51
|
Liu M, Varela-Ramirez A, Li J, Dai L, Aguilera RJ, Zhang JY. Humoral autoimmune response to nucleophosmin in the immunodiagnosis of hepatocellular carcinoma. Oncol Rep 2015; 33:2245-52. [PMID: 25779011 PMCID: PMC4391589 DOI: 10.3892/or.2015.3854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a worldwide prevalent cancer with an exremely poor prognosis. Detection of serum α-fetoprotein (AFP) and liver imaging techniques are the conventional methods used clinically for the identification of this malignancy. However, these techniques are not reliable for early diagnosis, and particularly the sensitivity and specificity of AFP in HCC diagnosis are not optimal. Therefore, there is an urgent need for the development of more sensitive and specific methods that can improve AFP quantification in the early detection of HCC. In the present study, autoantibody responses to nucleophosmin (NPM1) in HCC patients were evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and indirect immunofluorescence. Immunohistochemistry (IHC) with tissue array slides was also performed to analyze protein expression of NPM1 in HCC and control tissues. The prevalence of autoantibodies against NPM1 was 22.4% (17/76) in HCC, which was significantly higher than that in sera from patients with liver cirrhosis (LC), chronic hepatitis (CH) and systemic lupus erythematosus (SLE) (P<0.01). The average titer of autoantibodies against NPM1 in HCC sera was higher compared to that in LC, CH, SLE and normal human sera (NHS) (P<0.01). In addition, anti-NMP1 autoantibodies were detected in sera from several HCC patients with serial bleeding samples. A stronger reactive band corresponding to NMP1 was visualized in the western blot analyses, utilizing sera from patients 3–6 months before the clinical diagnosis of HCC. Our data indicate that NPM1 and the anti-NPM1 system may have potential as an early-stage biomarker for HCC screening and diagnosis.
Collapse
Affiliation(s)
- Mei Liu
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jitian Li
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Liping Dai
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Renato J Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jian-Ying Zhang
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
52
|
Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X, Xu G, Wang G, Ying Z. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 2015; 24:2426-41. [PMID: 25575510 DOI: 10.1093/hmg/ddv005] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC·GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC·GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity. In the present study, we aimed to understand the biological properties of all five types of RAN proteins. Surprisingly, our results showed that none of these RAN proteins was aggregate-prone in our cellular model and that the turnover of these RAN proteins was not affected by the ubiquitin-proteasome system or autophagy. Moreover, poly-GR and poly-PR, but not poly-GA, poly-GP or poly-PA, localized to the nucleolus and induced the translocation of the key nucleolar component nucleophosmin, leading to nucleolar stress and cell death. This poly-GR- and poly-PR-mediated defect in nucleolar function was associated with the suppression of ribosomal RNA synthesis and the impairment of stress granule formation. Taken together, the results of the present study suggest a simple model of the molecular mechanisms underlying RAN translation-mediated cytotoxicity in C9orf72-linked ALS/FTD in which nucleolar stress, but not protein aggregation, is the primary contributor to C9orf72-linked neurodegeneration.
Collapse
Affiliation(s)
- Zhouteng Tao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Ke Li
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Kai Li
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Guoqiang Xu
- Laboratory of Chemical Biology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China and
| |
Collapse
|
53
|
Avitabile D, Ranieri D, Nicolussi A, D’Inzeo S, Capriotti AL, Genovese L, Proietti S, Cucina A, Coppa A, Samperi R, Bizzarri M, Laganà A, Torrisi MR. Peroxiredoxin 2 nuclear levels are regulated by circadian clock synchronization in human keratinocytes. Int J Biochem Cell Biol 2014; 53:24-34. [DOI: 10.1016/j.biocel.2014.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/08/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
|
54
|
Völkers M, Doroudgar S, Nguyen N, Konstandin MH, Quijada P, Din S, Ornelas L, Thuerauf DJ, Gude N, Friedrich K, Herzig S, Glembotski CC, Sussman MA. PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med 2014; 6:57-65. [PMID: 24408966 PMCID: PMC3936489 DOI: 10.1002/emmm.201303183] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diabetes is a multi-organ disease and diabetic cardiomyopathy can result in heart failure, which is a leading cause of morbidity and mortality in diabetic patients. In the liver, insulin resistance contributes to hyperglycaemia and hyperlipidaemia, which further worsens the metabolic profile. Defects in mTOR signalling are believed to contribute to metabolic dysfunctions in diabetic liver and hearts, but evidence is missing that mTOR activation is causal to the development of diabetic cardiomyopathy. This study shows that specific mTORC1 inhibition by PRAS40 prevents the development of diabetic cardiomyopathy. This phenotype was associated with improved metabolic function, blunted hypertrophic growth and preserved cardiac function. In addition PRAS40 treatment improves hepatic insulin sensitivity and reduces systemic hyperglycaemia in obese mice. Thus, unlike rapamycin, mTORC1 inhibition with PRAS40 improves metabolic profile in diabetic mice. These findings may open novel avenues for therapeutic strategies using PRAS40 directed against diabetic-related diseases.
Collapse
|
55
|
Avitabile D, Genovese L, Ponti D, Ranieri D, Raffa S, Calogero A, Torrisi MR. Nucleolar localization and circadian regulation of Per2S, a novel splicing variant of the Period 2 gene. Cell Mol Life Sci 2014; 71:2547-59. [PMID: 24202686 PMCID: PMC11113094 DOI: 10.1007/s00018-013-1503-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/26/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
In this work, we show for the first time that a second splicing variant of the core clock gene Period 2 (Per2), Per2S, is expressed at both the mRNA and protein levels in human keratinocytes and that it localizes in the nucleoli. Moreover, we show that a reversible perturbation of the nucleolar structure acts as a resetting stimulus for the cellular clock. Per2S expression and periodic oscillation upon dexamethasone treatment were assessed by qRT-PCR using specific primers. Western blot (WB) analysis using an antibody against the recombinant human PER2 (abRc) displayed an intense band at a molecular weight of ~55 kDa, close to the predicted size of Per2S, and a weaker band at the expected size of Per2 (~140 kDa). The antibody raised against PER2 pS662 (abS662), an epitope absent in PER2S, detected only the higher band. Immunolocalization studies with abRc revealed a peculiar nucleolar signal colocalizing with the nucleolar marker nucleophosmin, whereas with abS662 the signal was predominantly diffuse all over the nucleus and partially colocalized with abRc in the nucleolus. The analysis of cell fractions by WB confirmed the enrichment of PER2S and the presence of PER2 in the nucleolar compartment. Finally, a pulse (1 h) of actinomycin D (0.01 μg/ml) induced reversible nucleolar disruption, PER2S de-localization and circadian synchronization of clock and Per2S genes. Our work represents the first evidence that the Per2S splicing isoform is a clock component expressed in human cells localizing in the nucleolus. These results suggest a critical role for the nucleolus in the process of circadian synchronization in human keratinocytes.
Collapse
Affiliation(s)
- Daniele Avitabile
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Via di Grottarossa 1035, 00189, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
56
|
Hariharan N, Sussman MA. Stressing on the nucleolus in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:798-801. [PMID: 24514103 PMCID: PMC3972279 DOI: 10.1016/j.bbadis.2013.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022]
Abstract
The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
57
|
Mitrea DM, Grace CR, Buljan M, Yun MK, Pytel NJ, Satumba J, Nourse A, Park CG, Madan Babu M, White SW, Kriwacki RW. Structural polymorphism in the N-terminal oligomerization domain of NPM1. Proc Natl Acad Sci U S A 2014; 111:4466-71. [PMID: 24616519 PMCID: PMC3970533 DOI: 10.1073/pnas.1321007111] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomer-pentamer equilibrium is modulated by posttranslational modification and protein binding. Phosphorylation drives the equilibrium in favor of monomeric forms, and this effect can be reversed by Npm-N binding to its interaction partners. We have identified a short, arginine-rich linear motif in NPM1 binding partners that mediates Npm-N oligomerization. We propose that the diverse functional repertoire associated with NPM1 is controlled through a regulated unfolding mechanism signaled through posttranslational modifications and intermolecular interactions.
Collapse
Affiliation(s)
- Diana M. Mitrea
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Marija Buljan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Nicholas J. Pytel
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - John Satumba
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - M. Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; and
| | - Stephen W. White
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
58
|
Cheng Z, DiMichele LA, Rojas M, Vaziri C, Mack CP, Taylor JM. Focal adhesion kinase antagonizes doxorubicin cardiotoxicity via p21(Cip1.). J Mol Cell Cardiol 2014; 67:1-11. [PMID: 24342076 PMCID: PMC4237309 DOI: 10.1016/j.yjmcc.2013.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 11/24/2022]
Abstract
Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mec6hanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura A DiMichele
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mauricio Rojas
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
59
|
Monte E, Mouillesseaux K, Chen H, Kimball T, Ren S, Wang Y, Chen JN, Vondriska TM, Franklin S. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. Am J Physiol Heart Circ Physiol 2013; 305:H1624-38. [PMID: 24077883 PMCID: PMC3882469 DOI: 10.1152/ajpheart.00529.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022]
Abstract
Myocyte hypertrophy antecedent to heart failure involves changes in global gene expression, although the preceding mechanisms to coordinate DNA accessibility on a genomic scale are unknown. Chromatin-associated proteins alter chromatin structure by changing their association with DNA, thereby altering the gene expression profile. Little is known about the global changes in chromatin subproteomes that accompany heart failure, and the mechanisms by which these proteins alter chromatin structure. The present study tests the fundamental hypothesis that cardiac growth and plasticity in the setting of disease recapitulates conserved developmental chromatin remodeling events. We used quantitative proteomics to identify chromatin-associated proteins extracted via detergent and to quantify changes in their abundance during disease. Our study identified 321 proteins in this subproteome, demonstrating it to have modest conservation (37%) with that revealed using strong acid. Of these proteins, 176 exhibited altered expression during cardiac hypertrophy and failure; we conducted extensive functional characterization of one of these proteins, Nucleolin. Morpholino-based knockdown of nucleolin nearly abolished protein expression but surprisingly had little impact on gross morphological development. However, hearts of fish lacking Nucleolin displayed severe developmental impairment, abnormal chamber patterning and functional deficits, ostensibly due to defects in cardiac looping and myocyte differentiation. The mechanisms underlying these defects involve perturbed bone morphogenetic protein 4 expression, decreased rRNA transcription, and a shift to more heterochromatic chromatin. This study reports the quantitative analysis of a new chromatin subproteome in the normal and diseased mouse heart. Validation studies in the complementary model system of zebrafish examine the role of Nucleolin to orchestrate genomic reprogramming events shared between development and disease.
Collapse
Affiliation(s)
- Emma Monte
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Kiryk A, Sowodniok K, Kreiner G, Rodriguez-Parkitna J, Sönmez A, Górkiewicz T, Bierhoff H, Wawrzyniak M, Janusz AK, Liss B, Konopka W, Schütz G, Kaczmarek L, Parlato R. Impaired rRNA synthesis triggers homeostatic responses in hippocampal neurons. Front Cell Neurosci 2013; 7:207. [PMID: 24273493 PMCID: PMC3823236 DOI: 10.3389/fncel.2013.00207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/19/2013] [Indexed: 12/02/2022] Open
Abstract
Decreased rRNA synthesis and nucleolar disruption, known as nucleolar stress, are primary signs of cellular stress associated with aging and neurodegenerative disorders. Silencing of rDNA occurs during early stages of Alzheimer's disease (AD) and may play a role in dementia. Moreover, aberrant regulation of the protein synthesis machinery is present in the brain of suicide victims and implicates the epigenetic modulation of rRNA. Recently, we developed unique mouse models characterized by nucleolar stress in neurons. We inhibited RNA polymerase I by genetic ablation of the basal transcription factor TIF-IA in adult hippocampal neurons. Nucleolar stress resulted in progressive neurodegeneration, although with a differential vulnerability within the CA1, CA3, and dentate gyrus (DG). Here, we investigate the consequences of nucleolar stress on learning and memory. The mutant mice show normal performance in the Morris water maze and in other behavioral tests, suggesting the activation of adaptive mechanisms. In fact, we observe a significantly enhanced learning and re-learning corresponding to the initial inhibition of rRNA transcription. This phenomenon is accompanied by aberrant synaptic plasticity. By the analysis of nucleolar function and integrity, we find that the synthesis of rRNA is later restored. Gene expression profiling shows that 36 transcripts are differentially expressed in comparison to the control group in absence of neurodegeneration. Additionally, we observe a significant enrichment of the putative serum response factor (SRF) binding sites in the promoters of the genes with changed expression, indicating potential adaptive mechanisms mediated by the mitogen-activated protein kinase pathway. In the DG a neurogenetic response might compensate the initial molecular deficits. These results underscore the role of nucleolar stress in neuronal homeostasis and open a new ground for therapeutic strategies aiming at preserving neuronal function.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Su H, Kodiha M, Lee S, Stochaj U. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment. PLoS One 2013; 8:e80237. [PMID: 24223222 PMCID: PMC3819286 DOI: 10.1371/journal.pone.0080237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023] Open
Abstract
The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with high confidence under a variety of experimental settings.
Collapse
Affiliation(s)
- Haitong Su
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Mohamed Kodiha
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Sunghoon Lee
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Ursula Stochaj
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| |
Collapse
|
62
|
Völkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, Joyo A, Ornelas L, Samse K, Thuerauf DJ, Gude N, Glembotski CC, Sussman MA. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 2013; 128:2132-44. [PMID: 24008870 DOI: 10.1161/circulationaha.113.003638] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) comprises 2 structurally distinct multiprotein complexes, mTOR complexes 1 and 2 (mTORC1 and mTORC2). Deregulation of mTOR signaling occurs during and contributes to the severity of myocardial damage from ischemic heart disease. However, the relative roles of mTORC1 versus mTORC2 in the pathogenesis of ischemic damage are unknown. METHODS AND RESULTS Combined pharmacological and molecular approaches were used to alter the balance of mTORC1 and mTORC2 signaling in cultured cardiac myocytes and in mouse hearts subjected to conditions that mimic ischemic heart disease. The importance of mTOR signaling in cardiac protection was demonstrated by pharmacological inhibition of both mTORC1 and mTORC2 with Torin1, which led to increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. Predominant mTORC1 signaling mediated by suppression of mTORC2 with Rictor similarly increased cardiomyocyte apoptosis and tissue damage after myocardial infarction. In comparison, preferentially shifting toward mTORC2 signaling by inhibition of mTORC1 with PRAS40 led to decreased cardiomyocyte apoptosis and tissue damage after myocardial infarction. CONCLUSIONS These results suggest that selectively increasing mTORC2 while concurrently inhibiting mTORC1 signaling is a novel therapeutic approach for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Mirko Völkers
- From SDSU Heart Institute, Department of Biology, San Diego State University, San Diego, CA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Cardiac progenitor cells engineered with βARKct have enhanced β-adrenergic tolerance. Mol Ther 2013; 22:178-85. [PMID: 24002692 DOI: 10.1038/mt.2013.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023] Open
Abstract
Stem cell survival and retention in myocardium after injury following adoptive transfer is low. Elevated catecholamine levels coinciding with myocardial injury adversely affect cardiac progenitor cell (CPC) survival. The G protein-coupled receptor kinase 2 (GRK2)-derived inhibitory peptide, βARKct, enhance myocyte contractility, survival, and normalize the neurohormonal axis in failing heart, however salutary effects of βARKct on CPC survival and proliferation are unknown. Herein, we investigated whether the protective effects of βARKct expression seen in the failing heart relate to CPCs. Modified CPCs expressing βARKct enhanced AKT/eNOS signaling through protective β2-adrenergic receptors (β2-ARs). In addition, to the actions of βARKct expression on β2- AR signaling, pharmacologic inhibition of GRK2 also increased β2-AR signaling in nonengineered CPCs (lacking βARKct) but had limited effects in βARKct engineered CPCs providing evidence for the strength of the βARKct in inhibiting GRK2 in these cells. Increased proliferation and metabolic activity were observed in βARKct-engineered CPCs following catecholamine stimulation indicating improved adrenergic tolerance. βARKct modification of CPCs increased survival and proliferation following adoptive transfer in an acute myocardial infarction model concomitant with increased expression of β-AR. Thus, βARKct engineering of CPCs promotes survival and proliferation of injected cells following myocardial infarction, which includes improved β-adrenergic tolerance essential for stem cell survival.
Collapse
|
64
|
Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc Natl Acad Sci U S A 2013; 110:12661-6. [PMID: 23842089 DOI: 10.1073/pnas.1301455110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1), necessary for cellular growth, is regulated by intracellular signaling mediating inhibition of mTORC1 activation. Among mTORC1 regulatory binding partners, the role of Proline Rich AKT Substrate of 40 kDa (PRAS40) in controlling mTORC1 activity and cellular growth in response to pathological and physiological stress in the heart has never been addressed. This report shows PRAS40 is regulated by AKT in cardiomyocytes and that AKT-driven phosphorylation relieves the inhibitory function of PRAS40. PRAS40 overexpression in vitro blocks mTORC1 in cardiomyocytes and decreases pathological growth. Cardiomyocyte-specific overexpression in vivo blunts pathological remodeling after pressure overload and preserves cardiac function. Inhibition of mTORC1 by PRAS40 preferentially promotes protective mTORC2 signaling in chronic diseased myocardium. In contrast, strong PRAS40 phosphorylation by AKT allows for physiological hypertrophy both in vitro and in vivo, whereas cardiomyocyte-specific overexpression of a PRAS40 mutant lacking capacity for AKT-phosphorylation inhibits physiological growth in vivo, demonstrating that AKT-mediated PRAS40 phosphorylation is necessary for induction of physiological hypertrophy. Therefore, PRAS40 phosphorylation acts as a molecular switch allowing mTORC1 activation during physiological growth, opening up unique possibilities for therapeutic regulation of the mTORC1 complex to mitigate pathologic myocardial hypertrophy by PRAS40.
Collapse
|
65
|
Toko H, Konstandin MH, Doroudgar S, Ormachea L, Joyo E, Joyo AY, Din S, Gude NA, Collins B, Völkers M, Thuerauf DJ, Glembotski CC, Chen CH, Lu KP, Müller OJ, Uchida T, Sussman MA. Regulation of cardiac hypertrophic signaling by prolyl isomerase Pin1. Circ Res 2013; 112:1244-52. [PMID: 23487407 DOI: 10.1161/circresaha.113.301084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE To establish the role of Pin1 in the heart. METHODS AND RESULTS Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.
Collapse
Affiliation(s)
- Haruhiro Toko
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|