51
|
Priede IG, Bergstad OA, Miller PI, Vecchione M, Gebruk A, Falkenhaug T, Billett DSM, Craig J, Dale AC, Shields MA, Tilstone GH, Sutton TT, Gooday AJ, Inall ME, Jones DOB, Martinez-Vicente V, Menezes GM, Niedzielski T, Sigurðsson Þ, Rothe N, Rogacheva A, Alt CHS, Brand T, Abell R, Brierley AS, Cousins NJ, Crockard D, Hoelzel AR, Høines Å, Letessier TB, Read JF, Shimmield T, Cox MJ, Galbraith JK, Gordon JDM, Horton T, Neat F, Lorance P. Does presence of a mid-ocean ridge enhance biomass and biodiversity? PLoS One 2013; 8:e61550. [PMID: 23658696 PMCID: PMC3642170 DOI: 10.1371/journal.pone.0061550] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/11/2013] [Indexed: 11/19/2022] Open
Abstract
In contrast to generally sparse biological communities in open-ocean settings, seamounts and ridges are perceived as areas of elevated productivity and biodiversity capable of supporting commercial fisheries. We investigated the origin of this apparent biological enhancement over a segment of the North Mid-Atlantic Ridge (MAR) using sonar, corers, trawls, traps, and a remotely operated vehicle to survey habitat, biomass, and biodiversity. Satellite remote sensing provided information on flow patterns, thermal fronts, and primary production, while sediment traps measured export flux during 2007-2010. The MAR, 3,704,404 km(2) in area, accounts for 44.7% lower bathyal habitat (800-3500 m depth) in the North Atlantic and is dominated by fine soft sediment substrate (95% of area) on a series of flat terraces with intervening slopes either side of the ridge axis contributing to habitat heterogeneity. The MAR fauna comprises mainly species known from continental margins with no evidence of greater biodiversity. Primary production and export flux over the MAR were not enhanced compared with a nearby reference station over the Porcupine Abyssal Plain. Biomasses of benthic macrofauna and megafauna were similar to global averages at the same depths totalling an estimated 258.9 kt C over the entire lower bathyal north MAR. A hypothetical flat plain at 3500 m depth in place of the MAR would contain 85.6 kt C, implying an increase of 173.3 kt C attributable to the presence of the Ridge. This is approximately equal to 167 kt C of estimated pelagic biomass displaced by the volume of the MAR. There is no enhancement of biological productivity over the MAR; oceanic bathypelagic species are replaced by benthic fauna otherwise unable to survive in the mid ocean. We propose that globally sea floor elevation has no effect on deep sea biomass; pelagic plus benthic biomass is constant within a given surface productivity regime.
Collapse
Affiliation(s)
- Imants G Priede
- Oceanlab, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Pape E, Jones DOB, Manini E, Bezerra TN, Vanreusel A. Benthic-pelagic coupling: effects on nematode communities along southern European continental margins. PLoS One 2013; 8:e59954. [PMID: 23565176 PMCID: PMC3615007 DOI: 10.1371/journal.pone.0059954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/20/2013] [Indexed: 11/18/2022] Open
Abstract
Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes.
Collapse
Affiliation(s)
- Ellen Pape
- Marine Biology Research Group, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
53
|
Katoh E, Sbragaglia V, Aguzzi J, Breithaupt T. Sensory biology and behaviour of Nephrops norvegicus. ADVANCES IN MARINE BIOLOGY 2013; 64:65-106. [PMID: 23668588 DOI: 10.1016/b978-0-12-410466-2.00003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Norway lobster is one of the most important commercial crustaceans in Europe. A detailed knowledge of the behaviour of this species is crucial in order to optimize fishery yields, improve sustainability of fisheries, and identify man-made environmental threats. Due to the cryptic life-style in burrows, the great depth and low-light condition of their habitat, studies of the behaviour of this species in its natural environment are challenging. Here, we first provide an overview of the sensory modalities (vision, chemoreception, and mechanoreception) of Nephrops norvegicus. We focus particularly on the role of the chemical and mechanical senses in eliciting and steering spatial orientation behaviours. We then concentrate on recent research in social behaviour and biological rhythms of Nephrops. A combination of laboratory approaches and newly developed tracking technologies has led to a better understanding of aggressive interactions, reproductive behaviours, activity cycles, and burrow-related behaviours. Gaps in our knowledge are identified and suggestions for future research are provided.
Collapse
Affiliation(s)
- Emi Katoh
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
54
|
Bergmann M, Klages M. Increase of litter at the Arctic deep-sea observatory HAUSGARTEN. MARINE POLLUTION BULLETIN 2012; 64:2734-2741. [PMID: 23083926 DOI: 10.1016/j.marpolbul.2012.09.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/18/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
Although recent research has shown that marine litter has made it even to the remotest parts of our planet, little information is available about temporal trends on the deep ocean floor. To quantify litter on the deep seafloor over time, we analysed images from the HAUSGARTEN observatory (79°N) taken in 2002, 2004, 2007, 2008 and 2011 (2500 m depth). Our results indicate that litter increased from 3635 to 7710 items km⁻² between 2002 and 2011 and reached densities similar to those reported from a canyon near the Portuguese capital Lisboa. Plastic constituted the majority of litter (59%) followed by a black fabric (11%) and cardboard/paper (7%). Sixty-seven percent of the litter was entangled or colonised by invertebrates such as sponges (41%) or sea anemones (15%). The changes in litter could be an indirect consequence of the receding sea ice, which opens the Arctic Ocean to the impacts of man's activities.
Collapse
Affiliation(s)
- Melanie Bergmann
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | | |
Collapse
|
55
|
Drazen JC, Bailey DM, Ruhl HA, Smith KL. The role of carrion supply in the abundance of deep-water fish off California. PLoS One 2012; 7:e49332. [PMID: 23133679 PMCID: PMC3487845 DOI: 10.1371/journal.pone.0049332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022] Open
Abstract
Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.
Collapse
Affiliation(s)
- Jeffrey C Drazen
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America.
| | | | | | | |
Collapse
|
56
|
Wei CL, Rowe GT, Haedrich RL, Boland GS. Long-term observations of epibenthic fish zonation in the deep northern Gulf of Mexico. PLoS One 2012; 7:e46707. [PMID: 23056412 PMCID: PMC3463567 DOI: 10.1371/journal.pone.0046707] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 09/07/2012] [Indexed: 11/18/2022] Open
Abstract
A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.
Collapse
Affiliation(s)
- Chih-Lin Wei
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, Canada.
| | | | | | | |
Collapse
|
57
|
Schoening T, Bergmann M, Ontrup J, Taylor J, Dannheim J, Gutt J, Purser A, Nattkemper TW. Semi-automated image analysis for the assessment of megafaunal densities at the Arctic deep-sea observatory HAUSGARTEN. PLoS One 2012; 7:e38179. [PMID: 22719868 PMCID: PMC3367988 DOI: 10.1371/journal.pone.0038179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/01/2012] [Indexed: 11/19/2022] Open
Abstract
Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS.
Collapse
Affiliation(s)
- Timm Schoening
- Biodata Mining Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Karl DM, Church MJ, Dore JE, Letelier RM, Mahaffey C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proc Natl Acad Sci U S A 2012; 109:1842-9. [PMID: 22308450 PMCID: PMC3277559 DOI: 10.1073/pnas.1120312109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the "biological carbon pump." Herein, we present results from a 13-y (1992-2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15-August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m(-2)·d(-1) for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea.
Collapse
Affiliation(s)
- David M Karl
- Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | | | |
Collapse
|
59
|
Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD. Climate change impacts on marine ecosystems. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:11-37. [PMID: 22457967 DOI: 10.1146/annurev-marine-041911-111611] [Citation(s) in RCA: 888] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.
Collapse
Affiliation(s)
- Scott C Doney
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Stemmann L, Boss E. Plankton and particle size and packaging: from determining optical properties to driving the biological pump. ANNUAL REVIEW OF MARINE SCIENCE 2012; 4:263-90. [PMID: 22457976 DOI: 10.1146/annurev-marine-120710-100853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Understanding pelagic ecology and quantifying energy fluxes through the trophic web and from the surface to the deep ocean requires the ability to detect and identify all organisms and particles in situ and in a synoptic manner. An idealized sensor should observe both the very small living or dead particles such as picoplankton and detritus, respectively, and the large particles such as aggregates and meso- to macroplankton. Such an instrument would reveal an astonishing amount and diversity of living and nonliving particles present in a parcel of water. Unfortunately such sensors do not exist. However, complex interactions constrain the space, temporal, and size distributions of these objects in such ways that general rules can be inferred from the measurement of their optical properties. Recent technological developments allow for the in situ measurement of the optical properties and size distributions of particles and plankton in a way such that synoptic surveys are possible. This review deals with particle and plankton size distributions (PSDs) as well as how particles' geometry and nature affect their optical properties. Finally, we propose the integration of the PSD into size-structured mathematical models of biogeochemical fluxes.
Collapse
Affiliation(s)
- L Stemmann
- Université Pierre et Marie Curie (UPMC), Paris 06, UMR 7093, Observatoire Océanographique (LOV), F-06234 Villefranche/Mer, France.
| | | |
Collapse
|
61
|
Ramirez-Llodra E, Tyler PA, Baker MC, Bergstad OA, Clark MR, Escobar E, Levin LA, Menot L, Rowden AA, Smith CR, Van Dover CL. Man and the last great wilderness: human impact on the deep sea. PLoS One 2011; 6:e22588. [PMID: 21829635 PMCID: PMC3148232 DOI: 10.1371/journal.pone.0022588] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.
Collapse
Affiliation(s)
- Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom
| | | | - Malcolm R. Clark
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Elva Escobar
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, México, D.F., Mexico
| | - Lisa A. Levin
- Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, California, United States of America
| | | | - Ashley A. Rowden
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Craig R. Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| |
Collapse
|
62
|
Jennings RM, Etter RJ. Exon-primed, intron-crossing (EPIC) loci for five nuclear genes in deep-sea protobranch bivalves: primer design, PCR protocols and locus utility. Mol Ecol Resour 2011; 11:1102-12. [PMID: 21689382 DOI: 10.1111/j.1755-0998.2011.03038.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe PCR primers and amplification protocols developed to obtain introns from conserved nuclear genes in deep-sea protobranch bivalves. Because almost no sequence data for protobranchs are publically available, mollusk and other protostome sequences from GenBank were used to design degenerate primers, making these loci potentially useful in other invertebrate taxa. Amplification and sequencing success varied across the test group of 30 species, and we present five loci spanning this range of outcomes. Intron presence in the targeted regions also varied across genes and species, often within single genera; for instance, the calmodulin and β-tubulin loci contained introns with high frequency, whereas the triose phosphate isomerase locus never contained an intron. In introns for which we were able to obtain preliminary estimates of polymorphism levels in single species, polymorphism was greater than traditional mitochondrial loci. These markers will greatly increase the ability to assess population structure in the ecologically important protobranchs, and may prove useful in other taxa as well.
Collapse
Affiliation(s)
- Robert M Jennings
- Biology Department, University of Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125, USA.
| | | |
Collapse
|
63
|
Wolff GA, Billett DSM, Bett BJ, Holtvoeth J, FitzGeorge-Balfour T, Fisher EH, Cross I, Shannon R, Salter I, Boorman B, King NJ, Jamieson A, Chaillan F. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean. PLoS One 2011; 6:e20697. [PMID: 21695118 PMCID: PMC3114783 DOI: 10.1371/journal.pone.0020697] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/06/2011] [Indexed: 11/17/2022] Open
Abstract
The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.
Collapse
Affiliation(s)
- George A Wolff
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wei CL, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, Soliman Y, Huettmann F, Qu F, Yu Z, Pitcher CR, Haedrich RL, Wicksten MK, Rex MA, Baguley JG, Sharma J, Danovaro R, MacDonald IR, Nunnally CC, Deming JW, Montagna P, Lévesque M, Weslawski JM, Wlodarska-Kowalczuk M, Ingole BS, Bett BJ, Billett DSM, Yool A, Bluhm BA, Iken K, Narayanaswamy BE. Global patterns and predictions of seafloor biomass using random forests. PLoS One 2010; 5:e15323. [PMID: 21209928 DOI: 10.1371/journal.pone.0014284.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/08/2010] [Indexed: 05/26/2023] Open
Abstract
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
Collapse
Affiliation(s)
- Chih-Lin Wei
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Wei CL, Rowe GT, Escobar-Briones E, Boetius A, Soltwedel T, Caley MJ, Soliman Y, Huettmann F, Qu F, Yu Z, Pitcher CR, Haedrich RL, Wicksten MK, Rex MA, Baguley JG, Sharma J, Danovaro R, MacDonald IR, Nunnally CC, Deming JW, Montagna P, Lévesque M, Weslawski JM, Wlodarska-Kowalczuk M, Ingole BS, Bett BJ, Billett DSM, Yool A, Bluhm BA, Iken K, Narayanaswamy BE. Global patterns and predictions of seafloor biomass using random forests. PLoS One 2010; 5:e15323. [PMID: 21209928 PMCID: PMC3012679 DOI: 10.1371/journal.pone.0015323] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022] Open
Abstract
A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
Collapse
Affiliation(s)
- Chih-Lin Wei
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Danovaro R, Company JB, Corinaldesi C, D'Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sardà F, Sibuet M, Tselepides A. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 2010; 5:e11832. [PMID: 20689848 PMCID: PMC2914020 DOI: 10.1371/journal.pone.0011832] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/28/2010] [Indexed: 11/28/2022] Open
Abstract
Deep-sea ecosystems represent the largest biome of the global biosphere, but
knowledge of their biodiversity is still scant. The Mediterranean basin has been
proposed as a hot spot of terrestrial and coastal marine biodiversity but has
been supposed to be impoverished of deep-sea species richness. We summarized all
available information on benthic biodiversity (Prokaryotes, Foraminifera,
Meiofauna, Macrofauna, and Megafauna) in different deep-sea ecosystems of the
Mediterranean Sea (200 to more than 4,000 m depth), including open slopes, deep
basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline
anoxic basins and analyzed overall longitudinal and bathymetric patterns. We
show that in contrast to what was expected from the sharp decrease in organic
carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both
the eastern and the western basins of the Mediterranean Sea is similarly high.
All of the biodiversity components, except Bacteria and Archaea, displayed a
decreasing pattern with increasing water depth, but to a different extent for
each component. Unlike patterns observed for faunal abundance, highest negative
values of the slopes of the biodiversity patterns were observed for Meiofauna,
followed by Macrofauna and Megafauna. Comparison of the biodiversity associated
with open slopes, deep basins, canyons, and deep-water corals showed that the
deep basins were the least diverse. Rarefaction curves allowed us to estimate
the expected number of species for each benthic component in different
bathymetric ranges. A large fraction of exclusive species was associated with
each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes
significantly to overall biodiversity. From theoretical extrapolations we
estimate that the overall deep-sea Mediterranean biodiversity (excluding
prokaryotes) reaches approximately 2805 species of which about 66% is
still undiscovered. Among the biotic components investigated (Prokaryotes
excluded), most of the unknown species are within the phylum Nematoda, followed
by Foraminifera, but an important fraction of macrofaunal and megafaunal species
also remains unknown. Data reported here provide new insights into the patterns
of biodiversity in the deep-sea Mediterranean and new clues for future
investigations aimed at identifying the factors controlling and threatening
deep-sea biodiversity.
Collapse
Affiliation(s)
- Roberto Danovaro
- Dipartimento Scienze del Mare, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Glover AG, Gooday AJ, Bailey DM, Billett DSM, Chevaldonné P, Colaço A, Copley J, Cuvelier D, Desbruyères D, Kalogeropoulou V, Klages M, Lampadariou N, Lejeusne C, Mestre NC, Paterson GLJ, Perez T, Ruhl H, Sarrazin J, Soltwedel T, Soto EH, Thatje S, Tselepides A, Van Gaever S, Vanreusel A. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies. ADVANCES IN MARINE BIOLOGY 2010; 58:1-95. [PMID: 20959156 DOI: 10.1016/b978-0-12-381015-1.00001-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales by stochastic events such as volcanic eruptions, with associated fauna showing complex patterns of community succession. For the slow-spreading centres such as the Mid-Atlantic Ridge, vent sites appear to be stable over the time periods measured, with no discernable long-term trend. At cold seeps, inferences based on spatial studies in the Gulf of Mexico, and data on organism longevity, suggest that these sites are stable over many hundreds of years. However, at the Haakon Mosby mud volcano, a large, well-studied seep in the Barents Sea, periodic mud slides associated with gas and fluid venting may disrupt benthic communities, leading to successional sequences over time. For chemosynthetic ecosystems of biogenic origin (e.g. whale-falls), it is likely that the longevity of the habitat depends mainly on the size of the carcass and the ecological setting, with large remains persisting as a distinct seafloor habitat for up to 100 years. Studies of shallow-water analogs of deep-sea ecosystems such as marine caves may also yield insights into temporal processes. Although it is obvious from the geological record that past climate change has impacted deep-sea faunas, the evidence that recent climate change or climate variability has altered deep-sea benthic communities is extremely limited. This mainly reflects the lack of remote sensing of this vast seafloor habitat. Current and future advances in deep-ocean benthic science involve new remote observing technologies that combine a high temporal resolution (e.g. cabled observatories) with spatial capabilities (e.g. autonomous vehicles undertaking image surveys of the seabed).
Collapse
Affiliation(s)
- A G Glover
- Zoology Department, The Natural History Museum, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|