51
|
Due SL, Watson DI, Bastian I, Ding GQ, Sukocheva OA, Astill DSJ, Vat L, Hussey DJ. Tamoxifen enhances the cytotoxicity of conventional chemotherapy in esophageal adenocarcinoma cells. Surg Oncol 2016; 25:269-277. [PMID: 27566033 DOI: 10.1016/j.suronc.2016.05.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Esophageal adenocarcinoma is a lethal malignancy which is increasing in incidence, and many patients receive chemotherapy as part of their treatment. We have previously demonstrated that esophageal adenocarcinoma-derived cell lines respond to treatment with estrogen receptor modulators, such as tamoxifen. Reports from breast cancer suggest that tamoxifen may attenuate the efficacy of other chemotherapeutic agents. We have therefore assessed the response of esophageal adenocarcinoma cell lines to tamoxifen therapy when given in combination with conventional agents. METHODS Two estrogen receptor (ER)-positive esophageal adenocarcinoma cell lines (OE-19 and OE-33) were treated with combinations of tamoxifen, cisplatin and 5-fluorouracil (5-FU). Effects on cell viability were measured using an MTS assay, and cell death was detected with annexin V/propidium iodide flow cytometry. To assess whether the efficacy of tamoxifen in these cell lines might be relevant to the clinical setting, we analyzed ER status in 10 esophageal adenocarcinoma tissue specimens by immunohistochemistry. RESULTS IC50 values (μM) for OE-19 and OE-33 were 11.2 and 7.1 for tamoxifen, 19.6 and 4.7 for cisplatin, and 1.7 and 5.9 for 5-FU, respectively. Cell death was detected in 11.9% and 15.8% of cells treated with tamoxifen, 7.9% and 8.7% cells treated with cisplatin, and 3.6% and 8.6% cells treated with 5-FU at their IC50s. The addition of tamoxifen to cisplatin increased cell death by 11.4% in OE-19 (p < 0.0001) and 16.3% in OE-33 (p < 0.0001). Similarly, the addition of tamoxifen to 5-FU increased cell death by 11.6% in OE-19 (p < 0.0001) and 15.9% in OE-33 (p < 0.0001). Eight of 10 tissue specimens showed positive staining for ERα and 7 of 10 for ERβ. CONCLUSIONS In a cell culture model the addition of tamoxifen to conventional chemotherapy appears to be both feasible and beneficial. Expression of ERα and ERβ was also confirmed in esophageal adenocarcinoma tissues.
Collapse
Affiliation(s)
- S L Due
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - D I Watson
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - I Bastian
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - G Q Ding
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - O A Sukocheva
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - D St J Astill
- Department of Anatomical Pathology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - L Vat
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - D J Hussey
- Flinders University Department of Surgery and Flinders Centre for Cancer Prevention and Control, Flinders Medical Centre, Adelaide, South Australia, Australia.
| |
Collapse
|
52
|
Fasani RA, Livi CB, Choudhury DR, Kleensang A, Bouhifd M, Pendse SN, McMullen PD, Andersen ME, Hartung T, Rosenberg M. The Human Toxome Collaboratorium: A Shared Environment for Multi-Omic Computational Collaboration within a Consortium. Front Pharmacol 2016; 6:322. [PMID: 26924983 PMCID: PMC4756169 DOI: 10.3389/fphar.2015.00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies.
Collapse
Affiliation(s)
| | | | | | - Andre Kleensang
- Center for Alternatives to Animal Testing, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Mounir Bouhifd
- Center for Alternatives to Animal Testing, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University Baltimore, MD, USA
| | - Salil N Pendse
- The Hamner Institutes for Health Sciences, Research Triangle Park NC, USA
| | - Patrick D McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park NC, USA
| | - Melvin E Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park NC, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins UniversityBaltimore, MD, USA; Center for Alternatives to Animal Testing Europe, University of KonstanzKonstanz, Germany
| | | |
Collapse
|
53
|
Liu R, Guo CX, Zhou HH. Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen. Cancer Biol Ther 2015; 16:317-24. [PMID: 25756514 DOI: 10.1080/15384047.2014.1002360] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aims to identify effective gene networks and prognostic biomarkers associated with estrogen receptor positive (ER+) breast cancer using human mRNA studies. Weighted gene coexpression network analysis was performed with a complex ER+ breast cancer transcriptome to investigate the function of networks and key genes in the prognosis of breast cancer. We found a significant correlation of an expression module with distant metastasis-free survival (HR = 2.25; 95% CI .21.03-4.88 in discovery set; HR = 1.78; 95% CI = 1.07-2.93 in validation set). This module contained genes enriched in the biological process of the M phase. From this module, we further identified and validated 5 hub genes (CDK1, DLGAP5, MELK, NUSAP1, and RRM2), the expression levels of which were strongly associated with poor survival. Highly expressed MELK indicated poor survival in luminal A and luminal B breast cancer molecular subtypes. This gene was also found to be associated with tamoxifen resistance. Results indicated that a network-based approach may facilitate the discovery of biomarkers for the prognosis of ER+ breast cancer and may also be used as a basis for establishing personalized therapies. Nevertheless, before the application of this approach in clinical settings, in vivo and in vitro experiments and multi-center randomized controlled clinical trials are still needed.
Collapse
Key Words
- CI, confidence interval
- ER+, estrogen receptor positive
- GS, gene significance
- HER2, human epidermal growth factor 2
- ME, module eigengene
- MS, module significance
- PCC, Pearson's correlation coefficient
- PR, progesterone receptor
- TOM, topologic overlap measure
- WGCNA, weighted gene co-expression network analysis
- biomarker
- breast cancer
- gene expression profiling
- k.in, intramodular connectivity
- k.total, Network connectivity
- systems biology
- tamoxifen resistance
Collapse
Affiliation(s)
- Rong Liu
- a Department of Clinical Pharmacology; Xiangya Hospital; Central South University ; Changsha , China
| | | | | |
Collapse
|
54
|
Luzhna L, Lykkesfeldt AE, Kovalchuk O. Altered radiation responses of breast cancer cells resistant to hormonal therapy. Oncotarget 2015; 6:1678-94. [PMID: 25682200 PMCID: PMC4359324 DOI: 10.18632/oncotarget.3188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023] Open
Abstract
Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy. Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established. Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a roadmap to the future analysis of the mechanisms of cross-resistance between hormonal therapy and radiation.
Collapse
Affiliation(s)
- Lidiya Luzhna
- Department of Biological Sciences, University of Lethbridge, University Drive, Lethbridge, AB, Canada
| | - Anne E. Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden, Copenhagen, Denmark
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive, Lethbridge, AB, Canada
| |
Collapse
|
55
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
56
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
57
|
CCNB1 is a prognostic biomarker for ER+ breast cancer. Med Hypotheses 2014; 83:359-64. [DOI: 10.1016/j.mehy.2014.06.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/08/2014] [Accepted: 06/15/2014] [Indexed: 12/15/2022]
|
58
|
Asano T, Sato S, Yoshimoto N, Endo Y, Hato Y, Dong Y, Takahashi S, Fujii Y, Toyama T. High expression of LMTK3 is an independent factor indicating a poor prognosis in estrogen receptor α-positive breast cancer patients. Jpn J Clin Oncol 2014; 44:889-97. [PMID: 25163465 DOI: 10.1093/jjco/hyu113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Over 70% of breast cancers are estrogen receptor alpha-positive, and endocrine therapy targeting estrogen action decreases mortality from breast cancer. Recently, a novel protein kinase that regulates estrogen receptor alpha activity, lemur tyrosine kinase-3, has been identified. In this study, we investigated whether messenger RNA expression and polymorphisms of the gene encoding the kinase, LMTK3, are associated with prognosis in breast cancer patients during long-term follow-up. METHODS First, we investigated the relationship between messenger RNA expression of LMTK3 and patient outcome in 219 breast cancers. The effects of several variables on survival were tested by Cox proportional hazards regression analysis. Next, we performed LMTK3 genotyping in 471 breast cancers to clarify the prognostic role of these polymorphisms. RESULTS Our data showed that LMTK3 expression level was not associated with prognosis in all patients. We then analyzed the impact of LMTK3 mRNA expression on the prognosis of breast cancer according to estrogen receptor alpha status. Both disease-free survival and overall survival were significantly shorter in estrogen receptor alpha-positive patients with high LMTK3 expression receiving adjuvant endocrine therapy than in those patients with low LMTK3 expression. Multivariate Cox regression analysis revealed that high LMTK3 expression was an independent poor prognostic factor in estrogen receptor alpha-positive breast cancer patients. We did not find any correlation between LMTK3 genotypes and prognosis of breast cancer patients in our series. CONCLUSIONS Our results show that high expression of LMTK3 is an independent prognostic factor in estrogen receptor alpha-positive breast cancer patients receiving adjuvant endocrine therapy.
Collapse
Affiliation(s)
- Tomoko Asano
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Shinya Sato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya Division of Diagnostic Pathology, Nagoya City East Medical Center, Nagoya, Japan
| | - Nobuyasu Yoshimoto
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yumi Endo
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yukari Hato
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yu Dong
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Yoshitaka Fujii
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | - Tatsuya Toyama
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya
| |
Collapse
|
59
|
Yu X, Bian X, Throop A, Song L, Moral LD, Park J, Seiler C, Fiacco M, Steel J, Hunter P, Saul J, Wang J, Qiu J, Pipas JM, LaBaer J. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions. Am J Cancer Res 2014; 4:808-22. [PMID: 24955142 PMCID: PMC4063979 DOI: 10.7150/thno.8255] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 04/27/2014] [Indexed: 12/24/2022] Open
Abstract
Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.
Collapse
|
60
|
Ward A, Shukla K, Balwierz A, Soons Z, König R, Sahin O, Wiemann S. MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. J Pathol 2014; 233:368-79. [PMID: 24752803 PMCID: PMC4298809 DOI: 10.1002/path.4363] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 12/30/2022]
Abstract
Tamoxifen is an endocrine therapy which is administered to up to 70% of all breast cancer patients with oestrogen receptor alpha (ERα) expression. Despite the initial response, most patients eventually acquire resistance to the drug. MicroRNAs (miRNAs) are a class of small non-coding RNAs which have the ability to post-transcriptionally regulate genes. Although the role of a few miRNAs has been described in tamoxifen resistance at the single gene/target level, little is known about how concerted actions of miRNAs targeting biological networks contribute to resistance. Here we identified the miRNA cluster, C19MC, which harbours around 50 mature miRNAs, to be up-regulated in resistant cells, with miRNA-519a being the most highly up-regulated. We could demonstrate that miRNA-519a regulates tamoxifen resistance using gain- and loss-of-function testing. By combining functional enrichment analysis and prediction algorithms, we identified three central tumour-suppressor genes (TSGs) in PI3K signalling and the cell cycle network as direct target genes of miR-519a. Combined expression of these target genes correlated with disease-specific survival in a cohort of tamoxifen-treated patients. We identified miRNA-519a as a novel oncomir in ER+ breast cancer cells as it increased cell viability and cell cycle progression as well as resistance to tamoxifen-induced apoptosis. Finally, we could show that elevated miRNA-519a levels were inversely correlated with the target genes' expression and that higher expression of this miRNA correlated with poorer survival in ER+ breast cancer patients. Hence we have identified miRNA-519a as a novel oncomir, co-regulating a network of TSGs in breast cancer and conferring resistance to tamoxifen. Using inhibitors of such miRNAs may serve as a novel therapeutic approach to combat resistance to therapy as well as proliferation and evasion of apoptosis in breast cancer. Published by John Wiley & Sons, Ltd. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Aoife Ward
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
61
|
Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol 2014; 85:830-8. [PMID: 24574520 PMCID: PMC4014668 DOI: 10.1124/mol.114.091850] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Autophagy is the process by which cellular material is delivered to lysosomes for degradation and recycling. There are three different types of autophagy, but macroautophagy, which involves the formation of double membrane vesicles that engulf proteins and organelles that fuse with lysosomes, is by far the most studied and is thought to have important context-dependent roles in cancer development, progression, and treatment. The roles of autophagy in cancer treatment are complicated by two important discoveries over the past few years. First, most (perhaps all) anticancer drugs, as well as ionizing radiation, affect autophagy. In most, but not all cases, these treatments increase autophagy in tumor cells. Second, autophagy affects the ability of tumor cells to die after drug treatment, but the effect of autophagy may be to promote or inhibit cell death, depending on context. Here we discuss recent research related to autophagy and cancer therapy with a focus on how these processes may be manipulated to improve cancer therapy.
Collapse
Affiliation(s)
- Andrew Thorburn
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado (A.T.); and Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado (D.H.T., D.L.G.)
| | | | | |
Collapse
|
62
|
Zhang YW, Zheng Y, Wang JZ, LU XX, Wang Z, Chen LB, Guan XX, Tong JD. Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer. Epigenetics 2014; 9:896-909. [PMID: 24699858 PMCID: PMC4065187 DOI: 10.4161/epi.28601] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/15/2014] [Accepted: 03/19/2014] [Indexed: 01/07/2023] Open
Abstract
DNA methylation plays a critical role during the development of acquired chemoresistance. The aim of this study was to identify candidate DNA methylation drivers of cisplatin (DDP) resistance in non-small cell lung cancer (NSCLC). The A549/DDP cell line was established by continuous exposure of A549 cells to increasing concentrations of DDP. Gene expression and methylation profiling were determined by high-throughput microarrays. Relationship of methylation status and DDP response was validated in primary tumor cell culture and the Cancer Genome Atlas (TCGA) samples. Cell proliferation, apoptosis, cell cycle, and response to DDP were determined in vitro and in vivo. A total of 372 genes showed hypermethylation and downregulation in A549/DDP cells, and these genes were involved in most fundamental biological processes. Ten candidate genes (S100P, GDA, WISP2, LOXL1, TIMP4, ICAM1, CLMP, HSP8, GAS1, BMP2) were selected, and exhibited varying degrees of association with DDP resistance. Low dose combination of 5-aza-2'-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) reversed drug resistance of A549/DDP cells in vitro and in vivo, along with demethylation and restoration of expression of candidate genes (GAS1, TIMP4, ICAM1 and WISP2). Forced expression of GAS1 in A549/DDP cells by gene transfection contributed to increased sensitivity to DDP, proliferation inhibition, cell cycle arrest, apoptosis enhancement, and in vivo growth retardation. Together, our study demonstrated that a panel of candidate genes downregulated by DNA methylation induced DDP resistance in NSCLC, and showed that epigenetic therapy resensitized cells to DDP.
Collapse
Affiliation(s)
- You-Wei Zhang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
- Department of Oncology; Affiliated Xuzhou Central Hospital; Xuzhou Medical College; Xuzhou, PR China
| | - Yun Zheng
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jing-Zi Wang
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xia LU
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Zhu Wang
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| | - Long-Bang Chen
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Xiao-Xiang Guan
- Department of Oncology; Jinling Hospital; Medical School of Nanjing University; Nanjing, PR China
| | - Jian-Dong Tong
- Department of Oncology; Yangzhou No. 1 Hospital; The Second Clinical School of Yangzhou University; Yangzhou, PR China
| |
Collapse
|
63
|
Takahashi M, Hayashida T, Okazaki H, Miyao K, Jinno H, Kitagawa Y. Loss of B-cell translocation gene 2 expression in estrogen receptor-positive breast cancer predicts tamoxifen resistance. Cancer Sci 2014; 105:675-82. [PMID: 24698107 PMCID: PMC4317889 DOI: 10.1111/cas.12410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 02/01/2023] Open
Abstract
B-cell translocation gene 2 (BTG2), a gene suppressed in a subset of aggressive breast cancer, is repressed by estrogen. BTG2 inhibits the expression of HER ligands and promotes AKT activation, which plays an essential role in the tamoxifen resistance of estrogen receptor (ER)-positive breast cancer. To determine if BTG2 expression modifies tamoxifen efficacy, a cohort of 60 patients treated with adjuvant tamoxifen monotherapy was analyzed. We found that increased BTG2 expression showed better clinical survival and was the only independent prognostic factor for disease-free survival (hazard ratio, 0.691; 95% confidence interval, 0.495–0.963; P = 0.029). Tamoxifen suppressed the human epidermal growth factor receptor 2 (HER2)-Akt signaling in BTG2 expressing ER-positive breast cancer cells with a correlated increase in sensitivity, whereas BTG2 knockdown abrogated this sensitivity. Consistent with this observation, tamoxifen significantly suppressed the growth ratio, tumor weight and Ki-67 expression in BTG2 expressing breast cancer xenografts in mice. These studies demonstrate that BTG2 is a significant factor in tamoxifen response, acting through modification of AKT activation in ER-positive/HER2-negative breast cancer.
Collapse
Affiliation(s)
- Maiko Takahashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
64
|
Knutson TP, Lange CA. Tracking progesterone receptor-mediated actions in breast cancer. Pharmacol Ther 2014; 142:114-25. [PMID: 24291072 PMCID: PMC3943696 DOI: 10.1016/j.pharmthera.2013.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
Abstract
Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR's contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered alongside antiestrogens and aromatase inhibitors.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine, Division of Hematology, Oncology, and Transplantation and Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
65
|
CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLoS One 2014; 9:e91771. [PMID: 24622579 PMCID: PMC3951414 DOI: 10.1371/journal.pone.0091771] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/13/2014] [Indexed: 11/30/2022] Open
Abstract
Identification of effective prognostic biomarkers and targets are of crucial importance to the management of estrogen receptor positive (ER+) breast cancer. CCNA2 (also known as CyclinA2) belongs to the highly conserved cyclin family and is significantly overexpressed in various cancer types. In this study, we demonstrated that CCNA2 had significant predictive power in distant metastasis free survival, disease free survival, recurrence free survival and overall survival of ER+ breast cancer patients. We also found that CCNA2 was closely associated with tamoxifen resistance. In addition, gene set enrichment analysis (GSEA) revealed that its expression was positively associated with genes overexpressed in endocrine therapy resistant samples. Finally, though CCNA2-Drug interaction network, we demonstrated the interactions between CCNA2 and several available cancer drugs. Overall, we suggest that CCNA2 is a biomarker for the prognosis of ER+ breast cancer and monitoring of tamoxifen efficacy. It's also a promising target for developing new strategies to prevent or even reverse tamoxifen resistance. Moreover, CCNA2 expression may help monitoring tamoxifen efficacy and directing personalized therapies. Nevertheless, in vivo and in vitro experiments and multi-center randomized controlled clinical trials are still needed before its application in clinical settings.
Collapse
|
66
|
Dressing GE, Knutson TP, Schiewer MJ, Daniel AR, Hagan CR, Diep CH, Knudsen KE, Lange CA. Progesterone receptor-cyclin D1 complexes induce cell cycle-dependent transcriptional programs in breast cancer cells. Mol Endocrinol 2014; 28:442-57. [PMID: 24606123 DOI: 10.1210/me.2013-1196] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The progesterone receptor (PR) and its coactivators are direct targets of activated cyclin-dependent kinases (CDKs) in response to peptide growth factors, progesterone, and deregulation of cell cycle inhibitors. Herein, using the T47D breast cancer model, we probed mechanisms of cell cycle-dependent PR action. In the absence of exogenous progestin, the PR is specifically phosphorylated during the G2/M phase. Accordingly, numerous PR target genes are cell cycle regulated, including HSPB8, a heat-shock protein whose high expression is associated with tamoxifen resistance. Progestin-induced HSPB8 expression required cyclin D1 and was insensitive to antiestrogens but blocked by antiprogestins or inhibition of specificity factor 1 (SP1). HSPB8 expression increased with or without ligand when cells were G2/M synchronized or contained high levels of cyclin D1. Knockdown of PRs abrogated ligand-independent HSPB8 expression in synchronized cells. Notably, PRs and cyclin D1 copurified in whole-cell lysates of transiently transfected COS-1 cells and in PR-positive T47D breast cancer cells expressing endogenous cyclin D1. PRs, cyclin D1, and SP1 were recruited to the HSPB8 promoter in progestin-treated T47D breast cancer cells. Mutation of PR Ser345 to Ala (S345A) or inhibition of CDK2 activity using roscovitine disrupted PR/cyclin D1 interactions with DNA and blocked HSPB8 mRNA expression. Interaction of phosphorylated PRs with SP1 and cyclin D1 provides a mechanism for targeting transcriptionally active PRs to selected gene promoters relevant to breast cancer progression. Understanding the functional linkage between PRs and cell cycle regulatory proteins will provide keys to targeting novel PR/cyclin D1 cross talk in both hormone-responsive disease and HSPB8-high refractory disease with high HSPB8 expression.
Collapse
Affiliation(s)
- Gwen E Dressing
- Departments of Medicine and Pharmacology (G.E.D., T.P.K., A.R.D., C.R.H., C.H.D., C.A.L.), Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455; and Departments of Cancer Biology, Urology, and Radiation Oncology (M.J.S., K.E.K.), Kimmel Cancer Center Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Al-Rayyan N, Litchfield LM, Ivanova MM, Radde BN, Cheng A, Elbedewy A, Klinge CM. 5-Aza-2-deoxycytidine and trichostatin A increase COUP-TFII expression in antiestrogen-resistant breast cancer cell lines. Cancer Lett 2014; 347:139-50. [PMID: 24513177 DOI: 10.1016/j.canlet.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/15/2014] [Accepted: 02/03/2014] [Indexed: 02/06/2023]
Abstract
COUP-TFII is reduced in endocrine-resistant breast cancer cells and is negatively associated with tumor grade. Transient re-expression of COUP-TFII restores antiestrogen sensitivity in resistant LCC2 and LCC9 cells and repression of COUP-TFII results in antiestrogen-resistance in MCF-7 endocrine-sensitive cells. We addressed the hypothesis that reduced COUP-TFII expression in endocrine-resistant breast cancer cells results from epigenetic modification. The NR2F2 gene encoding COUP-TFII includes seven CpG islands, including one in the 5' promoter and one in exon 1. Treatment of LCC2 and LCC9 endocrine-resistant breast cancer cells with 5-aza-2'-deoxycytidine (AZA), a DNA methyltransferase (DNMT) inhibitor, +/- trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, increased COUP-TFII suggesting that the decrease in COUP-TFII is mediated by epigenetic changes. Methylation-specific PCR (MSP) revealed higher methylation of NR2F2 in the first exon in LCC2 and LCC9 cells compared to MCF-7 cells and AZA reduced this methylation. Translational importance is suggested by Cancer Methylome System (CMS) analysis revealing that breast tumors have increased COUP-TFII (NR2F2) promoter and gene methylation versus normal breast.
Collapse
Affiliation(s)
- Numan Al-Rayyan
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lacey M Litchfield
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Margarita M Ivanova
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Brandie N Radde
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Alan Cheng
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Ahmed Elbedewy
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
68
|
Jia G, Kong R, Ma ZB, Han B, Wang YW, Pan SH, Li YH, Sun B. The activation of c-Jun NH₂-terminal kinase is required for dihydroartemisinin-induced autophagy in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:8. [PMID: 24438216 PMCID: PMC3901759 DOI: 10.1186/1756-9966-33-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
Background c-Jun NH2-terminal kinases (JNKs) are strongly activated by a stressful cellular environment, such as chemotherapy and oxidative stress. Autophagy is a protein-degradation system in which double-membrane vacuoles called autophagosomes are formed. The autophagy-related gene Beclin 1 plays a key role in this process. We previously found that autophagy was induced by dihydroartemisinin (DHA) in pancreatic cancer cells. However, little is known about the complex relationship between ROS, JNK activation, autophagy induction, and Beclin 1 expression. Methods Cell viability and CCK-8 assays were carried out to determine the cell proliferation; small interfering RNAs (siRNAs) were used to knockdown c-Jun NH2-terminal kinases (JNK1/2) genes; western blot was performed to detect the protein expression of LC3, JNK, Beclin 1, caspase 3 and β-actin; production of intracellular ROS was analyzed using FACS flow cytometry; autophagy induction was confirmed by electron microscopy. Results In the present study, we explored the role of DHA and Beclin 1 expression in autophagy. DHA-treated cells showed autophagy characteristics, and DHA also activated the JNK pathway and up-regulated the expression of Beclin 1. Conversely, blocking JNK signaling inhibited Beclin 1 up-regulation. JNK activation was found to primarily depend on reactive oxygen species (ROS) resulting from the DHA treatment. Moreover, JNK pathway inhibition and Beclin 1 silencing prevented the induction of DHA-induced autophagy. Conclusions These results suggest that the induction of autophagy by DHA is required for JNK-mediated Beclin 1 expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bei Sun
- Department of Pancreatic and Biliary Surgery; Key Laboratory of Hepatosplenic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
69
|
Chang BY, Kim SA, Malla B, Kim SY. The Effect of Selective Estrogen Receptor Modulators (SERMs) on the Tamoxifen Resistant Breast Cancer Cells. Toxicol Res 2013; 27:85-93. [PMID: 24278556 PMCID: PMC3834369 DOI: 10.5487/tr.2011.27.2.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) are synthetic molecules which bind to estrogen receptors (ER) and can modulate its transcriptional capabilities in different ways in diverse estrogen target tissues. Tamoxifen, the prototypical SERM, is extensively used for targeted therapy of ER positive breast cancers. Unfortunately, the use of tamoxifen is associated with acquired resistance and some undesirable side effects. This study investigated the availability of the conventional SERMs on the TAM-resistance breast cancer cells. SERMs showed more effectiveness in MCF-7 cells than tamoxifen resistant cells, except toremifene and ospemifene. Especially, toremifene was more efficacious in tamoxifen resistant cells than MCF-7. Ospemifene had similar cytotoxic activity on the two types of breast cancers. The other SERMs used in this experiment didn’t inhibit efficiently the proliferation of tamoxifen resistant cells. These results support the possibility to usage of toremifene on tamoxifen resistant cancer. The effectiveness by toremifene on tamoxifen resistant cells might be different pathways from the apoptosis and the autophagy. Further study should be needed to elucidate the underlying mechanism of effect of toremifene on tamoxifen resistant cancer.
Collapse
Affiliation(s)
- Bo Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea
| | | | | | | |
Collapse
|
70
|
Jha MK, Seo M, Kim JH, Kim BG, Cho JY, Suk K. The secretome signature of reactive glial cells and its pathological implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2418-28. [PMID: 23269363 DOI: 10.1016/j.bbapap.2012.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022]
|
71
|
Stebbing J, Filipovic A, Lit LC, Blighe K, Grothey A, Xu Y, Miki Y, Chow LW, Coombes RC, Sasano H, Shaw JA, Giamas G. LMTK3 is implicated in endocrine resistance via multiple signaling pathways. Oncogene 2013; 32:3371-80. [PMID: 22869149 DOI: 10.1038/onc.2012.343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 02/07/2023]
Abstract
Resistance to endocrine therapy in breast cancer is common. With the aim of discovering new molecular targets for breast cancer therapy, we have recently identified LMTK3 as a regulator of the estrogen receptor-alpha (ERα) and wished to understand its role in endocrine resistance. We find that inhibition of LMTK3 in a xenograft tamoxifen (Tam)-resistant (BT474) breast cancer mouse model results in re-sensitization to Tam as demonstrated by a reduction in tumor volume. A whole genome microarray analysis, using a BT474 cell line, reveals genes significantly modulated (positively or negatively) after LMTK3 silencing, including some that are known to be implicated in Tam resistance, notably c-MYC, HSPB8 and SIAH2. We show that LMTK3 is able to increase the levels of HSPB8 at a transcriptional and translational level thereby protecting MCF7 cells from Tam-induced cell death, by reducing autophagy. Finally, high LMTK3 levels at baseline in tumors are predictive for endocrine resistance; therapy does not lead to alteration in levels, whereas in patient's plasma samples, acquired LMTK3 gene amplification (copy number variation) was associated with relapse while receiving Tam. In aggregate, these data support a role for LMTK3 in both innate (intrinsic) and acquired (adaptive) endocrine resistance in breast cancer.
Collapse
Affiliation(s)
- J Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Shigeta K, Hayashida T, Hoshino Y, Okabayashi K, Endo T, Ishii Y, Hasegawa H, Kitagawa Y. Expression of Epidermal Growth Factor Receptor Detected by Cetuximab Indicates Its Efficacy to Inhibit In Vitro and In Vivo Proliferation of Colorectal Cancer Cells. PLoS One 2013; 8:e66302. [PMID: 23824671 PMCID: PMC3688890 DOI: 10.1371/journal.pone.0066302] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/03/2013] [Indexed: 01/05/2023] Open
Abstract
Cetuximab is a chimeric mouse–human monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). However, EGFR expression determined by immunohistochemistry does not predict clinical outcomes of colorectal cancer (CRC) patients treated with cetuximab. Therefore, we evaluated the correlation between EGFR levels detected by cetuximab and drug sensitivities of CRC cell lines (Caco-2, WiDR, SW480, and HCT116) and the A431 epidermoid carcinoma cell line. We used flow cytometry (FCM) to detect EGFR-binding of biotinylated cetuximab on the cell surface. Subcloned cell lines showing the highest and lowest EGFR expression levels were chosen for further study. Cytotoxic assays were used to determine differential responses to cetuximab. Xenograft models treated with cetuximab intraperitoneally to assess sensitivity to cetuximab. Strong responses to cetuximab were specifically exhibited by subcloned cells with high EGFR expression levels. Furthermore, cetuximab inhibited the growth of tumors in xenograft models with high or low EGFR expression levels by 35% and 10%–20%, respectively. We conclude that detection of EGFR expression by cetuximab promises to provide a novel, sensitive, and specific method for predicting the sensitivity of CRC to cetuximab.
Collapse
Affiliation(s)
- Kohei Shigeta
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Tetsu Hayashida
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yoshinori Hoshino
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Koji Okabayashi
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Takashi Endo
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Yoshiyuki Ishii
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Hirotoshi Hasegawa
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
74
|
Kohli L, Kaza N, Coric T, Byer SJ, Brossier NM, Klocke BJ, Bjornsti MA, Carroll SL, Roth KA. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res 2013; 73:4395-405. [PMID: 23722551 DOI: 10.1158/0008-5472.can-12-3765] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tamoxifen is widely used to treat estrogen receptor-positive breast cancer. Recent findings that tamoxifen and its derivative 4-hydroxytamoxifen (OHT) can exert estrogen receptor-independent cytotoxic effects have prompted the initiation of clinical trials to evaluate its use in estrogen receptor-negative malignancies. For example, tamoxifen and OHT exert cytotoxic effects in malignant peripheral nerve sheath tumors (MPNST) where estrogen is not involved. In this study, we gained insights into the estrogen receptor-independent cytotoxic effects of OHT by studying how it kills MPNST cells. Although caspases were activated following OHT treatment, caspase inhibition provided no protection from OHT-induced death. Rather, OHT-induced death in MPNST cells was associated with autophagic induction and attenuated by genetic inhibition of autophagic vacuole formation. Mechanistic investigations revealed that OHT stimulated autophagic degradation of K-Ras, which is critical for survival of MPNST cells. Similarly, we found that OHT induced K-Ras degradation in breast, colon, glioma, and pancreatic cancer cells. Our findings describe a novel mechanism of autophagic death triggered by OHT in tumor cells that may be more broadly useful clinically in cancer treatment.
Collapse
Affiliation(s)
- Latika Kohli
- Departments of Pathology, Cell Biology, and Pharmacology and Toxicology, and Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
The α crystallin domain of small heat shock protein b8 (Hspb8) acts as survival and differentiation factor in adult hippocampal neurogenesis. J Neurosci 2013; 33:5785-96. [PMID: 23536091 DOI: 10.1523/jneurosci.6452-11.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult hippocampal neurogenesis is to a large degree controlled at the level of cell survival, and a number of potential mediators of this effect have been postulated. Here, we investigated the small heat shock protein Hspb8, which, because of its pleiotropic prosurvival effects in other systems, was considered a particularly promising candidate factor. Hspb8 is, for example, found in plaques of Alzheimer disease but exerts neuroprotective effects. We found that expression of Hspb8 increased during differentiation in vitro and was particularly associated with later stages (48-96 h) of differentiation. Gain-of-function and loss-of-function experiments supported the hypothesis that Hspb8 regulates cell survival of new neurons in vitro. In the dentate gyrus of adult mice in vivo, lentiviral overexpression of Hspb8 doubled the surviving cells and concomitantly promoted differentiation and net neurogenesis without affecting precursor cell proliferation. We also discovered that the truncated form of the crystallin domain of Hspb8 was sufficient to affect cell survival and neuronal differentiation in vitro and in vivo. Precursor cell experiments in vitro revealed that Hspb8 increases the phosphorylation of Akt and suggested that the prosurvival effect can be produced by a cell-autonomous mechanism. Analysis of hippocampal Hspb8 expression in mice of 69 strains of the recombinant inbred set BXD revealed that Hspb8 is a cis-acting gene whose expression was associated with clusters of transcript enriched in genes linked to growth factor signaling and apoptosis. Our results strongly suggest that Hspb8 and its α-crystallin domain might act as pleiotropic prosurvival factor in the adult hippocampus.
Collapse
|
76
|
Fu LL, Yang Y, Xu HL, Cheng Y, Wen X, Ouyang L, Bao JK, Wei YQ, Liu B. Identification of novel caspase/autophagy-related gene switch to cell fate decisions in breast cancers. Cell Prolif 2013; 46:67-75. [PMID: 23289893 DOI: 10.1111/cpr.12005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Caspases, a family of cysteine proteases with unique substrate specificities, contribute to apoptosis, whereas autophagy-related genes (ATGs) regulate cytoprotective autophagy or autophagic cell death in cancer. Accumulating evidence has recently revealed underlying mechanisms of apoptosis and autophagy; however, their intricate relationships still remain to be clarified. Identification of caspase/ATG switches between apoptosis and autophagy may address this problem. MATERIALS AND METHODS Identification of caspase/ATG switches was carried out using a series of elegant systems biology & bioinformatics approaches, such as network construction, hub protein identification, microarray analyses, targeted microRNA prediction and molecular docking. RESULTS We computationally constructed the global human network from several online databases and further modified it into the basic caspase/ATG network. On the basis of apoptotic or autophagic gene differential expressions, we identified three molecular switches [including androgen receptor, serine/threonine-protein kinase PAK-1 (PAK-1) and mitogen-activated protein kinase-3 (MAPK-3)] between certain caspases and ATGs in human breast carcinoma MCF-7 cells. Subsequently, we identified microRNAs (miRNAs) able to target androgen receptor, PAK-1 and MAPK-3, respectively. Ultimately, we screened a range of small molecule compounds from DrugBank, able to target the three above-mentioned molecular switches in breast cancer cells. CONCLUSIONS We have systematically identified novel caspase/ATG switches involved in miRNA regulation, and predicted targeted anti-cancer drugs. These findings may uncover intricate relationships between apoptosis and autophagy and thus provide further new clues towards possible cancer drug discovery.
Collapse
Affiliation(s)
- L-L Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
McEwan MV, Eccles MR, Horsfield JA. Cohesin is required for activation of MYC by estradiol. PLoS One 2012; 7:e49160. [PMID: 23145106 PMCID: PMC3493498 DOI: 10.1371/journal.pone.0049160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
Cohesin is best known as a multi-subunit protein complex that holds together replicated sister chromatids from S phase until G2. Cohesin also has an important role in the regulation of gene expression. We previously demonstrated that the cohesin complex positively regulates expression of the oncogene MYC. Cell proliferation driven by MYC contributes to many cancers, including breast cancer. The MYC oncogene is estrogen-responsive and a transcriptional target of estrogen receptor alpha (ERα). Estrogen-induced cohesin binding sites coincide with ERα binding at the MYC locus, raising the possibility that cohesin and ERα combine actions to regulate MYC transcription. The objective of this study was to investigate a putative role for cohesin in estrogen induction of MYC expression. We found that siRNA-targeted depletion of a cohesin subunit, RAD21, decreased MYC expression in ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231) breast cancer cell lines. In addition, RAD21 depletion blocked estradiol-mediated activation of MYC in ER-positive cell lines, and decreased ERα binding to estrogen response elements (EREs) upstream of MYC, without affecting total ERα levels. Treatment of MCF7 cells with estradiol caused enrichment of RAD21 binding at upstream enhancers and at the P2 promoter of MYC. Enriched binding at all sites, except the P2 promoter, was dependent on ERα. Since RAD21 depletion did not affect transcription driven by an exogenous reporter construct containing a naked ERE, chromatin-based mechanisms are likely to be involved in cohesin-dependent MYC transcription. This study demonstrates that ERα activation of MYC can be modulated by cohesin. Together, these results demonstrate a novel role for cohesin in estrogen-mediated regulation of MYC and the first evidence that cohesin plays a role in ERα binding.
Collapse
Affiliation(s)
- Miranda V. McEwan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
78
|
Fu L, Zhao X, Xu H, Wen X, Wang S, Liu B, Bao J, Wei Y. Identification of microRNA-regulated autophagic pathways in plant lectin-induced cancer cell death. Cell Prolif 2012; 45:477-85. [PMID: 22882626 PMCID: PMC6496687 DOI: 10.1111/j.1365-2184.2012.00840.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 05/14/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Plant lectins, carbohydrate-binding proteins of non-immune origin, have recently been reported to induce programmed cell death (including apoptosis and autophagy) in many types of cancer cells. MicroRNAs (miRNAs), small, non-coding endogenous RNAs, ~22 nucleotides (nt) in length, have been well characterized to play essential roles in regulation of the autophagy process in cancer; however, how these miRNAs regulate autophagic pathways in plant lectin-induced cancer cells, still remains an enigma. MATERIALS AND METHODS Identification of microRNA-regulated autophagic pathways was carried out using a series of elegant systems - biology and bioinformatics approaches, such as network construction, hub protein identification, targeted microRNA prediction, microarray analyses and molecular docking. RESULTS We computationally constructed the human autophagic protein-protein interaction (PPI) network, and further modified this network into a plant lectin-induced network. Subsequently, we identified 9 autophagic hub proteins and 13 relevant oncogenic and tumour suppressive miRNAs, that could regulate these aforementioned targeted autophagic hub proteins, in human breast carcinoma MCF-7 cells. In addition, we confirmed that plant lectins could block the sugar-containing receptor EGFR-mediated survival pathways, involved in autophagic hub proteins and relevant miRNAs, thereby ultimately culminating in autophagic cell death. CONCLUSIONS These results demonstrate that network-based identification of microRNAs modulate autophagic pathways in plant lectin-treated cancer cells, which may shed new light on the discovery of plant lectins as potent autophagic inducers, for cancer drug discovery.
Collapse
Affiliation(s)
- L.‐L. Fu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - X. Zhao
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - H.‐L. Xu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - X. Wen
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - S.‐Y. Wang
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - B. Liu
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - J.‐K. Bao
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Y.‐Q. Wei
- School of Life SciencesState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
79
|
Boja ES, Rodriguez H. Mass spectrometry-based targeted quantitative proteomics: achieving sensitive and reproducible detection of proteins. Proteomics 2012; 12:1093-110. [PMID: 22577011 DOI: 10.1002/pmic.201100387] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional shotgun proteomics used to detect a mixture of hundreds to thousands of proteins through mass spectrometric analysis, has been the standard approach in research to profile protein content in a biological sample which could lead to the discovery of new (and all) protein candidates with diagnostic, prognostic, and therapeutic values. In practice, this approach requires significant resources and time, and does not necessarily represent the goal of the researcher who would rather study a subset of such discovered proteins (including their variations or posttranslational modifications) under different biological conditions. In this context, targeted proteomics is playing an increasingly important role in the accurate measurement of protein targets in biological samples in the hope of elucidating the molecular mechanism of cellular function via the understanding of intricate protein networks and pathways. One such (targeted) approach, selected reaction monitoring (or multiple reaction monitoring) mass spectrometry (MRM-MS), offers the capability of measuring multiple proteins with higher sensitivity and throughput than shotgun proteomics. Developing and validating MRM-MS-based assays, however, is an extensive and iterative process, requiring a coordinated and collaborative effort by the scientific community through the sharing of publicly accessible data and datasets, bioinformatic tools, standard operating procedures, and well characterized reagents.
Collapse
Affiliation(s)
- Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
80
|
Rhodes JM, McEwan M, Horsfield JA. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol Cancer Res 2011; 9:1587-607. [PMID: 21940756 DOI: 10.1158/1541-7786.mcr-11-0382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cohesin is a multisubunit protein complex that plays an integral role in sister chromatid cohesion, DNA repair, and meiosis. Of significance, both over- and underexpression of cohesin are associated with cancer. It is generally believed that cohesin dysregulation contributes to cancer by leading to aneuploidy or chromosome instability. For cancers with loss of cohesin function, this idea seems plausible. However, overexpression of cohesin in cancer appears to be more significant for prognosis than its loss. Increased levels of cohesin subunits correlate with poor prognosis and resistance to drug, hormone, and radiation therapies. However, if there is sufficient cohesin for sister chromatid cohesion, overexpression of cohesin subunits should not obligatorily lead to aneuploidy. This raises the possibility that excess cohesin promotes cancer by alternative mechanisms. Over the last decade, it has emerged that cohesin regulates gene transcription. Recent studies have shown that gene regulation by cohesin contributes to stem cell pluripotency and cell differentiation. Of importance, cohesin positively regulates the transcription of genes known to be dysregulated in cancer, such as Runx1, Runx3, and Myc. Furthermore, cohesin binds with estrogen receptor α throughout the genome in breast cancer cells, suggesting that it may be involved in the transcription of estrogen-responsive genes. Here, we will review evidence supporting the idea that the gene regulation function of cohesin represents a previously unrecognized mechanism for the development of cancer.
Collapse
Affiliation(s)
- Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
81
|
Cui XY, Wang N, Yang BX, Gao WF, Lin YM, Yao XR, Ma XT. HSPB8 is methylated in hematopoietic malignancies and overexpression of HSPB8 exhibits antileukemia effect. Exp Hematol 2011; 40:14-21. [PMID: 21914495 DOI: 10.1016/j.exphem.2011.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/29/2011] [Accepted: 09/07/2011] [Indexed: 12/20/2022]
Abstract
HSPB8 has been shown to be involved in regulation of cell proliferation and apoptosis, and it has also been found to have divergent properties in solid tumors. The purpose of this study was to investigate the expression and function of HSPB8 in hematopoietic malignancies. Expression and induced expression of HSPB8 was evaluated in hematopoietic tumor cell lines and bone marrow samples from patients with leukemia. Methylation status was investigated by methylation-specific polymerase chain reaction. The role of HSPB8 in hematopoietic malignancies was addressed by reintroducing HSPB8 expression into the K562 (leukemia) and Namalwa (lymphoma) cell lines. Expression of HSPB8 was absent in hematopoietic tumor cell lines and primary patient and normal volunteer samples. Promoter DNA methylation of HSPB8 was observed in these cells. HSPB8 expression could be restored after demethylation treatment with 5-aza-2'-deoxycytidine. Overexpression of HSPB8 reduced colony formation of both K562 and Namalwa cell lines, inhibited the cell growth of Namalwa in vitro, and suppressed tumor formation of K562 cells in vivo. The present study demonstrates that HSPB8 is silenced by DNA methylation in hematopoietic malignant and normal cells and its expression can be induced by treatment with 5-aza-2'-deoxycytidine. Overexpression of HSPB8 may have an antitumor activity in chronic myelogenous leukemia and lymphoma.
Collapse
Affiliation(s)
- Xue-Ying Cui
- State Key Laboratory for Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Breast cancer cells often respond to an endocrine therapy by altering expression of specific estrogen-responsive genes and inducing autophagy, a cannibalistic lysosomal pathway. Autophagy eliminates damaged or other organelles, allowing the recovery of the energy stored in their macromolecules to attempt restoration of metabolic homeostasis. Induction of autophagy can result from activation of the unfolded protein response following metabolic stress, the final cell fate often being determined by the extent and duration of autophagy. A study by Gonzalez-Malerva and colleagues builds upon this extensive knowledge, adding HSPB8 to the list of altered genes associated with endocrine resistance in breast cancer and describing the ability of HSPB8 to regulate autophagy and confer tamoxifen resistance.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, W405A Research Building, Georgetown University Medical Center, 3970 Reservoir Road NW, Washington, DC 20057, USA.
| |
Collapse
|
83
|
Boehm JS, Hahn WC. Towards systematic functional characterization of cancer genomes. Nat Rev Genet 2011; 12:487-98. [PMID: 21681210 DOI: 10.1038/nrg3013] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whole-genome approaches to identify genetic and epigenetic alterations in cancer genomes have begun to provide new insights into the range of molecular events that occurs in human tumours. Although in some cases this knowledge immediately illuminates a path towards diagnostic or therapeutic implementation, the bewildering lists of mutations in each tumour make it clear that systematic functional approaches are also necessary to obtain a comprehensive molecular understanding of cancer. Here we review the current range of methods, assays and approaches for genome-scale interrogation of gene function in cancer. We also discuss the integration of functional-genomics approaches with the outputs from cancer genome sequencing efforts.
Collapse
Affiliation(s)
- Jesse S Boehm
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|