction using a triangulation algorithm. These predicted junction positions are compared with the crystal structure to determine whether the open or closed conformation is more consistent with the FRET data. Our data revealed that there are two distinct Rep-pdDNA conformations in the ATPγS and ADP states, an unexpected finding. The primary conformation is similar to that observed in nucleotide-free and ADP.Pi states, and the secondary conformation is a novel conformation where the duplex DNA and 2B subdomain moved as a unit by 13 Å relative to the rest of the protein. The primary conformation found in all nucleotide states is consistent with the closed conformation of the crystal structure however; the secondary conformation is a new conformation that has not been observed before. We discuss the possible implications of this newly observed conformation.
Collapse
Affiliation(s)
- Hamza Balci
- Physics Department, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
53
|
Muschielok A, Michaelis J. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. J Phys Chem B 2011; 115:11927-37. [PMID: 21888382 DOI: 10.1021/jp2060377] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-molecule fluorescence resonance energy transfer (sm-FRET) has been recently applied to distance and position estimation in macromolecular complexes. Here, we generalize the previously published Nano-Positioning System (NPS), a probabilistic method to analyze data obtained in such experiments, which accounts for effects of restricted rotational freedom of fluorescent dyes, as well as for limited knowledge of the exact dye positions due to attachment via flexible linkers. In particular we show that global data analysis of complete FRET networks is beneficial and that the measurement of FRET anisotropies in addition to FRET efficiencies can be used to determine accurately both position and orientation of the dyes. This measurement scheme improves localization accuracy substantially, and we can show that the improvement is a consequence of the more precise information about the transition dipole moment orientation of the dyes obtained by FRET anisotropy measurements. We discuss also rigid body docking of different macromolecules by means of NPS, which can be used to study the structure of macromolecular complexes. Finally, we combine our approach with common FRET analysis methods to determine the number of states of a macromolecule.
Collapse
Affiliation(s)
- Adam Muschielok
- Chemistry Department, Ludwig-Maximilians-University Munich, Butenandtstrasse 11, 81377 Munich, Germany
| | | |
Collapse
|
54
|
Kruk JA, Dutta A, Fu J, Gilmour DS, Reese JC. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 2011; 25:581-93. [PMID: 21406554 DOI: 10.1101/gad.2020911] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Ccr4-Not complex has been implicated in the control of multiple steps of mRNA metabolism; however, its functions in transcription remain ambiguous. The discovery that Ccr4/Pop2 is the major cytoplasmic mRNA deadenylase and the detection of Not proteins within mRNA processing bodies have raised questions about the roles of the Ccr4-Not complex in transcription. Here we firmly establish Ccr4-Not as a positive elongation factor for RNA polymerase II (RNAPII). The Ccr4-Not complex is targeted to the coding region of genes in a transcription-dependent manner similar to RNAPII and promotes elongation in vivo. Furthermore, Ccr4-Not interacts directly with elongating RNAPII complexes and stimulates transcription elongation of arrested polymerase in vitro. Ccr4-Not can reactivate backtracked RNAPII using a mechanism different from that of the well-characterized elongation factor TFIIS. While not essential for its interaction with elongation complexes, Ccr4-Not interacts with the emerging transcript and promotes elongation in a manner dependent on transcript length, although this interaction is not required for it to bind RNAPII. Our comprehensive analysis shows that Ccr4-Not directly regulates transcription, and suggests it does so by promoting the resumption of elongation of arrested RNAPII when it encounters transcriptional blocks in vivo.
Collapse
Affiliation(s)
- Jennifer A Kruk
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
55
|
Larson MH, Landick R, Block SM. Single-molecule studies of RNA polymerase: one singular sensation, every little step it takes. Mol Cell 2011; 41:249-62. [PMID: 21292158 DOI: 10.1016/j.molcel.2011.01.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/09/2010] [Accepted: 01/05/2011] [Indexed: 11/17/2022]
Abstract
Transcription is the first of many biochemical steps that turn the genetic information found in DNA into the proteins responsible for driving cellular processes. In this review, we highlight certain advantages of single-molecule techniques in the study of prokaryotic and eukaryotic transcription, and the specific ways in which these techniques complement conventional, ensemble-based biochemistry. We focus on recent literature, highlighting examples where single-molecule methods have provided fresh insights into mechanism. We also present recent technological advances and outline future directions in the field.
Collapse
Affiliation(s)
- Matthew H Larson
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
56
|
Bernecky C, Grob P, Ebmeier CC, Nogales E, Taatjes DJ. Molecular architecture of the human Mediator-RNA polymerase II-TFIIF assembly. PLoS Biol 2011; 9:e1000603. [PMID: 21468301 PMCID: PMC3066130 DOI: 10.1371/journal.pbio.1000603] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 02/04/2011] [Indexed: 12/21/2022] Open
Abstract
The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.
Collapse
Affiliation(s)
- Carrie Bernecky
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Patricia Grob
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Christopher C. Ebmeier
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Eva Nogales
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
57
|
Uphoff S, Gryte K, Evans G, Kapanidis AN. Improved temporal resolution and linked hidden Markov modeling for switchable single-molecule FRET. Chemphyschem 2011; 12:571-9. [PMID: 21280168 DOI: 10.1002/cphc.201000834] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Indexed: 11/06/2022]
Abstract
Switchable FRET is the combination of single-molecule Förster resonance energy transfer (smFRET) with photoswitching, the reversible activation and deactivation of fluorophores by light. By photoswitching, multiple donor-acceptor fluorophore pairs can be probed sequentially, thus allowing observation of multiple distances within a single immobilized molecule. Control of the photoinduced switching rates permits adjustment of the temporal resolution of switchable FRET over a wide range of timescales, thereby facilitating application to various dynamical biological systems. We show that fast total internal reflection (TIRF) microscopy can achieve measurements of two FRET pairs with 10 ms temporal resolution within less than 2 s. The concept of switchable FRET is also compatible with confocal microscopy on immobilized molecules, providing better data quality at high temporal resolution. To identify states and extract their transitions from switchable FRET time traces, we also develop linked hidden Markov modeling (HMM) of both FRET and donor-acceptor stoichiometry. Linked HMM successfully identifies transient states in the two-dimensional FRET-stoichiometry space and reconstructs their connectivity network. Improved temporal resolution and novel data analysis make switchable FRET a valuable tool in molecular and structural biology.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Physics and Biological Physics Research Group, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | |
Collapse
|
58
|
Wang F, Greene EC. Single-molecule studies of transcription: from one RNA polymerase at a time to the gene expression profile of a cell. J Mol Biol 2011; 412:814-31. [PMID: 21255583 DOI: 10.1016/j.jmb.2011.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/05/2011] [Accepted: 01/08/2011] [Indexed: 12/30/2022]
Abstract
Single-molecule techniques have emerged as powerful tools for deciphering mechanistic details of transcription and have yielded discoveries that would otherwise have been impossible to make through the use of more traditional biochemical and/or biophysical techniques. Here, we provide a brief overview of single-molecule techniques most commonly used for studying RNA polymerase and transcription. We then present specific examples of single-molecule studies that have contributed to our understanding of key mechanistic details for each different stage of the transcription cycle. Finally, we discuss emerging single-molecule approaches and future directions, including efforts to study transcription at the single-molecule level in living cells.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
59
|
FRET (fluorescence resonance energy transfer) sheds light on transcription. Biochem Soc Trans 2011; 39:122-7. [DOI: 10.1042/bst0390122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The complex organization of the transcription machinery has been revealed mainly by biochemical and crystallographic studies. X-ray structures describe RNA polymerases and transcription complexes on an atomic level, but fail to portray their dynamic nature. The use of fluorescence techniques has made it possible to add a new layer of information to our understanding of transcription by providing details about the structural rearrangement of mobile elements and the network of interactions within transcription complexes in solution and in real-time.
Collapse
|
60
|
Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 2010; 285:34027-38. [PMID: 20720002 PMCID: PMC2962502 DOI: 10.1074/jbc.m110.145110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/03/2010] [Indexed: 11/06/2022] Open
Abstract
RNA capping enzyme (CE) is recruited specifically to RNA polymerase II (Pol II) transcription sites to facilitate cotranscriptional 5'-capping of pre-mRNA and other Pol II transcripts. The current model to explain this specific recruitment of CE to Pol II as opposed to Pol I and Pol III rests on the interaction between CE and the phosphorylated C-terminal domain (CTD) of Pol II largest subunit Rpb1 and more specifically between the CE nucleotidyltransferase domain and the phosphorylated CTD. Through biochemical and diffraction analyses, we demonstrate the existence of a distinctive stoichiometric complex between CE and the phosphorylated Pol II (Pol IIO). Analysis of the complex revealed an additional and unexpected polymerase-CE interface (PCI) located on the multihelical Foot domain of Rpb1. We name this interface PCI1 and the previously known nucleotidyltransferase/phosphorylated CTD interface PCI2. Although PCI1 and PCI2 individually contribute to only weak interactions with CE, a dramatically stabilized and stoichiometric complex is formed when PCI1 and PCI2 are combined in cis as they occur in an intact phosphorylated Pol II molecule. Disrupting either PCI1 or PCI2 by alanine substitution or deletion diminishes CE association with Pol II and causes severe growth defects in vivo. Evidence from manipulating PCI1 indicates that the Foot domain contributes to the specificity in CE interaction with Pol II as opposed to Pol I and Pol III. Our results indicate that the dual interface based on combining PCI1 and PCI2 is required for directing CE to Pol II elongation complexes.
Collapse
Affiliation(s)
- Man-Hee Suh
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Peter A. Meyer
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Meigang Gu
- the Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, and
| | - Ping Ye
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mincheng Zhang
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Craig D. Kaplan
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Christopher D. Lima
- the Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, and
| | - Jianhua Fu
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
61
|
Fernández-Tornero C, Böttcher B, Rashid UJ, Steuerwald U, Flörchinger B, Devos DP, Lindner D, Müller CW. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J 2010; 29:3762-72. [PMID: 20967027 DOI: 10.1038/emboj.2010.266] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/27/2010] [Indexed: 01/21/2023] Open
Abstract
RNA polymerase (Pol) III is responsible for the transcription of genes encoding small RNAs, including tRNA, 5S rRNA and U6 RNA. Here, we report the electron cryomicroscopy structures of yeast Pol III at 9.9 Å resolution and its elongation complex at 16.5 Å resolution. Particle sub-classification reveals prominent EM densities for the two Pol III-specific subcomplexes, C31/C82/C34 and C37/C53, that can be interpreted using homology models. While the winged-helix-containing C31/C82/C34 subcomplex initiates transcription from one side of the DNA-binding cleft, the C37/C53 subcomplex accesses the transcription bubble from the opposite side of this cleft. The transcribing Pol III enzyme structure not only shows the complete incoming DNA duplex, but also reveals the exit path of newly synthesized RNA. During transcriptional elongation, the Pol III-specific subcomplexes tightly enclose the incoming DNA duplex, which likely increases processivity and provides structural insights into the conformational switch between Pol III-mediated initiation and elongation.
Collapse
Affiliation(s)
- Carlos Fernández-Tornero
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Brunger AT, Strop P, Vrljic M, Chu S, Weninger KR. Three-dimensional molecular modeling with single molecule FRET. J Struct Biol 2010; 173:497-505. [PMID: 20837146 DOI: 10.1016/j.jsb.2010.09.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/08/2010] [Indexed: 01/09/2023]
Abstract
Single molecule fluorescence energy transfer experiments enable investigations of macromolecular conformation and folding by the introduction of fluorescent dyes at specific sites in the macromolecule. Multiple such experiments can be performed with different labeling site combinations in order to map complex conformational changes or interactions between multiple molecules. Distances that are derived from such experiments can be used for determination of the fluorophore positions by triangulation. When combined with a known structure of the macromolecule(s) to which the fluorophores are attached, a three-dimensional model of the system can be determined. However, care has to be taken to properly derive distance from fluorescence energy transfer efficiency and to recognize the systematic or random errors for this relationship. Here we review the experimental and computational methods used for three-dimensional modeling based on single molecule fluorescence resonance transfer, and describe recent progress in pushing the limits of this approach to macromolecular complexes.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute, Stanford University, CA 94305, USA.
| | | | | | | | | |
Collapse
|
63
|
Ha KS, Toulokhonov I, Vassylyev DG, Landick R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J Mol Biol 2010; 401:708-25. [PMID: 20600118 PMCID: PMC3682478 DOI: 10.1016/j.jmb.2010.06.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
NusA is a core, multidomain regulator of transcript elongation in bacteria and archaea. Bacterial NusA interacts with elongating complexes and the nascent RNA transcript in ways that stimulate pausing and termination but that can be switched to antipausing and antitermination by other accessory proteins. This regulatory complexity of NusA likely depends on its multidomain structure, but it remains unclear which NusA domains possess which regulatory activity and how they interact with elongating RNA polymerase. We used a series of truncated NusA proteins to measure the effect of the NusA domains on transcriptional pausing and termination. We find that the N-terminal domain (NTD) of NusA is necessary and sufficient for enhancement of transcriptional pausing and that the other NusA domains contribute to NusA binding to elongating complexes. Stimulation of intrinsic termination requires higher concentrations of NusA and involves both the NTD and other NusA domains. Using a tethered chemical protease in addition to protein-RNA cross-linking, we show that the NusA NTD contacts the RNA exit channel of RNA polymerase. Finally, we report evidence that the NusA NTD recognizes duplex RNA in the RNA exit channel.
Collapse
Affiliation(s)
- Kook Sun Ha
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Dmitry G. Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
64
|
Hohlbein J, Gryte K, Heilemann M, Kapanidis AN. Surfing on a new wave of single-molecule fluorescence methods. Phys Biol 2010; 7:031001. [DOI: 10.1088/1478-3975/7/3/031001] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
65
|
Missra A, Gilmour DS. Interactions between DSIF (DRB sensitivity inducing factor), NELF (negative elongation factor), and the Drosophila RNA polymerase II transcription elongation complex. Proc Natl Acad Sci U S A 2010; 107:11301-6. [PMID: 20534440 PMCID: PMC2895096 DOI: 10.1073/pnas.1000681107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative elongation factor (NELF) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) are involved in pausing RNA Polymerase II (Pol II) in the promoter-proximal region of the hsp70 gene in Drosophila, before heat shock induction. Such blocks in elongation are widespread in the Drosophila genome. However, the mechanism by which DSIF and NELF participate in setting up the paused Pol II remains unclear. We analyzed the interactions among DSIF, NELF, and a reconstituted Drosophila Pol II elongation complex to gain insight into the mechanism of pausing. Our results show that DSIF and NELF require a nascent transcript longer than 18 nt to stably associate with the Pol II elongation complex. Protein-RNA cross-linking reveals that Spt5, the largest subunit of DSIF, contacts the nascent RNA as the RNA emerges from the elongation complex. Taken together, these results provide a possible model by which DSIF binds the elongation complex via association with the nascent transcript and subsequently recruits NELF. Although DSIF and NELF were both required for inhibition of transcription, we did not detect a NELF-RNA contact when the nascent transcript was between 22 and 31 nt long, which encompasses the region where promoter-proximal pausing occurs on many genes in Drosophila. This raises the possibility that RNA binding by NELF is not necessary in promoter-proximal pausing.
Collapse
Affiliation(s)
- Anamika Missra
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - David S. Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
66
|
Grohmann D, Werner F. Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination. RNA Biol 2010; 7:310-5. [PMID: 20473037 PMCID: PMC2965726 DOI: 10.4161/rna.7.3.11912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Evolutionary related multisubunit RNA polymerases from all three domains of life, Eukarya, Archaea and Bacteria, have common structural and functional properties. We have recently shown that two RNAP subunits, F/E (RPB4/7)-which are conserved between eukaryotes and Archaea but have no bacterial homologues-interact with the nascent RNA chain and thereby profoundly modulate RNAP activity. Overall F/E increases transcription processivity, but it also stimulates transcription termination in a sequence-dependent manner. In addition to RNA-binding, these two apparently opposed processes are likely to involve an allosteric mechanism of the RNAP clamp. Spt4/5 is the only known RNAP-associated transcription factor that is conserved in all three domains of life, and it stimulates elongation similar to RNAP subunits F/E. Spt4/5 enhances processivity in a fashion that is independent of the nontemplate DNA strand, by interacting with the RNAP clamp. Whereas the molecular mechanism of Spt4/5 is universally conserved in evolution, the added functionality of F/E-like complexes has emerged after the split of the bacterial and archaeoeukaryotic lineages. Interestingly, bacteriophage-encoded antiterminator proteins could, in theory, fulfil an analogous function in the bacterial RNAP.
Collapse
Affiliation(s)
- Dina Grohmann
- RNAP laboratory; UCL Institute for Structural and Molecular Biology; Division of Biosciences; London, UK
| | - Finn Werner
- RNAP laboratory; UCL Institute for Structural and Molecular Biology; Division of Biosciences; London, UK
| |
Collapse
|
67
|
Grohmann D, Klose D, Klare JP, Kay CWM, Steinhoff HJ, Werner F. RNA-Binding to Archaeal RNA Polymerase Subunits F/E: A DEER and FRET Study. J Am Chem Soc 2010; 132:5954-5. [DOI: 10.1021/ja101663d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dina Grohmann
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Daniel Klose
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Johann P. Klare
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Christopher W. M. Kay
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Heinz-Jürgen Steinhoff
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| | - Finn Werner
- Institute of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom, and Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany
| |
Collapse
|
68
|
Klopper AV, Bois JS, Grill SW. Influence of secondary structure on recovery from pauses during early stages of RNA transcription. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:030904. [PMID: 20365690 DOI: 10.1103/physreve.81.030904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/29/2009] [Indexed: 05/29/2023]
Abstract
The initial stages of transcription by RNA polymerase are frequently marked by pausing and stalling events. These events have been linked to an inactive backtracked state in which the polymerase diffuses along the template DNA. We investigate theoretically the influence of RNA secondary structure in confining this diffusion. The effective confinement length peaks at transcript lengths commensurate with early stalling. This finite-size effect accounts for slow progress at the beginning of transcription, which we illustrate via stochastic hopping models for backtracking polymerases.
Collapse
Affiliation(s)
- A V Klopper
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | | | | |
Collapse
|
69
|
Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat Struct Mol Biol 2010; 17:318-24. [PMID: 20173763 PMCID: PMC2922927 DOI: 10.1038/nsmb.1763] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 12/11/2009] [Indexed: 12/11/2022]
Abstract
Synchronous neurotransmission is triggered when Ca(2+) binds to synaptotagmin 1 (Syt1), a synaptic-vesicle protein that interacts with SNAREs and membranes. We used single-molecule fluorescence resonance energy transfer (FRET) between synaptotagmin's two C2 domains to determine that their conformation consists of multiple states with occasional transitions, consistent with domains in random relative motion. SNARE binding results in narrower intrasynaptotagmin FRET distributions and less frequent transitions between states. We obtained an experimentally determined model of the elusive Syt1-SNARE complex using a multibody docking approach with 34 FRET-derived distances as restraints. The Ca(2+)-binding loops point away from the SNARE complex, so they may interact with the same membrane. The loop arrangement is similar to that of the crystal structure of SNARE-induced Ca(2+)-bound Syt3, suggesting a common mechanism by which the interaction between synaptotagmins and SNAREs aids in Ca(2+)-triggered fusion.
Collapse
Affiliation(s)
- Ucheor B. Choi
- Department of Physics, North Carolina State University, Raleigh, NC 27695
| | - Pavel Strop
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305
| | - Marija Vrljic
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305
| | - Steven Chu
- Departments of Physics and Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Axel T. Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305
| | - Keith R. Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
70
|
|
71
|
Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2009; 106:20758-63. [PMID: 19933326 DOI: 10.1073/pnas.0909644106] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor p53 is a member of the emerging class of proteins that have both folded and intrinsically disordered domains, which are a challenge to structural biology. Its N-terminal domain (NTD) is linked to a folded core domain, which has a disordered link to the folded tetramerization domain, which is followed by a disordered C-terminal domain. The quaternary structure of human p53 has been solved by a combination of NMR spectroscopy, electron microscopy, and small-angle X-ray scattering (SAXS), and the NTD ensemble structure has been solved by NMR and SAXS. The murine p53 is reported to have a different quaternary structure, with the N and C termini interacting. Here, we used single-molecule FRET (SM-FRET) and ensemble FRET to investigate the conformational dynamics of the NTD of p53 in isolation and in the context of tetrameric full-length p53 (flp53). Our results showed that the isolated NTD was extended in solution with a strong preference for residues 66-86 forming a polyproline II conformation. The NTD associated weakly with the DNA binding domain of p53, but not the C termini. We detected multiple conformations in flp53 that were likely to result from the interactions of NTD with the DNA binding domain of each monomeric p53. Overall, the SM-FRET results, in addition to corroborating the previous ensemble findings, enabled the identification of the existence of multiple conformations of p53, which are often averaged and neglected in conventional ensemble techniques. Our study exemplifies the usefulness of SM-FRET in exploring the dynamic landscape of multimeric proteins that contain regions of unstructured domains.
Collapse
|
72
|
Hirtreiter A, Grohmann D, Werner F. Molecular mechanisms of RNA polymerase--the F/E (RPB4/7) complex is required for high processivity in vitro. Nucleic Acids Res 2009; 38:585-96. [PMID: 19906731 PMCID: PMC2811020 DOI: 10.1093/nar/gkp928] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Transcription elongation in vitro is affected by the interactions between RNA polymerase (RNAP) subunits and the nucleic acid scaffold of the ternary elongation complex (TEC, RNAP-DNA–RNA). We have investigated the role of the RNAP subunits F/E (homologous to eukaryotic RPB4/7) during transcription elongation and termination using a wholly recombinant archaeal RNAP and synthetic nucleic acid scaffolds. The F/E complex greatly stimulates the processivity of RNAP, it enhances the formation of full length products, reduces pausing, and increases transcription termination facilitated by weak termination signals. Mutant variants of F/E that are defective in RNA binding show that these activities correlate with the nucleic acid binding properties of F/E. However, a second RNA-binding independent component also contributes to the stimulatory activities of F/E. In summary, our results suggest that interactions between RNAP subunits F/E and the RNA transcript are pivotal to the molecular mechanisms of RNAP during transcription elongation and termination.
Collapse
Affiliation(s)
- Angela Hirtreiter
- Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
73
|
Hirata A, Murakami KS. Archaeal RNA polymerase. Curr Opin Struct Biol 2009; 19:724-31. [PMID: 19880312 DOI: 10.1016/j.sbi.2009.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/21/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The recently solved X-ray crystal structures of archaeal RNA polymerase (RNAP) allow a structural comparison of the transcription machinery among all three domains of life. Archaeal transcription is very simple and all components, including the structures of general transcription factors and RNAP, are highly conserved in eukaryotes. Therefore, it could be a new model for the dissection of the eukaryotic transcription apparatus. The archaeal RNAP structure also provides a framework for addressing the functional role that Fe-S clusters play within the transcription machinery of archaea and eukaryotes. A comparison between bacterial and archaeal open complex models reveals likely key motifs of archaeal RNAP for DNA unwinding during the open complex formation.
Collapse
Affiliation(s)
- Akira Hirata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
74
|
Dengl S, Cramer P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J Biol Chem 2009; 284:21270-9. [PMID: 19535338 PMCID: PMC2755851 DOI: 10.1074/jbc.m109.013847] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/28/2009] [Indexed: 11/06/2022] Open
Abstract
Termination of RNA polymerase (pol) II transcription in vivo requires the 5'-RNA exonuclease Rat1. It was proposed that Rat1 degrades RNA from the 5'-end that is created by transcript cleavage, catches up with elongating pol II, and acts like a Torpedo that removes pol II from DNA. Here we test the Torpedo model in an in vitro system based on bead-coupled pol II elongation complexes (ECs). Recombinant Rat1 complexes with Rai1, and with Rai1 and Rtt103, degrade RNA extending from the EC until they reach the polymerase surface but fail to terminate pol II. Instead, the EC retains an approximately 18-nucleotide RNA that remains with its 3'-end at the active site and can be elongated. Thus, pol II termination apparently requires a factor or several factors in addition to Rat1, Rai1, and Rtt103, post-translational modifications of these factors, or unusual reaction conditions.
Collapse
Affiliation(s)
- Stefan Dengl
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Patrick Cramer
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
75
|
Andrecka J, Treutlein B, Arcusa MAI, Muschielok A, Lewis R, Cheung ACM, Cramer P, Michaelis J. Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Res 2009; 37:5803-9. [PMID: 19620213 PMCID: PMC2761271 DOI: 10.1093/nar/gkp601] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Crystallographic studies of the RNA polymerase II (Pol II) elongation complex (EC) revealed the locations of downstream DNA and the DNA-RNA hybrid, but not the course of the nontemplate DNA strand in the transcription bubble and the upstream DNA duplex. Here we used single-molecule Fluorescence Resonance Energy Transfer (smFRET) experiments to locate nontemplate and upstream DNA with our recently developed Nano Positioning System (NPS). In the resulting complete model of the Pol II EC, separation of the nontemplate from the template strand at position +2 involves interaction with fork loop 2. The nontemplate strand passes loop β10-β11 on the Pol II lobe, and then turns to the other side of the cleft above the rudder. The upstream DNA duplex exits at an approximately right angle from the incoming downstream DNA, and emanates from the cleft between the protrusion and clamp. Comparison with published data suggests that the architecture of the complete EC is conserved from bacteria to eukaryotes and that upstream DNA is relocated during the initiation–elongation transition.
Collapse
Affiliation(s)
- Joanna Andrecka
- Department of Chemistry and Biochemistry and Center for Integrated Protein Science München, Ludwig-Maximilians-Universität München, Butenandtstr.11, 81377 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Person B, Stein IH, Steinhauer C, Vogelsang J, Tinnefeld P. Correlated Movement and Bending of Nucleic Acid Structures Visualized by Multicolor Single-Molecule Spectroscopy. Chemphyschem 2009; 10:1455-60. [DOI: 10.1002/cphc.200900109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
77
|
Biology, one molecule at a time. Trends Biochem Sci 2009; 34:234-43. [PMID: 19362843 DOI: 10.1016/j.tibs.2009.01.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 11/21/2022]
Abstract
Single-molecule techniques have moved from being a fascinating curiosity to a highlight of life science research. The single-molecule approach to biology offers distinct advantages over the conventional approach of taking bulk measurements; this additional information content usually comes at the cost of the additional complexity. Popular single-molecule methods include optical and magnetic tweezers, atomic force microscopy, tethered particle motion and single-molecule fluorescence spectroscopy; the complement of these methods offers a wide range of spatial and temporal capabilities. These approaches have been instrumental in addressing important biological questions in diverse areas such as protein-DNA interactions, protein folding and the function(s) of membrane proteins.
Collapse
|
78
|
Jung C, Ruthardt N, Lewis R, Michaelis J, Sodeik B, Nolde F, Peneva K, Müllen K, Bräuchle C. Photophysics of New Water-Soluble Terrylenediimide Derivatives and Applications in Biology. Chemphyschem 2009; 10:180-90. [DOI: 10.1002/cphc.200800628] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
79
|
Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis. Proc Natl Acad Sci U S A 2008; 106:127-32. [PMID: 19109435 DOI: 10.1073/pnas.0811689106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A simple genetic tag-based labeling method that permits specific attachment of a fluorescence probe near the C terminus of virtually any subunit of a protein complex is implemented. Its immediate application to yeast RNA polymerase II (pol II) enables us to test various hypotheses of RNA exit channel by using fluorescence resonance energy transfer (FRET) analysis. The donor dye is labeled on a site near subunit Rpb3 or Rpb4, and the acceptor dye is attached to the 5' end of RNA transcript in the pol II elongation complex. Both in-gel and single-molecule FRET analysis show that the growing RNA is leading toward Rpb4, not Rpb3, supporting the notion that RNA exits through the proposed channel 1. Distance constraints derived from our FRET results, in conjunction with triangulation, reveal the exit track of RNA transcript on core pol II by identifying amino acids in the vicinity of the 5' end of RNA and show that the extending RNA forms contacts with the Rpb7 subunit. The significance of RNA exit route in promoter escape and that in cotranscriptional mRNA processing is discussed.
Collapse
|
80
|
Abstract
We present advances in the use of single-molecule FRET measurements with flexibly linked dyes to derive full 3D structures of DNA constructs based on absolute distances. The resolution obtained by this single-molecule approach harbours the potential to study in detail also protein- or damage-induced DNA bending. If one is to generate a geometric structural model, distances between fixed positions are needed. These are usually not experimentally accessible because of unknown fluorophore-linker mobility effects that lead to a distribution of FRET efficiencies and distances. To solve this problem, we performed studies on DNA double-helices by systematically varying donor acceptor distances from 2 to 10 nm. Analysis of dye-dye quenching and fluorescence anisotropy measurements reveal slow positional and fast orientational fluorophore dynamics, that results in an isotropic average of the FRET efficiency. We use a nonlinear conversion function based on MD simulations that allows us to include this effect in the calculation of absolute FRET distances. To obtain unique structures, we performed a quantitative statistical analysis for the conformational search in full space based on triangulation, which uses the known helical nucleic acid features. Our higher accuracy allowed the detection of sequence-dependent DNA bending by 16 degrees . For DNA with bulged adenosines, we also quantified the kink angles introduced by the insertion of 1, 3 and 5 bases to be 32 degrees +/- 6 degrees , 56 degrees +/- 4 degrees and 73 +/- 2 degrees , respectively. Moreover, the rotation angles and shifts of the helices were calculated to describe the relative orientation of the two arms in detail.
Collapse
|
81
|
A nano-positioning system for macromolecular structural analysis. Nat Methods 2008; 5:965-71. [DOI: 10.1038/nmeth.1259] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/08/2008] [Indexed: 01/08/2023]
|
82
|
Mejia YX, Mao H, Forde NR, Bustamante C. Thermal probing of E. coli RNA polymerase off-pathway mechanisms. J Mol Biol 2008; 382:628-37. [PMID: 18647607 PMCID: PMC2615098 DOI: 10.1016/j.jmb.2008.06.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/16/2008] [Accepted: 06/25/2008] [Indexed: 11/28/2022]
Abstract
RNA polymerase (RNAP) is an essential enzyme for cellular gene expression. In an effort to further understand the enzyme's importance in the cell's response to temperature, we have probed the kinetic mechanism of Escherichia coli RNAP by studying the force-velocity behavior of individual RNAP complexes at temperatures between 7 and 45 degrees C using optical tweezers. Within this temperature range and at saturating nucleotide concentrations, the pause-free transcription velocity of RNAP was independent of force and increased monotonically with temperature with an elongation activation energy of 9.7+/-0.7 kcal/mol. Interestingly, the pause density at cold temperatures (7 to 21 degrees C) was five times higher than that measured above room temperature. A simple kinetic model revealed a value of 1.29+/-0.05 kcal/mol for the activation energy of pause entry, suggesting that pause entry is indeed a thermally accessible process. The dwell time distribution of all observable pauses was independent of temperature, directly confirming a prediction of the model recently proposed for Pol II in which pauses are diffusive backtracks along the DNA. Additionally, we find that the force at which the polymerase arrests (the arrest force) presents a maximum at 21 degrees C, an unexpected result as this is not the optimum temperature for bacterial growth. This observation suggests that arrest could play a regulatory role in vivo, possibly through interactions with specific elongation factors.
Collapse
Affiliation(s)
- Yara X. Mejia
- Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720
| | - Hanbin Mao
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Nancy R. Forde
- The Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Department of Physics, University of California, Berkeley, CA 94720
- The Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
83
|
Gilmour DS. Promoter proximal pausing on genes in metazoans. Chromosoma 2008; 118:1-10. [PMID: 18830703 DOI: 10.1007/s00412-008-0182-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/14/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
The past two decades of research into transcriptional control of protein-encoding genes in eukaryotes have focused on regulatory mechanisms that act by controlling the recruitment of Pol II to a gene's promoter. Recent genome-wide analyses of the distribution of Pol II indicates that Pol II is concentrated in the promoter regions of thousands of genes in human and Drosophila cells. In many cases, Pol II may have initiated transcription but paused in the promoter proximal region. Hence, release of Pol II from the promoter region into the body of a gene is now recognized as a common rate-limiting step in the control of gene expression. Notably, most genes with paused Pol II are expressed indicating that the pause can be transient. What causes Pol II to concentrate in the promoter region and how it is released to transcribe a gene are the focus of this review.
Collapse
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
84
|
Red light, green light: probing single molecules using alternating-laser excitation. Biochem Soc Trans 2008; 36:738-44. [PMID: 18631150 DOI: 10.1042/bst0360738] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single-molecule fluorescence methods, particularly single-molecule FRET (fluorescence resonance energy transfer), have provided novel insights into the structure, interactions and dynamics of biological systems. ALEX (alternating-laser excitation) spectroscopy is a new method that extends single-molecule FRET by providing simultaneous information about structure and stoichiometry; this new information allows the detection of interactions in the absence of FRET and extends the dynamic range of distance measurements that are accessible through FRET. In the present article, we discuss combinations of ALEX with confocal microscopy for studying in-solution and in-gel molecules; we also discuss combining ALEX with TIRF (total internal reflection fluorescence) for studying surface-immobilized molecules. We also highlight applications of ALEX to the study of protein-nucleic acid interactions.
Collapse
|
85
|
Düser MG, Bi Y, Zarrabi N, Dunn SD, Börsch M. The proton-translocating a subunit of F0F1-ATP synthase is allocated asymmetrically to the peripheral stalk. J Biol Chem 2008; 283:33602-10. [PMID: 18786919 DOI: 10.1074/jbc.m805170200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, gamma or epsilon, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those previously determined relative to the b subunit dimer indicates the position of a as adjacent to the b dimer on its counterclockwise side when the enzyme is viewed from the cytoplasm. This relationship provides stability to the membrane interface between a and b2, allowing it to withstand the torque imparted by the rotor during ATP synthesis as well as ATP hydrolysis.
Collapse
Affiliation(s)
- Monika G Düser
- 3, Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
86
|
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is one of the most general and adaptable single-molecule techniques. Despite the explosive growth in the application of smFRET to answer biological questions in the last decade, the technique has been practiced mostly by biophysicists. We provide a practical guide to using smFRET, focusing on the study of immobilized molecules that allow measurements of single-molecule reaction trajectories from 1 ms to many minutes. We discuss issues a biologist must consider to conduct successful smFRET experiments, including experimental design, sample preparation, single-molecule detection and data analysis. We also describe how a smFRET-capable instrument can be built at a reasonable cost with off-the-shelf components and operated reliably using well-established protocols and freely available software.
Collapse
|
87
|
Lewis R, Dürr H, Hopfner KP, Michaelis J. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Res 2008; 36:1881-90. [PMID: 18267970 PMCID: PMC2346605 DOI: 10.1093/nar/gkn040] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Remodelling protein nucleic acid interfaces is an important biological task, which is often carried out by nucleic acid stimulated ATPases of the Swi2/Snf2 superfamily. Here we study the mechano-chemical cycle of such an ATPase, namely the catalytic domain of the Sulfolobus solfataricus Rad54 homologue (SsoRad54cd), by means of fluorescence resonance energy transfer (FRET). The results of the FRET studies show that the enzyme can be found in (at least) two different possible conformations in solution. An open conformation, consistent with a recently reported crystal structure, is converted into a closed conformation after DNA binding. Upon subsequent binding of ATP no further change in conformation can be detected by the FRET measurements. Instead, a FRET detectable conformational change occurs after ATP hydrolysis and prior to ADP release, suggesting a powerstroke that is linked to phosphate release. Based on these data we will present a new model for the mechano-chemical cycle of this enzyme. This scheme in turn provides a working model for understanding the function of other members of the Swi2/Snf2 family.
Collapse
Affiliation(s)
- Robert Lewis
- Department of Chemistry and Biochemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 München, Germany
| | | | | | | |
Collapse
|