51
|
Morard M, Macías LG, Adam AC, Lairón-Peris M, Pérez-Torrado R, Toft C, Barrio E. Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae. Front Genet 2019; 10:82. [PMID: 30809248 PMCID: PMC6379819 DOI: 10.3389/fgene.2019.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant strains, was a polysomic chromosome III. Transcriptomic data point out that chromosome III is important for the ethanol stress response, and this aneuploidy can be an advantage to respond rapidly to ethanol stress. We found that chromosome III copy numbers also explain differences in other strains. We show that removing the extra chromosome III copy in an ethanol-tolerant strain, returning to euploidy, strongly compromises its tolerance. Chromosome III aneuploidy appears frequently in ethanol-tolerance evolution experiments, and here, we show that aneuploidy is also used by natural strains to enhance their ethanol tolerance.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Ana C Adam
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| |
Collapse
|
52
|
Raghavan V, Bui DT, Al-Sweel N, Friedrich A, Schacherer J, Aquadro CF, Alani E. Incompatibilities in Mismatch Repair Genes MLH1-PMS1 Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. Genetics 2018; 210:1253-1266. [PMID: 30348651 PMCID: PMC6283166 DOI: 10.1534/genetics.118.301550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Laboratory baker's yeast strains bearing an incompatible combination of MLH1 and PMS1 mismatch repair alleles are mutators that can adapt more rapidly to stress, but do so at the cost of long-term fitness. We identified 18 baker's yeast isolates from 1011 surveyed that contain the incompatible MLH1-PMS1 genotype in a heterozygous state. Surprisingly, the incompatible combination from two human clinical heterozygous diploid isolates, YJS5845 and YJS5885, contain the exact MLH1 (S288c-derived) and PMS1 (SK1-derived) open reading frames originally shown to confer incompatibility. While these isolates were nonmutators, their meiotic spore clone progeny displayed mutation rates in a DNA slippage assay that varied over a 340-fold range. This range was 30-fold higher than observed between compatible and incompatible combinations of laboratory strains. Genotyping analysis indicated that MLH1-PMS1 incompatibility was the major driver of mutation rate in the isolates. The variation in the mutation rate of incompatible spore clones could be due to background suppressors and enhancers, as well as aneuploidy seen in the spore clones. Our data are consistent with the observed variance in mutation rate contributing to adaptation to stress conditions (e.g., in a human host) through the acquisition of beneficial mutations, with high mutation rates leading to long-term fitness costs that are buffered by mating or eliminated through natural selection.
Collapse
Affiliation(s)
- Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratory of Molecular Genetics, Genomics and Microbiology (GMGM) UMR 7156, F-67000, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
53
|
Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in Saccharomyces cerevisiae. Genetics 2018; 211:773-786. [PMID: 30498022 DOI: 10.1534/genetics.118.301546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genome variation and its effects on phenotypes have been widely analyzed in higher eukaryotes but less so in the model eukaryote Saccharomyces cerevisiae Here, we describe mitochondrial genome variation in 96 diverse S. cerevisiae strains and assess associations between mitochondrial genotype and phenotypes as well as nuclear-mitochondrial epistasis. We associate sensitivity to the ATP synthase inhibitor oligomycin with SNPs in the mitochondrially encoded ATP6 gene. We describe the use of iso-nuclear F1 pairs, the mitochondrial genome equivalent of reciprocal hemizygosity analysis, to identify and analyze mitochondrial genotype-dependent phenotypes. Using iso-nuclear F1 pairs, we analyze the oligomycin phenotype-ATP6 association and find extensive nuclear-mitochondrial epistasis. Similarly, in iso-nuclear F1 pairs, we identify many additional mitochondrial genotype-dependent respiration phenotypes, for which there was no association in the 96 strains, and again find extensive nuclear-mitochondrial epistasis that likely contributes to the lack of association in the 96 strains. Finally, in iso-nuclear F1 pairs, we identify novel mitochondrial genotype-dependent nonrespiration phenotypes: resistance to cycloheximide, ketoconazole, and copper. We discuss potential mechanisms and the implications of mitochondrial genotype and of nuclear-mitochondrial epistasis effects on respiratory and nonrespiratory quantitative traits.
Collapse
|
54
|
A Case Study of Genomic Instability in an Industrial Strain of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:3703-3713. [PMID: 30254181 PMCID: PMC6222563 DOI: 10.1534/g3.118.200446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Saccharomyces cerevisiae strain JAY270/PE2 is a highly efficient biocatalyst used in the production of bioethanol from sugarcane feedstock. This strain is heterothallic and diploid, and its genome is characterized by abundant structural and nucleotide polymorphisms between homologous chromosomes. One of the reasons it is favored by many distilleries is that its cells do not normally aggregate, a trait that facilitates cell recycling during batch-fed fermentations. However, long-term propagation makes the yeast population vulnerable to the effects of genomic instability, which may trigger the appearance of undesirable phenotypes such as cellular aggregation. In pure cultures of JAY270, we identified the recurrent appearance of mutants displaying a mother-daughter cell separation defect resulting in rough colonies in agar media and fast sedimentation in liquid culture. We investigated the genetic basis of the colony morphology phenotype and found that JAY270 is heterozygous for a frameshift mutation in the ACE2 gene (ACE2/ace2-A7), which encodes a transcriptional regulator of mother-daughter cell separation. All spontaneous rough colony JAY270-derived isolates analyzed carried copy-neutral loss-of-heterozygosity (LOH) at the region of chromosome XII where ACE2 is located (ace2-A7/ace2-A7). We specifically measured LOH rates at the ACE2 locus, and at three additional chromosomal regions in JAY270 and in a conventional homozygous diploid laboratory strain. This direct comparison showed that LOH rates at all sites were quite similar between the two strain backgrounds. In this case study of genomic instability in an industrial strain, we showed that the JAY270 genome is dynamic and that structural changes to its chromosomes can lead to new phenotypes. However, our analysis also indicated that the inherent level of genomic instability in this industrial strain is normal relative to a laboratory strain. Our work provides an important frame of reference to contextualize the interpretation of instability processes observed in the complex genomes of industrial yeast strains.
Collapse
|
55
|
McClure AW, Jacobs KC, Zyla TR, Lew DJ. Mating in wild yeast: delayed interest in sex after spore germination. Mol Biol Cell 2018; 29:3119-3127. [PMID: 30355051 PMCID: PMC6340204 DOI: 10.1091/mbc.e18-08-0528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of laboratory strains of Saccharomyces cerevisiae have uncovered signaling pathways involved in mating, including information-processing strategies to optimize decisions to mate or to bud. However, lab strains are heterothallic (unable to self-mate), while wild yeast are homothallic. And while mating of lab strains is studied using cycling haploid cells, mating of wild yeast is thought to involve germinating spores. Thus, it was unclear whether lab strategies would be appropriate in the wild. Here, we have investigated the behavior of several yeast strains derived from wild isolates. Following germination, these strains displayed large differences in their propensity to mate or to enter the cell cycle. The variable interest in sex following germination was correlated with differences in pheromone production, which were due to both cis- and trans-acting factors. Our findings suggest that yeast spores germinating in the wild may often enter the cell cycle and form microcolonies before engaging in mating.
Collapse
Affiliation(s)
- Allison W McClure
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Katherine C Jacobs
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Trevin R Zyla
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel J Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
56
|
Role of Cis, Trans, and Inbreeding Effects on Meiotic Recombination in Saccharomyces cerevisiae. Genetics 2018; 210:1213-1226. [PMID: 30291109 DOI: 10.1534/genetics.118.301644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/02/2018] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is a major driver of genome evolution by creating new genetic combinations. To probe the factors driving variability of meiotic recombination, we used a high-throughput method to measure recombination rates in hybrids between SK1 and a total of 26 Saccharomyces cerevisiae strains from different geographic origins and habitats. Fourteen intervals were monitored for each strain, covering chromosomes VI and XI entirely, and part of chromosome I. We found an average number of crossovers per chromosome ranging between 1.0 and 9.5 across strains ("domesticated" or not), which is higher than the average between 0.5 and 1.5 found in most organisms. In the different intervals analyzed, recombination showed up to ninefold variation across strains but global recombination landscapes along chromosomes varied less. We also built an incomplete diallel experiment to measure recombination rates in one region of chromosome XI in 10 different crosses involving five parental strains. Our overall results indicate that recombination rate is increasingly positively correlated with sequence similarity between homologs (i) in DNA double-strand-break-rich regions within intervals, (ii) in entire intervals, and (iii) at the whole genome scale. Therefore, these correlations cannot be explained by cis effects only. We also estimated that cis and trans effects explained 38 and 17%, respectively, of the variance of recombination rate. In addition, by using a quantitative genetics analysis, we identified an inbreeding effect that reduces recombination rate in homozygous genotypes, while other interaction effects (specific combining ability) or additive effects (general combining ability) are found to be weak. Finally, we measured significant crossover interference in some strains, and interference intensity was positively correlated with crossover number.
Collapse
|
57
|
Whole Genome Sequencing, de Novo Assembly and Phenotypic Profiling for the New Budding Yeast Species Saccharomyces jurei. G3-GENES GENOMES GENETICS 2018; 8:2967-2977. [PMID: 30097472 PMCID: PMC6118302 DOI: 10.1534/g3.118.200476] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Saccharomyces sensu stricto complex consist of yeast species, which are not only important in the fermentation industry but are also model systems for genomic and ecological analysis. Here, we present the complete genome assemblies of Saccharomyces jurei, a newly discovered Saccharomyces sensu stricto species from high altitude oaks. Phylogenetic and phenotypic analysis revealed that S. jurei is more closely related to S. mikatae, than S. cerevisiae, and S. paradoxus. The karyotype of S. jurei presents two reciprocal chromosomal translocations between chromosome VI/VII and I/XIII when compared to the S. cerevisiae genome. Interestingly, while the rearrangement I/XIII is unique to S. jurei, the other is in common with S. mikatae strain IFO1815, suggesting shared evolutionary history of this species after the split between S. cerevisiae and S. mikatae. The number of Ty elements differed in the new species, with a higher number of Ty elements present in S. jurei than in S. cerevisiae. Phenotypically, the S. jurei strain NCYC 3962 has relatively higher fitness than the other strain NCYC 3947T under most of the environmental stress conditions tested and showed remarkably increased fitness in higher concentration of acetic acid compared to the other sensu stricto species. Both strains were found to be better adapted to lower temperatures compared to S. cerevisiae.
Collapse
|
58
|
Duan SF, Han PJ, Wang QM, Liu WQ, Shi JY, Li K, Zhang XL, Bai FY. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun 2018; 9:2690. [PMID: 30002370 PMCID: PMC6043522 DOI: 10.1038/s41467-018-05106-7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/24/2018] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been an essential component of human civilization because of its long global history of use in food and beverage fermentation. However, the diversity and evolutionary history of the domesticated populations of the yeast remain elusive. We show here that China/Far East Asia is likely the center of origin of the domesticated populations of the species. The domesticated populations form two major groups associated with solid- and liquid-state fermentation and appear to have originated from heterozygous ancestors, which were likely formed by outcrossing between diverse wild isolates primitively for adaptation to maltose-rich niches. We found consistent gene expansion and contraction in the whole domesticated population, as well as lineage-specific genome variations leading to adaptation to different environments. We show a nearly panoramic view of the diversity and life history of S. cerevisiae and provide new insights into the origin and evolution of the species.
Collapse
Affiliation(s)
- Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Qiu Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Ling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
59
|
Sharp NP, Sandell L, James CG, Otto SP. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proc Natl Acad Sci U S A 2018; 115:E5046-E5055. [PMID: 29760081 PMCID: PMC5984525 DOI: 10.1073/pnas.1801040115] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By altering the dynamics of DNA replication and repair, alternative ploidy states may experience different rates and types of new mutations, leading to divergent evolutionary outcomes. We report a direct comparison of the genome-wide spectrum of spontaneous mutations arising in haploids and diploids following a mutation-accumulation experiment in the budding yeast Saccharomyces cerevisiae Characterizing the number, types, locations, and effects of thousands of mutations revealed that haploids were more prone to single-nucleotide mutations (SNMs) and mitochondrial mutations, while larger structural changes were more common in diploids. Mutations were more likely to be detrimental in diploids, even after accounting for the large impact of structural changes, contrary to the prediction that mutations would have weaker effects, due to masking, in diploids. Haploidy is expected to reduce the opportunity for conservative DNA repair involving homologous chromosomes, increasing the insertion-deletion rate, but we found little support for this idea. Instead, haploids were more susceptible to SNMs in late-replicating genomic regions, resulting in a ploidy difference in the spectrum of substitutions. In diploids, we detect mutation rate variation among chromosomes in association with centromere location, a finding that is supported by published polymorphism data. Diploids are not simply doubled haploids; instead, our results predict that the spectrum of spontaneous mutations will substantially shape the dynamics of genome evolution in haploid and diploid populations.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Linnea Sandell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Christopher G James
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
60
|
Fisher KJ, Buskirk SW, Vignogna RC, Marad DA, Lang GI. Adaptive genome duplication affects patterns of molecular evolution in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007396. [PMID: 29799840 PMCID: PMC5991770 DOI: 10.1371/journal.pgen.1007396] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/07/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Genome duplications are important evolutionary events that impact the rate and spectrum of beneficial mutations and thus the rate of adaptation. Laboratory evolution experiments initiated with haploid Saccharomyces cerevisiae cultures repeatedly experience whole-genome duplication (WGD). We report recurrent genome duplication in 46 haploid yeast populations evolved for 4,000 generations. We find that WGD confers a fitness advantage, and this immediate fitness gain is accompanied by a shift in genomic and phenotypic evolution. The presence of ploidy-enriched targets of selection and structural variants reveals that autodiploids utilize adaptive paths inaccessible to haploids. We find that autodiploids accumulate recessive deleterious mutations, indicating an increased susceptibility for nonadaptive evolution. Finally, we report that WGD results in a reduced adaptation rate, indicating a trade-off between immediate fitness gains and long-term adaptability. Whole genome duplications—the simultaneous doubling of each chromosome—can have a profound influence on evolution. Evidence of ancient whole genome duplications can be seen in most modern genomes. Experimental evolution, the long-term propagation of organisms under well-controlled laboratory conditions, yields valuable insight into the processes of adaptation and genome evolution. One interesting, and common, outcome of laboratory evolution experiments that start with haploid yeast populations is the emergence of diploid lineages via whole genome duplication. We show that, under our laboratory conditions, whole genome duplication provides a direct fitness benefit, and we identify several consequences of whole genome duplication on adaptation. Following whole-genome duplication, the rate of adaptation slows, the biological targets of selection change, and aneuploidies, copy-number variants and recessive lethal mutations accumulate. By studying the effect of whole genome duplication on adaptation, we can better understand how selection acts on ploidy, a fundamental biological parameter that varies considerably across life.
Collapse
Affiliation(s)
- Kaitlin J. Fisher
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Sean W. Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Ryan C. Vignogna
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Daniel A. Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
| | - Gregory I. Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
61
|
Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, Sigwalt A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury JM, Istace B, Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Liti G, Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 2018; 556:339-344. [PMID: 29643504 PMCID: PMC6784862 DOI: 10.1038/s41586-018-0030-5] [Citation(s) in RCA: 664] [Impact Index Per Article: 94.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.
Collapse
Affiliation(s)
- Jackson Peter
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Jia-Xing Yue
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - David Pflieger
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | | | - Benjamin Barre
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Kelle Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Agnès Llored
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Benjamin Istace
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, Valbonne, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, Sophia Antipolis, Valbonne, France
| | - Stefan Engelen
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Arnaud Lemainque
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France.,CNRS UMR 8030, Université d'Evry Val d'Essonne, Evry, France
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France.
| | | |
Collapse
|
62
|
Marad DA, Buskirk SW, Lang GI. Altered access to beneficial mutations slows adaptation and biases fixed mutations in diploids. Nat Ecol Evol 2018; 2:882-889. [PMID: 29581586 DOI: 10.1038/s41559-018-0503-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/14/2018] [Indexed: 01/10/2023]
Abstract
Ploidy varies considerably in nature. However, our understanding of the impact of ploidy on adaptation is incomplete. Many microbial evolution experiments characterize adaptation in haploid organisms, but few focus on diploid organisms. Here, we perform a 4,000-generation evolution experiment using diploid strains of the yeast Saccharomyces cerevisiae. We show that the rate of adaptation and spectrum of beneficial mutations are influenced by ploidy. Haldane's sieve effectively alters access to recessive beneficial mutations in diploid populations, leading to a slower rate of adaptation and a spectrum of beneficial mutations that is shifted towards dominant mutations. Genomic position also has an important role, as the prevalence of homozygous mutations is largely dependent on their proximity to a recombination hotspot. Our results demonstrate key aspects of diploid adaptation that have previously been understudied and provide support for several proposed theories.
Collapse
Affiliation(s)
- Daniel A Marad
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Sean W Buskirk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
63
|
Yadav A, Sinha H. Gene-gene and gene-environment interactions in complex traits in yeast. Yeast 2018; 35:403-416. [PMID: 29322552 DOI: 10.1002/yea.3304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/23/2017] [Indexed: 01/05/2023] Open
Abstract
One of the fundamental questions in biology is how the genotype regulates the phenotype. An increasing number of studies indicate that, in most cases, the effect of a genetic locus on the phenotype is context-dependent, i.e. it is influenced by the genetic background and the environment in which the phenotype is measured. Still, the majority of the studies, in both model organisms and humans, that map the genetic regulation of phenotypic variation in complex traits primarily identify additive loci with independent effects. This does not reflect an absence of the contribution of genetic interactions to phenotypic variation, but instead is a consequence of the technical limitations in mapping gene-gene interactions (GGI) and gene-environment interactions (GEI). Yeast, with its detailed molecular understanding, diverse population genomics and ease of genetic manipulation, is a unique and powerful resource to study the contributions of GGI and GEI in the regulation of phenotypic variation. Here we review studies in yeast that have identified GGI and GEI that regulate phenotypic variation, and discuss the contribution of these findings in explaining missing heritability of complex traits, and how observations from these GGI and GEI studies enhance our understanding of the mechanisms underlying genetic robustness and adaptability that shape the architecture of the genotype-phenotype map.
Collapse
Affiliation(s)
- Anupama Yadav
- Center for Cancer Systems Biology, and Cancer Biology, Dana Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.,Robert Bosch Centre for Data Sciences and Artificial Intelligence, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
64
|
Nieuwenhuis BPS, James TY. The frequency of sex in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0540. [PMID: 27619703 DOI: 10.1098/rstb.2015.0540] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
Fungi are a diverse group of organisms with a huge variation in reproductive strategy. While almost all species can reproduce sexually, many reproduce asexually most of the time. When sexual reproduction does occur, large variation exists in the amount of in- and out-breeding. While budding yeast is expected to outcross only once every 10 000 generations, other fungi are obligate outcrossers with well-mixed panmictic populations. In this review, we give an overview of the costs and benefits of sexual and asexual reproduction in fungi, and the mechanisms that evolved in fungi to reduce the costs of either mode. The proximate molecular mechanisms potentiating outcrossing and meiosis appear to be present in nearly all fungi, making them of little use for predicting outcrossing rates, but also suggesting the absence of true ancient asexual lineages. We review how population genetic methods can be used to estimate the frequency of sex in fungi and provide empirical data that support a mixed mode of reproduction in many species with rare to frequent sex in between rounds of mitotic reproduction. Finally, we highlight how these estimates might be affected by the fungus-specific mechanisms that evolved to reduce the costs of sexual and asexual reproduction.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Bart P S Nieuwenhuis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
65
|
Wertheimer NB, Stone N, Berman J. Ploidy dynamics and evolvability in fungi. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0461. [PMID: 28080987 PMCID: PMC5095540 DOI: 10.1098/rstb.2015.0461] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Rapid responses to acute stresses are essential for stress survival and are critical to the ability of fungal pathogens to adapt to new environments or hosts. The rapid emergence of drug resistance is used as a model for how fungi adapt and survive stress conditions that inhibit the growth of progenitor cells. Aneuploidy and loss of heterozygosity (LOH), which are large-scale genome shifts involving whole chromosomes or chromosome arms, occur at higher frequency than point mutations and have the potential to mediate stress survival. Furthermore, the stress of exposure to an antifungal drug can induce elevated levels of LOH and can promote the formation of aneuploids. This occurs via mitotic defects that first produce tetraploid progeny with extra spindles, followed by chromosome mis-segregation. Thus, drug exposure induces elevated levels of aneuploidy, which can alter the copy number of genes that improve survival in a given stress or drug. Selection then acts to increase the proportion of adaptive aneuploids in the population. Because aneuploidy is a common property of many pathogenic fungi, including those posing emerging threats to plants, animals and humans, we propose that aneuploid formation and LOH often accompanying it contribute to the rapid generation of diversity that can facilitate the emergence of fungal pathogens to new environmental niches and/or new hosts, as well as promote antifungal drug resistance that makes emerging fungal infections ever more difficult to contain.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Noa Blutraich Wertheimer
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| | - Neil Stone
- Institute of Infection and Immunity, St George's, University of London, London SW17 0RE, UK
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Britannia 418, Ramat Aviv, Israel
| |
Collapse
|
66
|
Genome Dynamics of Hybrid Saccharomyces cerevisiae During Vegetative and Meiotic Divisions. G3-GENES GENOMES GENETICS 2017; 7:3669-3679. [PMID: 28916648 PMCID: PMC5677154 DOI: 10.1534/g3.117.1135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mutation and recombination are the major sources of genetic diversity in all organisms. In the baker’s yeast, all mutation rate estimates are in homozygous background. We determined the extent of genetic change through mutation and loss of heterozygosity (LOH) in a heterozygous Saccharomyces cerevisiae genome during successive vegetative and meiotic divisions. We measured genome-wide LOH and base mutation rates during vegetative and meiotic divisions in a hybrid (S288c/YJM789) S. cerevisiae strain. The S288c/YJM789 hybrid showed nearly complete reduction in heterozygosity within 31 generations of meioses and improved spore viability. LOH in the meiotic lines was driven primarily by the mating of spores within the tetrad. The S288c/YJM789 hybrid lines propagated vegetatively for the same duration as the meiotic lines, showed variable LOH (from 2 to 3% and up to 35%). Two of the vegetative lines with extensive LOH showed frequent and large internal LOH tracts that suggest a high frequency of recombination repair. These results suggest significant LOH can occur in the S288c/YJM789 hybrid during vegetative propagation presumably due to return to growth events. The average base substitution rates for the vegetative lines (1.82 × 10−10 per base per division) and the meiotic lines (1.22 × 10−10 per base per division) are the first genome-wide mutation rate estimates for a hybrid yeast. This study therefore provides a novel context for the analysis of mutation rates (especially in the context of detecting LOH during vegetative divisions), compared to previous mutation accumulation studies in yeast that used homozygous backgrounds.
Collapse
|
67
|
High-Quality de Novo Genome Assembly of the Dekkera bruxellensis Yeast Using Nanopore MinION Sequencing. G3-GENES GENOMES GENETICS 2017; 7:3243-3250. [PMID: 28983066 PMCID: PMC5633375 DOI: 10.1534/g3.117.300128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic variation in natural populations represents the raw material for phenotypic diversity. Species-wide characterization of genetic variants is crucial to have a deeper insight into the genotype-phenotype relationship. With the advent of new sequencing strategies and more recently the release of long-read sequencing platforms, it is now possible to explore the genetic diversity of any nonmodel organisms, representing a fundamental resource for biological research. In the frame of population genomic surveys, a first step is to obtain the complete sequence and high-quality assembly of a reference genome. Here, we sequenced and assembled a reference genome of the nonconventional Dekkera bruxellensis yeast. While this species is a major cause of wine spoilage, it paradoxically contributes to the specific flavor profile of some Belgium beers. In addition, an extreme karyotype variability is observed across natural isolates, highlighting that D. bruxellensis genome is very dynamic. The whole genome of the D. bruxellensis UMY321 isolate was sequenced using a combination of Nanopore long-read and Illumina short-read sequencing data. We generated the most complete and contiguous de novo assembly of D. bruxellensis to date and obtained a first glimpse into the genomic variability within this species by comparing the sequences of several isolates. This genome sequence is therefore of high value for population genomic surveys and represents a reference to study genome dynamic in this yeast species.
Collapse
|
68
|
Viel A, Legras JL, Nadai C, Carlot M, Lombardi A, Crespan M, Migliaro D, Giacomini A, Corich V. The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination. Front Microbiol 2017; 8:1595. [PMID: 28883812 PMCID: PMC5573751 DOI: 10.3389/fmicb.2017.01595] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
In recent years the interest for natural fermentations has been re-evaluated in terms of increasing the wine terroir and managing more sustainable winemaking practices. Therefore, the level of yeast genetic variability and the abundance of Saccharomyces cerevisiae native populations in vineyard are becoming more and more crucial at both ecological and technological level. Among the factors that can influence the strain diversity, the commercial starter release that accidentally occur in the environment around the winery, has to be considered. In this study we led a wide scale investigation of S. cerevisiae genetic diversity and population structure in the vineyards of three neighboring winemaking regions of Protected Appellation of Origin, in North-East of Italy. Combining mtDNA RFLP and microsatellite markers analyses we evaluated 634 grape samples collected over 3 years. We could detect major differences in the presence of S. cerevisiae yeasts, according to the winemaking region. The population structures revealed specificities of yeast microbiota at vineyard scale, with a relative Appellation of Origin area homogeneity, and transition zones suggesting a geographic differentiation. Surprisingly, we found a widespread industrial yeast dissemination that was very high in the areas where the native yeast abundance was low. Although geographical distance is a key element involved in strain distribution, the high presence of industrial strains in vineyard reduced the differences between populations. This finding indicates that industrial yeast diffusion it is a real emergency and their presence strongly interferes with the natural yeast microbiota.
Collapse
Affiliation(s)
- Alessia Viel
- Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Jean-Luc Legras
- SPO, INRA, SupAgro, Université de MontpellierMontpellier, France
| | - Chiara Nadai
- Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Milena Carlot
- Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy
| | - Angiolella Lombardi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Manna Crespan
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'Economia Agraria-Centro di Ricerca per la Viticoltura e l'enologiaConegliano, Italy
| | - Daniele Migliaro
- Consiglio per la Ricerca in Agricoltura e l'analisi dell'Economia Agraria-Centro di Ricerca per la Viticoltura e l'enologiaConegliano, Italy
| | - Alessio Giacomini
- Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy.,Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| | - Viviana Corich
- Interdepartmental Centre for Research in Viticulture and Enology, University of PadovaConegliano, Italy.,Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Italy
| |
Collapse
|
69
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
70
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
71
|
Bui DT, Friedrich A, Al-Sweel N, Liti G, Schacherer J, Aquadro CF, Alani E. Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics 2017; 205:1459-1471. [PMID: 28193730 PMCID: PMC5378106 DOI: 10.1534/genetics.116.199513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
An elevated mutation rate can provide cells with a source of mutations to adapt to changing environments. We identified a negative epistatic interaction involving naturally occurring variants in the MLH1 and PMS1 mismatch repair (MMR) genes of Saccharomyces cerevisiae We hypothesized that this MMR incompatibility, created through mating between divergent S. cerevisiae, yields mutator progeny that can rapidly but transiently adapt to an environmental stress. Here we analyzed the MLH1 and PMS1 genes across 1010 S. cerevisiae natural isolates spanning a wide range of ecological sources (tree exudates, Drosophila, fruits, and various fermentation and clinical isolates) and geographical sources (Europe, America, Africa, and Asia). We identified one homozygous clinical isolate and 18 heterozygous isolates containing the incompatible MMR genotype. The MLH1-PMS1 gene combination isolated from the homozygous clinical isolate conferred a mutator phenotype when expressed in the S288c laboratory background. Using a novel reporter to measure mutation rates, we showed that the overall mutation rate in the homozygous incompatible background was similar to that seen in compatible strains, indicating the presence of suppressor mutations in the clinical isolate that lowered its mutation rate. This observation and the identification of 18 heterozygous isolates, which can lead to MMR incompatible genotypes in the offspring, are consistent with an elevated mutation rate rapidly but transiently facilitating adaptation. To avoid long-term fitness costs, the incompatibility is apparently buffered by mating or by acquiring suppressors. These observations highlight effective strategies in eukaryotes to avoid long-term fitness costs associated with elevated mutation rates.
Collapse
Affiliation(s)
- Duyen T Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Anne Friedrich
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice, 06107 Nice, France
| | - Joseph Schacherer
- Université de Strasbourg, Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie, Unité Mixte de Recherche, 7156, F-67000 Strasbourg, France
| | - Charles F Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
72
|
Coi AL, Bigey F, Mallet S, Marsit S, Zara G, Gladieux P, Galeote V, Budroni M, Dequin S, Legras JL. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts. Mol Ecol 2017; 26:2150-2166. [PMID: 28192619 DOI: 10.1111/mec.14053] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 01/31/2017] [Indexed: 12/16/2022]
Abstract
The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence.
Collapse
Affiliation(s)
- A L Coi
- Dipartimento di Agraria, Università di Sassari, 07100, Sassari, Italy
| | - F Bigey
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - S Mallet
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - S Marsit
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - G Zara
- Dipartimento di Agraria, Università di Sassari, 07100, Sassari, Italy
| | - P Gladieux
- INRA, UMR BGPI, 34398, Montpellier, France
| | - V Galeote
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - M Budroni
- Dipartimento di Agraria, Università di Sassari, 07100, Sassari, Italy
| | - S Dequin
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| | - J L Legras
- SPO, INRA, SupAgro, Université de Montpellier, 34060, Montpellier, France
| |
Collapse
|
73
|
Carlson MO, Gazave E, Gore MA, Smart CD. Temporal Genetic Dynamics of an Experimental, Biparental Field Population of Phytophthora capsici. Front Genet 2017; 8:26. [PMID: 28348576 PMCID: PMC5347166 DOI: 10.3389/fgene.2017.00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Defining the contributions of dispersal, reproductive mode, and mating system to the population structure of a pathogenic organism is essential to estimating its evolutionary potential. After introduction of the devastating plant pathogen, Phytophthora capsici, into a grower's field, a lack of aerial spore dispersal restricts migration. Once established, coexistence of both mating types results in formation of overwintering recombinant oospores, engendering persistent pathogen populations. To mimic these conditions, in 2008, we inoculated a field with two P. capsici isolates of opposite mating type. We analyzed pathogenic isolates collected in 2009-2013 from this experimental population, using genome-wide single-nucleotide polymorphism markers. By tracking heterozygosity across years, we show that the population underwent a generational shift; transitioning from exclusively F1 in 2009-2010, to multi-generational in 2011, and ultimately all inbred in 2012-2013. Survival of F1 oospores, characterized by heterozygosity excess, coupled with a low rate of selfing, delayed declines in heterozygosity due to inbreeding and attainment of equilibrium genotypic frequencies. Large allele and haplotype frequency changes in specific genomic regions accompanied the generational shift, representing putative signatures of selection. Finally, we identified an approximately 1.6 Mb region associated with mating type determination, constituting the first detailed genomic analysis of a mating type region (MTR) in Phytophthora. Segregation patterns in the MTR exhibited tropes of sex-linkage, where maintenance of allele frequency differences between isolates of opposite mating type was associated with elevated heterozygosity despite inbreeding. Characterizing the trajectory of this experimental system provides key insights into the processes driving persistent, sexual pathogen populations.
Collapse
Affiliation(s)
- Maryn O. Carlson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Elodie Gazave
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Michael A. Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell UniversityIthaca, NY, USA
| | - Christine D. Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell UniversityGeneva, NY, USA
| |
Collapse
|
74
|
Xia W, Nielly-Thibault L, Charron G, Landry CR, Kasimer D, Anderson JB, Kohn LM. Population genomics reveals structure at the individual, host-tree scale and persistence of genotypic variants of the undomesticated yeast Saccharomyces paradoxus in a natural woodland. Mol Ecol 2017; 26:995-1007. [PMID: 27988980 DOI: 10.1111/mec.13954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/28/2016] [Indexed: 12/23/2022]
Abstract
Genetic diversity in experimental, domesticated and wild populations of the related yeasts, Saccharomyces cerevisiae and Saccharomyces paradoxus, has been well described at the global scale. We investigated the population genomics of a local population on a small spatial scale to address two main questions. First, is there genomic variation in a S. paradoxus population at a spatial scale spanning centimetres (microsites) to tens of metres? Second, does the distribution of genomic variants persist over time? Our sample consisted of 42 S. paradoxus strains from 2014 and 43 strains from 2015 collected from the same 72 microsites around four host trees (Quercus rubra and Quercus alba) within 1 km2 in a mixed hardwood forest in southern Ontario. Six additional S. paradoxus strains recovered from adjacent maple and beech trees in 2015 are also included in the sample. Whole-genome sequencing and genomic SNP analysis revealed five differentiated groups (clades) within the sampled area. The signal of persistence of genotypes in their microsites from 2014 to 2015 was highly significant. Isolates from the same tree tended to be more related than strains from different trees, with limited evidence of dispersal between trees. In growth assays, one genotype had a significantly longer lag phase than the other strains. Our results indicate that different clades coexist at fine spatial scale and that population structure persists over at least a one-year interval in these wild yeasts, suggesting the efficacy of yearly sampling to follow longer term genetic dynamics in future studies.
Collapse
Affiliation(s)
- Wenjing Xia
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Lou Nielly-Thibault
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Guillaume Charron
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Christian R Landry
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, PROTEO, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
| | - Dahlia Kasimer
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - James B Anderson
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| | - Linda M Kohn
- Departments of Ecology and Evolutionary Biology and Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
75
|
Bernardes JP, Stelkens RB, Greig D. Heterosis in hybrids within and between yeast species. J Evol Biol 2017; 30:538-548. [PMID: 27933674 DOI: 10.1111/jeb.13023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022]
Abstract
The performance of hybrids relative to their parents is an important factor in speciation research. We measured the growth of 46 Saccharomyces yeast F1 interspecific and intraspecific hybrids, relative to the growth of each of their parents, in pairwise competition assays. We found that the growth of a hybrid relative to the average of its parents, a measure of mid-parent heterosis, correlated with the difference in parental growth relative to their hybrid, a measure of phenotypic divergence, which is consistent with simple complementation of low fitness alleles in one parent by high fitness alleles in the other. Interspecific hybrids showed stronger heterosis than intraspecific hybrids. To manipulate parental phenotypic divergence independently of genotype, we also measured the competitive growth of a single interspecific hybrid relative to its parents in 12 different environments. In these assays, we not only identified a strong relationship between parental phenotypic divergence and mid-parent heterosis as before, but, more tentatively, a weak relationship between phenotypic divergence and best-parent heterosis, suggesting that complementation of deleterious mutations was not the sole cause of interspecific heterosis. Our results show that mating between different species can be beneficial, and demonstrate that competition assays between parents and offspring are a useful way to study the evolutionary consequences of hybridization.
Collapse
Affiliation(s)
- J P Bernardes
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - R B Stelkens
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - D Greig
- Max Planck Institute for Evolutionary Biology, Plön, Germany.,The Galton Laboratory, Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
76
|
Scott MF, Rescan M. Evolution of haploid-diploid life cycles when haploid and diploid fitnesses are not equal. Evolution 2016; 71:215-226. [DOI: 10.1111/evo.13125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/26/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Michael F Scott
- Department of Botany; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Marie Rescan
- CNRS, Unité Mixte Internationale 3614; Evolutionary Biology and Ecology of Algae; Roscoff France
- Végétaux marins et biomolécules, Sorbonne Universités, Université Pierre et Marie Curie; University of Paris 6; Roscoff France
| |
Collapse
|
77
|
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, Merlevede A, Roncoroni M, Voordeckers K, Miraglia L, Teiling C, Steffy B, Taylor M, Schwartz A, Richardson T, White C, Baele G, Maere S, Verstrepen KJ. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016; 166:1397-1410.e16. [PMID: 27610566 PMCID: PMC5018251 DOI: 10.1016/j.cell.2016.08.020] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/04/2022]
Abstract
Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today’s industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PaperClip
We sequenced and phenotyped 157 S. cerevisiae yeasts Present-day industrial yeasts originate from only a few domesticated ancestors Beer yeasts show strong genetic and phenotypic hallmarks of domestication Domestication of industrial yeasts predates microbe discovery
Collapse
Affiliation(s)
- Brigida Gallone
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Troels Prahl
- White Labs, 9495 Candida Street, San Diego, CA 92126, USA
| | - Leah Soriaga
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Veerle Saels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Beatriz Herrera-Malaver
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Adriaan Merlevede
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Miguel Roncoroni
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Loren Miraglia
- Encinitas Brewing Science, 141 Rodney Avenue, Encinitas, CA 92024, USA
| | | | - Brian Steffy
- Illumina, 5200 Illumina Way, San Diego, CA 92122, USA
| | - Maryann Taylor
- Biological & Popular Culture (BioPop), 2205 Faraday Avenue, Suite E, Carlsbad, CA 92008, USA
| | - Ariel Schwartz
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Toby Richardson
- Synthetic Genomics, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium.
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium; Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium.
| |
Collapse
|
78
|
Hallin J, Märtens K, Young AI, Zackrisson M, Salinas F, Parts L, Warringer J, Liti G. Powerful decomposition of complex traits in a diploid model. Nat Commun 2016; 7:13311. [PMID: 27804950 PMCID: PMC5097135 DOI: 10.1038/ncomms13311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 01/20/2023] Open
Abstract
Explaining trait differences between individuals is a core and challenging aim of life sciences. Here, we introduce a powerful framework for complete decomposition of trait variation into its underlying genetic causes in diploid model organisms. We sequence and systematically pair the recombinant gametes of two intercrossed natural genomes into an array of diploid hybrids with fully assembled and phased genomes, termed Phased Outbred Lines (POLs). We demonstrate the capacity of this approach by partitioning fitness traits of 6,642 Saccharomyces cerevisiae POLs across many environments, achieving near complete trait heritability and precisely estimating additive (73%), dominance (10%), second (7%) and third (1.7%) order epistasis components. We map quantitative trait loci (QTLs) and find nonadditive QTLs to outnumber (3:1) additive loci, dominant contributions to heterosis to outnumber overdominant, and extensive pleiotropy. The POL framework offers the most complete decomposition of diploid traits to date and can be adapted to most model organisms.
Collapse
Affiliation(s)
- Johan Hallin
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Kaspar Märtens
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
| | - Alexander I. Young
- Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
| | - Francisco Salinas
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| | - Leopold Parts
- Institute of Computer Science, University of Tartu, 50090 Tartu, Estonia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA Hinxton, UK
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, Gothenburg University, 405 30 Gothenburg, Sweden
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Gianni Liti
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice Sophia Antipolis, 06107 Nice, France
| |
Collapse
|
79
|
Gayevskiy V, Lee S, Goddard MR. European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans. FEMS Yeast Res 2016; 16:fow091. [PMID: 27744274 PMCID: PMC5094284 DOI: 10.1093/femsyr/fow091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Humans have acted as vectors for species and expanded their ranges since at least the dawn of agriculture. While relatively well characterised for macrofauna and macroflora, the extent and dynamics of human-aided microbial dispersal is poorly described. We studied the role which humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the world's most important microbes, using whole genome sequencing. We include 52 strains representative of the diversity in New Zealand to the global set of genomes for this species. Phylogenomic approaches show an exclusively European origin of the New Zealand population, with a minimum of 10 founder events mostly taking place over the last 1000 years. Our results show that humans have expanded the range of S. cerevisiae and transported it to New Zealand where it was not previously present, where it has now become established in vineyards, but radiation to native forests appears limited. Genome sequencing shows that humans have unwittingly transported wine yeast to the other side of the planet, where this species has become established in vineyards.
Collapse
Affiliation(s)
- Velimir Gayevskiy
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Soon Lee
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Matthew R Goddard
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand The School of Life Sciences, The University of Lincoln, Lincoln LN6 7DL, UK
| |
Collapse
|
80
|
Multilocus analysis reveals large genetic diversity in Kluyveromyces marxianus strains isolated from Parmigiano Reggiano and Pecorino di Farindola cheeses. Int J Food Microbiol 2016; 233:1-10. [DOI: 10.1016/j.ijfoodmicro.2016.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 02/02/2023]
|
81
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
82
|
Peter J, Schacherer J. Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale. Yeast 2016; 33:73-81. [PMID: 26592376 DOI: 10.1002/yea.3142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022] Open
Abstract
With the advent of high-throughput technologies for sequencing, the complete description of the genetic variation that occurs in populations, also known as population genomics, is foreseeable but far from being reached. Explaining the forces that govern patterns of genetic variation is essential to elucidate the evolutionary history of species. Genetic variation results from a wide assortment of evolutionary forces, among which mutation, selection, recombination and drift play major roles in shaping genomes. In addition, exploring the genetic variation within a population also corresponds to the first step towards dissecting the genotype-phenotype relationship. In this context, yeast species are of particular interest because they represent a unique resource for studying the evolution of intraspecific genetic diversity in a phylum spanning a broad evolutionary scale. Here, we briefly review recent progress in yeast population genomics and provide some perspective on this rapidly evolving field. In fact, we truly believe that it is of interest to supplement comparative and early population genomic studies with the deep sequencing of more extensive sets of individuals from the same species. In parallel, it would be more than valuable to uncover the intraspecific variation of a large number of unexplored species, including those that are closely and more distantly related. Altogether, these data would enable substantially more powerful genomic scans for functional dissection.
Collapse
Affiliation(s)
- Jackson Peter
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156, Strasbourg, France
| |
Collapse
|
83
|
Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol 2016; 1:15003. [PMID: 27571751 DOI: 10.1038/nmicrobiol.2015.3] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.
Collapse
|
84
|
Clowers KJ, Will JL, Gasch AP. A unique ecological niche fosters hybridization of oak-tree and vineyard isolates of Saccharomyces cerevisiae. Mol Ecol 2015; 24:5886-98. [PMID: 26518477 PMCID: PMC4824287 DOI: 10.1111/mec.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Differential adaptation to distinct niches can restrict gene flow and promote population differentiation within a species. However, in some cases the distinction between niches can collapse, forming a hybrid niche with features of both environments. We previously reported that distinctions between vineyards and oak soil present an ecological barrier that restricts gene flow between lineages of Saccharomyces cerevisiae. Vineyard isolates are tolerant to stresses associated with grapes while North American oak strains are particularly tolerant to freeze-thaw cycles. Here, we report the isolation of S. cerevisiae strains from Wisconsin cherry trees, which display features common to vineyards (e.g. high sugar concentrations) and frequent freeze-thaw cycles. Genome sequencing revealed that the isolated strains are highly heterozygous and represent recent hybrids of the oak × vineyard lineages. We found that the hybrid strains are phenotypically similar to vineyard strains for some traits, but are more similar to oak strains for other traits. The cherry strains were exceptionally good at growing in cherry juice, raising the possibility that they have adapted to this niche. We performed transcriptome profiling in cherry, oak and vineyard strains and show that the cherry-tree hybrids display vineyard-like or oak-like expression, depending on the gene sets, and in some cases, the expression patterns linked back to shared stress tolerances. Allele-specific expression in these natural hybrids suggested concerted cis-regulatory evolution at sets of functionally regulated genes. Our results raise the possibility that hybridization of the two lineages provides a genetic solution to the thriving in this unique niche.
Collapse
Affiliation(s)
- Katie J Clowers
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Jessica L Will
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI, 53706, USA
- Great Lakes Bioenergy Research Center, 1552 University Ave., Madison, WI, 53704, USA
| |
Collapse
|
85
|
Knight SJ, Goddard MR. Sporulation in soil as an overwinter survival strategy in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 16:fov102. [PMID: 26568201 PMCID: PMC5815064 DOI: 10.1093/femsyr/fov102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 01/12/2023] Open
Abstract
Due to its commercial value and status as a research model there is an extensive body of knowledge concerning Saccharomyces cerevisiae's cell biology and genetics. Investigations into S. cerevisiae's ecology are comparatively lacking, and are mostly focused on the behaviour of this species in high sugar, fruit-based environments; however, fruit is ephemeral, and presumably, S. cerevisiae has evolved a strategy to survive when this niche is not available. Among other places, S. cerevisiae has been isolated from soil which, in contrast to fruit, is a permanent habitat. We hypothesize that S. cerevisiae employs a life history strategy targeted at self-preservation rather than growth outside of the fruit niche, and resides in forest niches, such as soil, in a dormant and resistant sporulated state, returning to fruit via vectors such as insects. One crucial aspect of this hypothesis is that S. cerevisiae must be able to sporulate in the ‘forest’ environment. Here, we provide the first evidence for a natural environment (soil) where S. cerevisiae sporulates. While there are further aspects of this hypothesis that require experimental verification, this is the first step towards an inclusive understanding of the more cryptic aspects of S. cerevisiae's ecology. The ability of Saccharomyces cerevisiae to sporulate in soil supports a ‘fruit forest-reservoir’ life-cycle.
Collapse
Affiliation(s)
- Sarah J Knight
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand;
| | - Matthew R Goddard
- School of Biological Sciences, The University of Auckland, Auckland 1142, New Zealand; School of Life Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| |
Collapse
|
86
|
Strope PK, Kozmin SG, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. 2μ plasmid in Saccharomyces species and in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov090. [PMID: 26463005 DOI: 10.1093/femsyr/fov090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
We determined that extrachromosomal 2μ plasmid was present in 67 of the Saccharomyces cerevisiae 100-genome strains; in addition to variation in the size and copy number of 2μ, we identified three distinct classes of 2μ. We identified 2μ presence/absence and class associations with populations, clinical origin and nuclear genotypes. We also screened genome sequences of S. paradoxus, S. kudriavzevii, S. uvarum, S. eubayanus, S. mikatae, S. arboricolus and S. bayanus strains for both integrated and extrachromosomal 2μ. Similar to S. cerevisiae, we found no integrated 2μ sequences in any S. paradoxus strains. However, we identified part of 2μ integrated into the genomes of some S. uvarum, S. kudriavzevii, S. mikatae and S. bayanus strains, which were distinct from each other and from all extrachromosomal 2μ. We identified extrachromosomal 2μ in one S. paradoxus, one S. eubayanus, two S. bayanus and 13 S. uvarum strains. The extrachromosomal 2μ in S. paradoxus, S. eubayanus and S. cerevisiae were distinct from each other. In contrast, the extrachromosomal 2μ in S. bayanus and S. uvarum strains were identical with each other and with one of the three classes of S. cerevisiae 2μ, consistent with interspecific transfer.
Collapse
Affiliation(s)
- Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
87
|
Hodgins-Davis A, Rice DP, Townsend JP. Gene Expression Evolves under a House-of-Cards Model of Stabilizing Selection. Mol Biol Evol 2015; 32:2130-40. [PMID: 25901014 PMCID: PMC4592357 DOI: 10.1093/molbev/msv094] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Divergence in gene regulation is hypothesized to underlie much of phenotypic evolution, but the role of natural selection in shaping the molecular phenotype of gene expression continues to be debated. To resolve the mode of gene expression, evolution requires accessible theoretical predictions for the effect of selection over long timescales. Evolutionary quantitative genetic models of phenotypic evolution can provide such predictions, yet those predictions depend on the underlying hypotheses about the distributions of mutational and selective effects that are notoriously difficult to disentangle. Here, we draw on diverse genomic data sets including expression profiles of natural genetic variation and mutation accumulation lines, empirical estimates of genomic mutation rates, and inferences of genetic architecture to differentiate contrasting hypotheses for the roles of stabilizing selection and mutation in shaping natural expression variation. Our analysis suggests that gene expression evolves in a domain of phenotype space well fit by the House-of-Cards (HC) model. Although the strength of selection inferred is sensitive to the number of loci controlling gene expression, the model is not. The consistency of these results across evolutionary time from budding yeast through fruit fly implies that this model is general and that mutational effects on gene expression are relatively large. Empirical estimates of the genetic architecture of gene expression traits imply that selection provides modest constraints on gene expression levels for most genes, but that the potential for regulatory evolution is high. Our prediction using data from laboratory environments should encourage the collection of additional data sets allowing for more nuanced parameterizations of HC models for gene expression.
Collapse
Affiliation(s)
- Andrea Hodgins-Davis
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University
| | - Daniel P Rice
- Department of Ecology and Evolutionary Biology, Yale University Department of Organismic and Evolutionary Biology, Harvard University
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University Department of Biostatistics, School of Public Health, Yale University Program in Computational Biology and Bioinformatics, Yale University
| |
Collapse
|
88
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
89
|
Abstract
Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. This review summarizes current knowledge and recent advances on the diversity and evolutionary history of Saccharomyces cerevisiae wine yeasts, focusing on the domestication fingerprints identified in these strains.
Collapse
Affiliation(s)
- Souhir Marsit
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| | - Sylvie Dequin
- INRA, UMR1083, SPO, F-34060 Montpellier, France Montpellier SupAgro, UMR1083, SPO, F-34060 Montpellier, France Montpellier University, UMR1083, SPO, F-34060 Montpellier, France
| |
Collapse
|
90
|
Wohlbach DJ, Rovinskiy N, Lewis JA, Sardi M, Schackwitz WS, Martin JA, Deshpande S, Daum CG, Lipzen A, Sato TK, Gasch AP. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production. Genome Biol Evol 2015; 6:2557-66. [PMID: 25364804 PMCID: PMC4202335 DOI: 10.1093/gbe/evu199] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors—including toxic byproducts from biomass pretreatment and poor fermentation of xylose and other pentose sugars—currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore, genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains’ transcriptomic responses to heat and ethanol treatment—two stresses relevant to industrial bioethanol production—pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains.
Collapse
Affiliation(s)
- Dana J. Wohlbach
- Laboratory of Genetics, University of Wisconsin, Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
- Present address: Biology Department, Dickinson College, Carlisle, PA
| | - Nikolay Rovinskiy
- Laboratory of Genetics, University of Wisconsin, Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
| | - Jeffrey A. Lewis
- Laboratory of Genetics, University of Wisconsin, Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
- Present address: Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| | - Maria Sardi
- Laboratory of Genetics, University of Wisconsin, Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
| | | | - Joel A. Martin
- US Department of Energy Joint Genome Institute, Walnut Creek, California
| | - Shweta Deshpande
- US Department of Energy Joint Genome Institute, Walnut Creek, California
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California
| | - Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin, Madison
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison
- *Corresponding author: E-mail:
| |
Collapse
|
91
|
Clowers KJ, Heilberger J, Piotrowski JS, Will JL, Gasch AP. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae. Mol Biol Evol 2015; 32:2317-27. [PMID: 25953281 PMCID: PMC4540968 DOI: 10.1093/molbev/msv112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.
Collapse
Affiliation(s)
| | | | | | | | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison Great Lakes Bioenergy Research Center, Madison, WI
| |
Collapse
|
92
|
Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker JH. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res 2015; 25:762-74. [PMID: 25840857 PMCID: PMC4417123 DOI: 10.1101/gr.185538.114] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/18/2015] [Indexed: 12/18/2022]
Abstract
Saccharomyces cerevisiae, a well-established model for species as diverse as humans and pathogenic fungi, is more recently a model for population and quantitative genetics. S. cerevisiae is found in multiple environments—one of which is the human body—as an opportunistic pathogen. To aid in the understanding of the S. cerevisiae population and quantitative genetics, as well as its emergence as an opportunistic pathogen, we sequenced, de novo assembled, and extensively manually edited and annotated the genomes of 93 S. cerevisiae strains from multiple geographic and environmental origins, including many clinical origin strains. These 93 S. cerevisiae strains, the genomes of which are near-reference quality, together with seven previously sequenced strains, constitute a novel genetic resource, the “100-genomes” strains. Our sequencing coverage, high-quality assemblies, and annotation provide unprecedented opportunities for detailed interrogation of complex genomic loci, examples of which we demonstrate. We found most phenotypic variation to be quantitative and identified population, genotype, and phenotype associations. Importantly, we identified clinical origin associations. For example, we found that an introgressed PDR5 was present exclusively in clinical origin mosaic group strains; that the mosaic group was significantly enriched for clinical origin strains; and that clinical origin strains were much more copper resistant, suggesting that copper resistance contributes to fitness in the human host. The 100-genomes strains are a novel, multipurpose resource to advance the study of S. cerevisiae population genetics, quantitative genetics, and the emergence of an opportunistic pathogen.
Collapse
Affiliation(s)
- Pooja K Strope
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Stanislav G Kozmin
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina 27710, USA
| | - Gayathri Mahadevan
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina 27710, USA
| | - Eric A Stone
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, North Carolina 27710, USA
| | - Fred S Dietrich
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina 27710, USA
| | - John H McCusker
- Duke University Medical Center, Department of Molecular Genetics and Microbiology, Durham, North Carolina 27710, USA
| |
Collapse
|
93
|
Genome-destabilizing effects associated with top1 loss or accumulation of top1 cleavage complexes in yeast. PLoS Genet 2015; 11:e1005098. [PMID: 25830313 PMCID: PMC4382028 DOI: 10.1371/journal.pgen.1005098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase 1 (Top1), a Type IB topoisomerase, functions to relieve transcription- and replication-associated torsional stress in DNA. We investigated the effects of Top1 on genome stability in Saccharomyces cerevisiae using two different assays. First, a sectoring assay that detects loss of heterozygosity (LOH) on a specific chromosome was used to measure reciprocal crossover (RCO) rates. Features of individual RCO events were then molecularly characterized using chromosome-specific microarrays. In the second assay, cells were sub-cultured for 250 generations and LOH was examined genome-wide using microarrays. Though loss of Top1 did not destabilize single-copy genomic regions, RCO events were more complex than in a wild-type strain. In contrast to the stability of single-copy regions, sub-culturing experiments revealed that top1 mutants had greatly elevated levels of instability within the tandemly-repeated ribosomal RNA genes (in agreement with previous results). An intermediate in the enzymatic reaction catalyzed by Top1 is the covalent attachment of Top1 to the cleaved DNA. The resulting Top1 cleavage complex (Top1cc) is usually transient but can be stabilized by the drug camptothecin (CPT) or by the top1-T722A allele. We found that increased levels of the Top1cc resulted in a five- to ten-fold increase in RCOs and greatly increased instability within the rDNA and CUP1 tandem arrays. A detailed analysis of the events in strains with elevated levels of Top1cc suggests that recombinogenic DNA lesions are introduced during or after DNA synthesis. These results have important implications for understanding the effects of CPT as a chemotherapeutic agent. Topoisomerase I (Top1) nicks one strand of DNA to relieve torsional stress associated with replication, transcription and chromatin remodeling. The enzyme forms a transient, covalent intermediate with the nicked DNA and stabilization of the cleavage complex (Top1cc) leads to genetic instability. We examined the effect of Top1 loss or Top1cc stabilization on genome-wide mitotic stability and on mitotic crossovers that lead to loss of heterozygosity (LOH) in budding yeast. The level of Top1cc was elevated using the chemotherapeutic drug camptothecin or a mutant form of the enzyme. Whereas loss of Top1 only destabilized ribosomal DNA repeats, Top1cc accumulation was additionally associated with elevated LOH and genome-wide instability. In particular, the Top1cc greatly elevated copy number variation at the CUP1 tandem-repeat locus, consistent with elevated sister chromatid recombination. Molecular examination of LOH events associated with the Top1cc was also consistent with generation of recombination-initiating lesions during or after DNA synthesis. These results demonstrate that the use of topoisomerase inhibitors results in widespread genome instability that may contribute to secondary neoplasms.
Collapse
|
94
|
Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a019604. [PMID: 25081629 DOI: 10.1101/cshperspect.a019604] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, Maine 04011
| | - Judith Berman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Department of Molecular Microbiology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
95
|
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics 2014; 198:181-92. [PMID: 24990991 PMCID: PMC4174931 DOI: 10.1534/genetics.114.167395] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution.
Collapse
|
96
|
Solieri L, Dakal TC, Giudici P, Cassanelli S. Sex-determination system in the diploid yeast Zygosaccharomyces sapae. G3 (BETHESDA, MD.) 2014; 4:1011-25. [PMID: 24939186 PMCID: PMC4065246 DOI: 10.1534/g3.114.010405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/18/2022]
Abstract
Sexual reproduction and breeding systems are driving forces for genetic diversity. The mating-type (MAT) locus represents a mutation and chromosome rearrangement hotspot in yeasts. Zygosaccharomyces rouxii complex yeasts are naturally faced with hostile low water activity (aw) environments and are characterized by gene copy number variation, genome instability, and aneuploidy/allodiploidy. Here, we investigated sex-determination system in Zygosaccharomyces sapae diploid strain ABT301(T), a member of the Z. rouxii complex. We cloned three divergent mating type-like (MTL) α-idiomorph sequences and designated them as ZsMTLα copies 1, 2, and 3. They encode homologs of Z. rouxii CBS 732(T) MATα2 (amino acid sequence identities spanning from 67.0 to 99.5%) and MATα1 (identity range 81.5-99.5%). ABT301(T) possesses two divergent HO genes encoding distinct endonucleases 100% and 92.3% identical to Z. rouxii HO. Cloning of MATA: -idiomorph resulted in a single ZsMTLA: locus encoding two Z. rouxii-like proteins MATA: 1 and MATA: 2. To assign the cloned ZsMTLα and ZsMTLA: idiomorphs as MAT, HML, and HMR cassettes, we analyzed their flanking regions. Three ZsMTLα loci exhibited the DIC1-MAT-SLA2 gene order canonical for MAT expression loci. Furthermore, four putative HML cassettes were identified, two containing the ZsMTLα copy 1 and the remaining harboring ZsMTLα copies 2 and 3. Finally, the ZsMTLA: locus was 3'-flanked by SLA2, suggesting the status of MAT expression locus. In conclusion, Z. sapae ABT301(T) displays an aααα genotype missing of the HMR silent cassette. Our results demonstrated that mating-type switching is a hypermutagenic process in Z. rouxii complex that generates genetic diversity de novo. This error-prone mechanism could be suitable to generate progenies more rapidly adaptable to hostile environments.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Tikam Chand Dakal
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Paolo Giudici
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122, Reggio Emilia, Italy
| |
Collapse
|
97
|
Abstract
Prions (infectious proteins) cause fatal neurodegenerative diseases in mammals. In the yeast Saccharomyces cerevisiae, many toxic and lethal variants of the [PSI+] and [URE3] prions have been identified in laboratory strains, although some commonly studied variants do not seem to impair cell growth. Phylogenetic analysis has revealed four major clades of S. cerevisiae that share histories of two prion proteins and largely correspond to different ecological niches of yeast. The [PIN+] prion was most prevalent in commercialized niches, infrequent among wine/vineyard strains, and not observed in ancestral isolates. As previously reported, the [PSI+] and [URE3] prions are not found in any of these strains. Patterns of heterozygosity revealed genetic mosaicism and indicated extensive outcrossing among divergent strains in commercialized environments. In contrast, ancestral isolates were all homozygous and wine/vineyard strains were closely related to each other and largely homozygous. Cellular growth patterns were highly variable within and among clades, although ancestral isolates were the most efficient sporulators and domesticated strains showed greater tendencies for flocculation. [PIN+]-infected strains had a significantly higher likelihood of polyploidy, showed a higher propensity for flocculation compared to uninfected strains, and had higher sporulation efficiencies compared to domesticated, uninfected strains. Extensive phenotypic variability among strains from different environments suggests that S. cerevisiae is a niche generalist and that most wild strains are able to switch from asexual to sexual and from unicellular to multicellular growth in response to environmental conditions. Our data suggest that outbreeding and multicellular growth patterns adapted for domesticated environments are ecological risk factors for the [PIN+] prion in wild yeast.
Collapse
|
98
|
Abstract
Sexual reproduction is a pervasive attribute of eukaryotic species and is now recognized to occur in many clinically important human fungal pathogens. These fungi use sexual or parasexual strategies for various purposes that can have an impact on pathogenesis, such as the formation of drug-resistant isolates, the generation of strains with increased virulence or the modulation of interactions with host cells. In this Review, we examine the mechanisms regulating fungal sex and the consequences of these programmes for human disease.
Collapse
|
99
|
Large-Scale Chromosomal Changes and Associated Fitness Consequences in Pathogenic Fungi. CURRENT FUNGAL INFECTION REPORTS 2014; 8:163-170. [PMID: 25685251 DOI: 10.1007/s12281-014-0181-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pathogenic fungi encounter many different host environments to which they must adapt rapidly to ensure growth and survival. They also must be able to cope with alterations in established niches during long-term persistence in the host. Many eukaryotic pathogens have evolved a highly plastic genome, and large-scale chromosomal changes including aneuploidy, and loss of heterozygosity (LOH) can arise under various in vitro and in vivo stresses. Both aneuploidy and LOH can arise quickly during a single cell cycle, and it is hypothesized that they provide a rapid, albeit imprecise, solution to adaptation to stress until better and more refined solutions can be acquired by the organism. While LOH, with the extreme case of haploidization in Candida albicans, can purge the genome from recessive lethal alleles and/or generate recombinant progeny with increased fitness, aneuploidy, in the absence or rarity of meiosis, can serve as a non-Mendelian mechanism for generating genomic variation.
Collapse
|
100
|
Plech M, de Visser JAGM, Korona R. Heterosis is prevalent among domesticated but not wild strains of Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2014; 4:315-23. [PMID: 24347627 PMCID: PMC3931565 DOI: 10.1534/g3.113.009381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/11/2013] [Indexed: 11/18/2022]
Abstract
Crosses between inbred but unrelated individuals often result in an increased fitness of the progeny. This phenomenon is known as heterosis and has been reported for wild and domesticated populations of plants and animals. Analysis of heterosis is often hindered by the fact that the genetic relatedness between analyzed organisms is only approximately known. We studied a collection of Saccharomyces cerevisiae isolates from wild and human-created habitats whose genomes were sequenced and thus their relatedness was fully known. We reasoned that if these strains accumulated different deleterious mutations at an approximately constant rate, then heterosis should be most visible in F1 heterozygotes from the least related parents. We found that heterosis was substantial and positively correlated with sequence divergence, but only in domesticated strains. More than 80% of the heterozygous hybrids were more fit than expected from the mean of their homozygous parents, and approximately three-quarters of those exceeded even the fittest parent. Our results support the notion that domestication brings about relaxation of selection and accumulation of deleterious mutations. However, other factors may have contributed as well. In particular, the observed build-up of genetic load might be facilitated by a decrease, and not increase, in the rate of inbreeding.
Collapse
Affiliation(s)
- Marcin Plech
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| | | | - Ryszard Korona
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|