51
|
Harrison N, Lindholm AK, Dobay A, Halloran O, Manser A, König B. Female nursing partner choice in a population of wild house mice ( Mus musculus domesticus). Front Zool 2018; 15:4. [PMID: 29467798 PMCID: PMC5819181 DOI: 10.1186/s12983-018-0251-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/29/2018] [Indexed: 11/24/2022] Open
Abstract
ABSTRACT BACKGROUND Communal nursing in house mice is an example of cooperation where females pool litters in the same nest and indiscriminately nurse own and other offspring despite potential exploitation. The direct fitness benefits associated with communal nursing shown in laboratory studies suggest it to be a selected component of female house mice reproductive behaviour. However, past studies on communal nursing in free-living populations have debated whether it is a consequence of sharing the same nest or an active choice. Here using data from a long-term study of free-living, wild house mice we investigated individual nursing decisions and determined what factors influenced a female's decision to nurse communally. RESULTS Females chose to nurse solitarily more often than expected by chance, but the likelihood of nursing solitarily decreased when females had more partners available. While finding no influence of pairwise relatedness on partner choice, we observed that females shared their social environment with genetically similar individuals, suggesting a female's home area consisted of related females, possibly facilitating the evolution of cooperation. Within such a home area females were more likely to nest communally when the general relatedness of her available options was relatively high. Females formed communal nests with females that were familiar through previous associations and had young pups of usually less than 5 days old. CONCLUSIONS Our findings suggest that communal nursing was not a by-product of sharing the same nesting sites, but females choose communal nursing partners from a group of genetically similar females, and ultimately the decision may then depend on the pool of options available. Social partner choice proved to be an integrated part of cooperation among females, and might allow females to reduce the conflict over number of offspring in a communal nest and milk investment towards own and other offspring. We suggest that social partner choice may be a general mechanism to stabilize costly cooperation.
Collapse
Affiliation(s)
- Nicola Harrison
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Akos Dobay
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Olivia Halloran
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andri Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
52
|
Hamilton's inclusive fitness maintains heritable altruism polymorphism through rb = c. Proc Natl Acad Sci U S A 2018; 115:1860-1864. [PMID: 29295937 DOI: 10.1073/pnas.1710215115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How can altruism evolve or be maintained in a selfish world? Hamilton's rule shows that the former process will occur when rb > c-the benefits to the recipients of an altruistic act b, weighted by the relatedness between the social partners r, exceed the costs to the altruists c-drives altruistic genotypes spreading against nonaltruistic ones. From this rule, we infer that altruistic genotypes will persist in a population by forming a stable heritable polymorphism with nonaltruistic genotypes if rb = c makes inclusive fitness of the two morphs equal. We test this prediction using the data of 12 years of study on a cooperatively breeding bird, the Tibetan ground tit Pseudopodoces humilis, where helping is performed by males only and kin-directed. Individual variation in ever acting as a helper was heritable (h2 = 0.47), and the resultant altruism polymorphism remained stable as indicated by low-level annual fluctuation of the percentage of helpers among all adult males (24-28%). Helpers' indirect fitness gains from increased lifetime reproductive success of related breeders statistically fully compensated for their lifetime direct fitness losses, suggesting that rb = c holds. While our work provides a fundamental support for Hamilton's idea, it highlights the equivalent inclusive fitness returns to altruists and nonaltruists mediated by rb = c as a theoretically and realistically important mechanism to maintain social polymorphism.
Collapse
|
53
|
Van Petegem K, Moerman F, Dahirel M, Fronhofer EA, Vandegehuchte ML, Van Leeuwen T, Wybouw N, Stoks R, Bonte D. Kin competition accelerates experimental range expansion in an arthropod herbivore. Ecol Lett 2017; 21:225-234. [DOI: 10.1111/ele.12887] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/13/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Katrien Van Petegem
- Department of Biology Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Felix Moerman
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlanderstrasse 133 CH‐8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Maxime Dahirel
- Université de Rennes 1 UMR CNRS EcoBio 263 avenue du Général Leclerc 35042 Rennes France
| | - Emanuel A. Fronhofer
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlanderstrasse 133 CH‐8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zürich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | | | - Thomas Van Leeuwen
- Department of Crop Protection Ghent University Faculty of Bioscience Engineering B‐9000 Ghent Belgium
- Evolutionary Biology, IBED University of Amsterdam Science Park 904 – 1098 XH Amsterdam The Netherlands
| | - Nicky Wybouw
- Department of Crop Protection Ghent University Faculty of Bioscience Engineering B‐9000 Ghent Belgium
- Evolutionary Biology, IBED University of Amsterdam Science Park 904 – 1098 XH Amsterdam The Netherlands
| | - Robby Stoks
- Department of Biology University of Leuven Deberiotstraat 32 3000 Leuven Belgium
| | - Dries Bonte
- Department of Biology Ghent University K.L. Ledeganckstraat 35 9000 Ghent Belgium
| |
Collapse
|
54
|
Quickfall CG, Marshall JAR. The evolution of mutualism with modifiers. Ecol Evol 2017; 7:6114-6118. [PMID: 28861217 PMCID: PMC5574765 DOI: 10.1002/ece3.3180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 11/09/2022] Open
Abstract
Mutualisms are widespread, yet their evolution has received less theoretical attention than within-species social behaviors. Here, we extend previous models of unconditional pairwise interspecies social behavior, to consider selection for donation but also for donation-suppressing modifiers. We present conditions under which modifiers that suppress costly donation receive either positive or negative selection; assortment only at the donation locus always leads to selection for donation suppression, as in within-species greenbeard traits. However, genomewide assortment with modifier loci can lead to intermediate levels of donation, and these can differ in the two species even when payoffs from donation are additive and symmetric. When costly donation between species can evolve without being suppressed, we argue that it is most appropriately explained by indirect fitness benefits within the donating species, using partner species as vectors for altruism. Our work has implications for identifying both the stability and the ultimate beneficiaries of social behavior between species.
Collapse
Affiliation(s)
| | - James A R Marshall
- Department of Computer Science University of Sheffield Sheffield UK.,Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
55
|
Birch J. The inclusive fitness controversy: finding a way forward. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170335. [PMID: 28791162 PMCID: PMC5541557 DOI: 10.1098/rsos.170335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
This paper attempts to reconcile critics and defenders of inclusive fitness by constructing a synthesis that does justice to the insights of both. I argue that criticisms of the regression-based version of Hamilton's rule, although they undermine its use for predictive purposes, do not undermine its use as an organizing framework for social evolution research. I argue that the assumptions underlying the concept of inclusive fitness, conceived as a causal property of an individual organism, are unlikely to be exactly true in real populations, but they are approximately true given a specific type of weak selection that Hamilton took, on independent grounds, to be responsible for the cumulative assembly of complex adaptation. Finally, I reflect on the uses and limitations of 'design thinking' in social evolution research.
Collapse
Affiliation(s)
- Jonathan Birch
- Department of Philosophy, Logic and Scientific Method, London School of Economics and Political Science, Houghton Street, London, WC2A 2AE, UK
| |
Collapse
|
56
|
O'Brien EK, Wolf JB. The coadaptation theory for genomic imprinting. Evol Lett 2017; 1:49-59. [PMID: 30283638 PMCID: PMC6121825 DOI: 10.1002/evl3.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/23/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Imprinted genes are peculiar in that expression of the two copies differs depending on whether the copy was maternally or paternally inherited. The discovery of this striking pattern of gene expression inspired myriad evolutionary theories, the most successful of which identify scenarios that create an asymmetry between the maternally and paternally inherited gene copies that favors silencing of one of the copies. Most notably, imprinting can evolve when gene dosage affects kin interactions (typically involving conflict) or when silencing enhances coadaptation by coordinating traits expressed by interacting kin. Although we have a well-established theory for the former process (the "Kinship Theory"), the coadaptation process has only been explored for the specific case of interactions between mothers and offspring. Here, we fill this critical gap in our understanding by developing a general "Coadaptation Theory" that explains how imprinting can evolve to coordinate interactions between all types of relatives. Using a simple model in which fitness of an individual is determined by an interaction between its own phenotype (and hence genotype) and that of its social partner(s), we find that when the relatedness of interactants differs through their maternally versus paternally inherited gene copies, then selection favors expression of the allele through which relatedness is higher. The predictions of this Coadaptation Theory potentially apply whenever a gene underlies traits that mediate the outcome of conspecific interactions, regardless of their mechanism or the type of organism, and therefore provide a potential explanation for enigmatic patterns of imprinting, including those underlying adult traits. By providing simple testable predictions that often directly contrast with those derived from alternative theories, our model should play an important role in consolidating our understanding of the evolution of imprinting across genes and species, which will ultimately provide crucial insights into imprinted gene function and dysfunction.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| | - Jason B. Wolf
- Milner Centre for Evolution and Department of Biology & BiochemistryUniversity of BathClaverton DownBathBA2 7AYUnited Kingdom
| |
Collapse
|
57
|
Abstract
Evolutionary biology is undergirded by an extensive and impressive set of mathematical models. Yet only one result, Fisher's theorem about selection and fitness, is generally accorded the status of a fundamental theorem. I argue that although its fundamental status is justified by its simplicity and scope, there are additional results that seem similarly fundamental. I suggest that the most fundamental theorem of evolution is the Price equation, both because of its simplicity and broad scope and because it can be used to derive four other familiar results that are similarly fundamental: Fisher's average-excess equation, Robertson's secondary theorem of natural selection, the breeder's equation, and Fisher's fundamental theorem. These derivations clarify both the relationships behind these results and their assumptions. Slightly less fundamental results include those for multivariate evolution and social selection. A key feature of fundamental theorems is that they have great simplicity and scope, which are often achieved by sacrificing perfect accuracy. Quantitative genetics has been more productive of fundamental theorems than population genetics, probably because its empirical focus on unknown genotypes freed it from the tyranny of detail and allowed it to focus on general issues.
Collapse
|
58
|
Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK, Zink AG, Frederickson ME. Synthesizing perspectives on the evolution of cooperation within and between species. Evolution 2017; 71:814-825. [PMID: 28071790 DOI: 10.1111/evo.13174] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource-generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra- and interspecific cooperation facilitates application of well-studied topics in one system to the other, such as direct benefits within species and kin-selected cooperation between species, generating promising directions for future research.
Collapse
Affiliation(s)
- Jessica L Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721.,Current Address: Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Emily I Jones
- Department of BioSciences, Rice University, Houston, Texas, 77005
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, 14853
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, California, 94132
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
59
|
Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. eLife 2017; 6:29397. [PMID: 28820387 PMCID: PMC5562445 DOI: 10.7554/elife.29397] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.
Collapse
Affiliation(s)
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Austin Conklin
- Department of Molecular Biology, University of Wyoming, Laramie, United States
| | - Hayley Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, United States
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, United States,
| |
Collapse
|
60
|
Morsky B, Cressman R, Bauch CT. Homophilic replicator equations. J Math Biol 2016; 75:309-325. [PMID: 27995300 DOI: 10.1007/s00285-016-1083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/22/2016] [Indexed: 10/20/2022]
Abstract
Tags are conspicuous attributes of organisms that affect the behaviour of other organisms toward the holder, and have previously been used to explore group formation and altruism. Homophilic imitation, a form of tag-based selection, occurs when organisms imitate those with similar tags. Here we further explore the use of tag-based selection by developing homophilic replicator equations to model homophilic imitation dynamics. We assume that replicators have both tags (sometimes called traits) and strategies. Fitnesses are determined by the strategy profile of the population, and imitation is based upon the strategy profile, fitness differences, and similarity in tag space. We show the characteristics of resulting fixed manifolds and conditions for stability. We discuss the phenomenon of coat-tailing (where tags associated with successful strategies increase in abundance, even though the tags are not inherently beneficial) and its implications for population diversity. We extend our model to incorporate recurrent mutations and invasions to explore their implications upon tag and strategy diversity. We find that homophilic imitation based upon tags significantly affects the diversity of the population, although not the ESS. We classify two different types of invasion scenarios by the strategy and tag compositions of the invaders and invaded. In one scenario, we find that novel tags introduced by invaders become more readily established with homophilic imitation than without it. In the other, diversity decreases. Lastly, we find a negative correlation between homophily and the rate of convergence.
Collapse
Affiliation(s)
- Bryce Morsky
- Department of Mathematics and Statistics, University of Guelph, Guelph, Canada.
| | - Ross Cressman
- Department of Mathematics, Wilfrid Laurier University, Waterloo, Canada
| | - C T Bauch
- Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
| |
Collapse
|
61
|
Duthie AB, Reid JM. Evolution of Inbreeding Avoidance and Inbreeding Preference through Mate Choice among Interacting Relatives. Am Nat 2016; 188:651-667. [DOI: 10.1086/688919] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Competition-related factors directly influence preferences for facial cues of dominance in allies. Behav Ecol Sociobiol 2016; 70:2071-2079. [PMID: 27881894 PMCID: PMC5102944 DOI: 10.1007/s00265-016-2211-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
Abstract Alliance formation is a critical dimension of social intelligence in political, social and biological systems. As some allies may provide greater “leverage” than others during social conflict, the cognitive architecture that supports alliance formation in humans may be shaped by recent experience, for example in light of the outcomes of violent or non-violent forms intrasexual competition. Here we used experimental priming techniques to explore this issue. Consistent with our predictions, while men’s preferences for dominant allies strengthened following losses (compared to victories) in violent intrasexual contests, women’s preferences for dominant allies weakened following losses (compared to victories) in violent intrasexual contests. Our findings suggest that while men may prefer dominant (i.e. masculine) allies following losses in violent confrontation in order to facilitate successful resource competition, women may “tend and befriend” following this scenario and seek support from prosocial (i.e. feminine) allies and/or avoid the potential costs of dominant allies as long-term social partners. Moreover, they demonstrate facultative responses to signals related to dominance in allies, which may shape sex differences in sociality in light of recent experience and suggest that intrasexual selection has shaped social intelligence in humans. Significance statement Although alliance formation is an important facet of social intelligence in political and biological systems, we know relatively little about the cognitive processes involved in social preferences for allies. As recent experience may alter the leverage provided by different social partners, here we tested whether preferences for facial cues to dominance-prosociality (masculinity-femininity) alter in light of recent experience of violent and economic contests for status. Our findings demonstrate sex-specific responses to these facial cues. While men’s preferences for facial cues related to dominance in allies strengthen following losses (compared to wins) in violent contests, women’s preferences for facial cues related to dominance in allies weaken following losses (compared to wins) in violent contests. These findings suggest that intrasexual selection, in part, has shaped the evolution of social intelligence in humans as revealed in flexibility in social preferences for allies.
Collapse
|
63
|
Kraemer SA, Wielgoss S, Fiegna F, Velicer GJ. The biogeography of kin discrimination across microbial neighbourhoods. Mol Ecol 2016; 25:4875-88. [PMID: 27540705 PMCID: PMC5054864 DOI: 10.1111/mec.13803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/27/2016] [Indexed: 01/04/2023]
Abstract
The spatial distribution of potential interactants is critical to social evolution in all cooperative organisms. Yet the biogeography of microbial kin discrimination at the scales most relevant to social interactions is poorly understood. Here we resolve the microbiogeography of social identity and genetic relatedness in local populations of the model cooperative bacterium Myxococcus xanthus at small spatial scales, across which the potential for dispersal is high. Using two criteria of relatedness—colony‐merger compatibility during cooperative motility and DNA‐sequence similarity at highly polymorphic loci—we find that relatedness decreases greatly with spatial distance even across the smallest scale transition. Both social relatedness and genetic relatedness are maximal within individual fruiting bodies at the micrometre scale but are much lower already across adjacent fruiting bodies at the millimetre scale. Genetic relatedness was found to be yet lower among centimetre‐scale samples, whereas social allotype relatedness decreased further only at the metre scale, at and beyond which the probability of social or genetic identity among randomly sampled isolates is effectively zero. Thus, in M. xanthus, high‐relatedness patches form a rich mosaic of diverse social allotypes across fruiting body neighbourhoods at the millimetre scale and beyond. Individuals that migrate even short distances across adjacent groups will frequently encounter allotypic conspecifics and territorial kin discrimination may profoundly influence the spatial dynamics of local migration. Finally, we also found that the phylogenetic scope of intraspecific biogeographic analysis can affect the detection of spatial structure, as some patterns evident in clade‐specific analysis were masked by simultaneous analysis of all strains.
Collapse
Affiliation(s)
- Susanne A Kraemer
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FL, UK.
| | - Sébastien Wielgoss
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland.
| | - Francesca Fiegna
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - Gregory J Velicer
- Institute of Integrative Biology, ETH Zürich, Universitätstrasse 16, 8092, Zürich, Switzerland
| |
Collapse
|
64
|
Extended inclusive fitness theory: synergy and assortment drives the evolutionary dynamics in biology and economics. SPRINGERPLUS 2016; 5:1092. [PMID: 27468393 PMCID: PMC4947073 DOI: 10.1186/s40064-016-2750-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022]
Abstract
W.D. Hamilton's Inclusive Fitness Theory explains the conditions that favor the emergence and maintenance of social cooperation. Today we know that these include direct and indirect benefits an agent obtains by its actions, and through interactions with kin and with genetically unrelated individuals. That is, in addition to kin-selection, assortation or homophily, and social synergies drive the evolution of cooperation. An Extended Inclusive Fitness Theory (EIFT) synthesizes the natural selection forces acting on biological evolution and on human economic interactions by assuming that natural selection driven by inclusive fitness produces agents with utility functions that exploit assortation and synergistic opportunities. This formulation allows to estimate sustainable cost/benefit threshold ratios of cooperation among organisms and/or economic agents, using existent analytical tools, illuminating our understanding of the dynamic nature of society, the evolution of cooperation among kin and non-kin, inter-specific cooperation, co-evolution, symbioses, division of labor and social synergies. EIFT helps to promote an interdisciplinary cross fertilization of the understanding of synergy by, for example, allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics. Another example is a bio-economic understanding of the motivations of terrorists, which identifies different forms of terrorism.
Collapse
|
65
|
Abstract
The ability of bacteria to recognize kin provides a means to form social groups. In turn these groups can lead to cooperative behaviors that surpass the ability of the individual. Kin recognition involves specific biochemical interactions between a receptor(s) and an identification molecule(s). Recognition specificity, ensuring that nonkin are excluded and kin are included, is critical and depends on the number of loci and polymorphisms involved. After recognition and biochemical perception, the common ensuing cooperative behaviors include biofilm formation, quorum responses, development, and swarming motility. Although kin recognition is a fundamental mechanism through which cells might interact, microbiologists are only beginning to explore the topic. This review considers both molecular and theoretical aspects of bacterial kin recognition. Consideration is also given to bacterial diversity, genetic relatedness, kin selection theory, and mechanisms of recognition.
Collapse
Affiliation(s)
- Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071;
| |
Collapse
|
66
|
Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL. Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote. PLoS Biol 2016; 14:e1002431. [PMID: 27077707 PMCID: PMC4831770 DOI: 10.1371/journal.pbio.1002431] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/11/2016] [Indexed: 01/09/2023] Open
Abstract
Microorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment. Recognition and chemotropic interactions between isogenic germlings requires oscillation of the mitogen-activated protein kinase (MAPK) signal transduction protein complex (NRC-1, MEK-2, MAK-2, and the scaffold protein HAM-5) to specialized cell fusion structures termed conidial anastomosis tubes. Using a population of 110 wild N. crassa isolates, we investigated germling fusion between genetically unrelated individuals and discovered that chemotropic interactions are regulated by kind discrimination. Distinct communication groups were identified, in which germlings within one communication group interacted at high frequency, while germlings from different communication groups avoided each other. Bulk segregant analysis followed by whole genome resequencing identified three linked genes (doc-1, doc-2, and doc-3), which were associated with communication group phenotype. Alleles at doc-1, doc-2, and doc-3 fell into five haplotypes that showed transspecies polymorphism. Swapping doc-1 and doc-2 alleles from different communication group strains was necessary and sufficient to confer communication group affiliation. During chemotropic interactions, DOC-1 oscillated with MAK-2 to the tips of conidial anastomosis tubes, while DOC-2 was statically localized to the plasma membrane. Our data indicate that doc-1, doc-2, and doc-3 function as "greenbeard" genes, involved in mediating long-distance kind recognition that involves actively searching for one's own type, resulting in cooperation between non-genealogical relatives. Our findings serve as a basis for investigations into the mechanisms associated with attraction, fusion, and kind recognition in other eukaryotic species.
Collapse
Affiliation(s)
- Jens Heller
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - Jiuhai Zhao
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - Gabriel Rosenfield
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - David J. Kowbel
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | | | - N. Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
67
|
Okasha S, Martens J. The causal meaning of Hamilton's rule. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160037. [PMID: 27069669 PMCID: PMC4821280 DOI: 10.1098/rsos.160037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
Hamilton's original derivation of his rule for the spread of an altruistic gene (rb>c) assumed additivity of costs and benefits. Recently, it has been argued that an exact version of the rule holds under non-additive pay-offs, so long as the cost and benefit terms are suitably defined, as partial regression coefficients. However, critics have questioned both the biological significance and the causal meaning of the resulting rule. This paper examines the causal meaning of the generalized Hamilton's rule in a simple model, by computing the effect of a hypothetical experiment to assess the cost of a social action and comparing it to the partial regression definition. The two do not agree. A possible way of salvaging the causal meaning of Hamilton's rule is explored, by appeal to R. A. Fisher's 'average effect of a gene substitution'.
Collapse
Affiliation(s)
- Samir Okasha
- Department of Philosophy, Cotham House, University of Bristol, Bristol BS6 6JL, UK
| | - Johannes Martens
- Institute for the History and Philosophy of Science and Technology, University of Paris-Sorbonne, Paris, France
| |
Collapse
|
68
|
Marshall JAR. Errors in Allen's Review of Social Evolution and Inclusive Fitness Theory: An Introduction. Bioscience 2016. [DOI: 10.1093/biosci/biw007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Okasha S, Martens J. Hamilton's rule, inclusive fitness maximization, and the goal of individual behaviour in symmetric two-player games. J Evol Biol 2016; 29:473-82. [PMID: 26679493 DOI: 10.1111/jeb.12808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Hamilton's original work on inclusive fitness theory assumed additivity of costs and benefits. Recently, it has been argued that an exact version of Hamilton's rule for the spread of a pro-social allele (rb > c) holds under nonadditive pay-offs, so long as the cost and benefit terms are defined as partial regression coefficients rather than pay-off parameters. This article examines whether one of the key components of Hamilton's original theory can be preserved when the rule is generalized to the nonadditive case in this way, namely that evolved organisms will behave as if trying to maximize their inclusive fitness in social encounters.
Collapse
Affiliation(s)
- S Okasha
- Department of Philosophy, University of Bristol, Bristol, UK
| | - J Martens
- Department of Philosophy, University of Bristol, Bristol, UK
| |
Collapse
|
70
|
Roulin A, Des Monstiers B, Ifrid E, Da Silva A, Genzoni E, Dreiss AN. Reciprocal preening and food sharing in colour-polymorphic nestling barn owls. J Evol Biol 2015; 29:380-94. [PMID: 26563617 DOI: 10.1111/jeb.12793] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
Barn owl (Tyto alba) siblings preen and offer food items to one another, behaviours that can be considered prosocial because they benefit a conspecific by relieving distress or need. In experimental broods, we analysed whether such behaviours were reciprocated, preferentially exchanged between specific phenotypes, performed to avoid harassment and food theft or signals of hierarchy status. Three of the results are consistent with the hypothesis of direct reciprocity. First, food sharing was reciprocated in three-chick broods but not in pairs of siblings, that is when nestlings could choose a partner with whom to develop a reciprocating interaction. Second, a nestling was more likely to give a prey item to its sibling if the latter individual had preened the former. Third, siblings matched their investment in preening each other. Manipulation of age hierarchy showed that food stealing was directed towards older siblings but was not performed to compensate for a low level of cooperation received. Social behaviours were related to melanin-based coloration, suggesting that animals may signal their propensity to interact socially. The most prosocial phenotype (darker reddish) was also the phenotype that stole more food, and the effect of coloration on prosocial behaviour depended upon rank and sex, suggesting that colour-related prosociality is state dependent.
Collapse
Affiliation(s)
- A Roulin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - B Des Monstiers
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - E Ifrid
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - A Da Silva
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, Seewiesen, Germany
| | - E Genzoni
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - A N Dreiss
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland.,Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
71
|
Abstract
Evolution depends on the fitness of organisms, the expected rate of reproducing. Directly getting offspring is the most basic form of fitness, but fitness can also be increased indirectly by helping genetically related individuals (such as kin) to increase their fitness. The combined effect is known as inclusive fitness. Here it is argued that a further elaboration of fitness has evolved, particularly in humans. It is called extensive fitness and it incorporates producing organisms that are merely similar in phenotype. The evolvability of this mechanism is illustrated by computations on a simple model combining heredity and behaviour. Phenotypes are driven into the direction of high fitness through a mechanism that involves an internal estimate of fitness, implicitly made within the organism itself. This mechanism has recently been conjectured to be responsible for producing agency and goals. In the model, inclusive and extensive fitness are both implemented by letting fitness increase nonlinearly with the size of subpopulations of similar heredity (for the indirect part of inclusive fitness) and of similar phenotype (for the phenotypic part of extensive fitness). Populations implementing extensive fitness outcompete populations implementing mere inclusive fitness. This occurs because groups with similar phenotype tend to be larger than groups with similar heredity, and fitness increases more when groups are larger. Extensive fitness has two components, a direct component where individuals compete in inducing others to become like them and an indirect component where individuals cooperate and help others who are already similar to them.
Collapse
Affiliation(s)
- J H van Hateren
- Johann Bernouilli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands.
| |
Collapse
|
72
|
Goodnight CJ. Multilevel selection theory and evidence: a critique of Gardner, 2015. J Evol Biol 2015; 28:1734-46. [PMID: 26265012 DOI: 10.1111/jeb.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
Gardner (2015) recently developed a model of a 'Genetical Theory of Multilevel Selection, which is a thoughtfully developed, but flawed model. The model's flaws appear to be symptomatic of common misunderstandings of the multi level selection (MLS) literature and the recent quantitative genetic literature. I use Gardner's model as a guide for highlighting how the MLS literature can address the misconceptions found in his model, and the kin selection literature in general. I discuss research on the efficacy of group selection, the roll of indirect genetic effects in affecting the response to selection and the heritability of group-level traits. I also discuss why the Price multilevel partition should not be used to partition MLS, and why contextual analysis and, by association, direct fitness are appropriate for partitioning MLS. Finally, I discuss conceptual issues around questions concerning the level at which fitness is measured, the units of selection, and I present a brief outline of a model of selection in class-structured populations. I argue that the results derived from the MLS research tradition can inform kin selection research and models, and provide insights that will allow researchers to avoid conceptual flaws such as those seen in the Gardner model.
Collapse
Affiliation(s)
- C J Goodnight
- Department of Biology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
73
|
Peña J, Nöldeke G, Lehmann L. Evolutionary dynamics of collective action in spatially structured populations. J Theor Biol 2015; 382:122-36. [PMID: 26151588 DOI: 10.1016/j.jtbi.2015.06.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 01/09/2023]
Abstract
Many models proposed to study the evolution of collective action rely on a formalism that represents social interactions as n-player games between individuals adopting discrete actions such as cooperate and defect. Despite the importance of spatial structure in biological collective action, the analysis of n-player games games in spatially structured populations has so far proved elusive. We address this problem by considering mixed strategies and by integrating discrete-action n-player games into the direct fitness approach of social evolution theory. This allows to conveniently identify convergence stable strategies and to capture the effect of population structure by a single structure coefficient, namely, the pairwise (scaled) relatedness among interacting individuals. As an application, we use our mathematical framework to investigate collective action problems associated with the provision of three different kinds of collective goods, paradigmatic of a vast array of helping traits in nature: "public goods" (both providers and shirkers can use the good, e.g., alarm calls), "club goods" (only providers can use the good, e.g., participation in collective hunting), and "charity goods" (only shirkers can use the good, e.g., altruistic sacrifice). We show that relatedness promotes the evolution of collective action in different ways depending on the kind of collective good and its economies of scale. Our findings highlight the importance of explicitly accounting for relatedness, the kind of collective good, and the economies of scale in theoretical and empirical studies of the evolution of collective action.
Collapse
Affiliation(s)
- Jorge Peña
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
| | - Georg Nöldeke
- Faculty of Business and Economics, University of Basel, Peter Merian-Weg 6, 4002 Basel, Switzerland.
| | - Laurent Lehmann
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, 1015 Lausanne, Switzerland.
| |
Collapse
|
74
|
Ostrowski EA, Shen Y, Tian X, Sucgang R, Jiang H, Qu J, Katoh-Kurasawa M, Brock DA, Dinh C, Lara-Garduno F, Lee SL, Kovar CL, Dinh HH, Korchina V, Jackson L, Patil S, Han Y, Chaboub L, Shaulsky G, Muzny DM, Worley KC, Gibbs RA, Richards S, Kuspa A, Strassmann JE, Queller DC. Genomic signatures of cooperation and conflict in the social amoeba. Curr Biol 2015; 25:1661-5. [PMID: 26051890 DOI: 10.1016/j.cub.2015.04.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/01/2015] [Accepted: 04/22/2015] [Indexed: 12/14/2022]
Abstract
Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called "cheaters" can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience rapid evolutionary change as a result of conflict over spore-stalk fate. Candidate genes and surrounding regions showed elevated polymorphism, unusual patterns of linkage disequilibrium, and lower levels of population differentiation, but they did not show greater between-species divergence. The signatures were most consistent with frequency-dependent selection acting to maintain multiple alleles, suggesting that conflict may lead to stalemate rather than an escalating arms race. Our results reveal the evolutionary dynamics of cooperation and cheating and underscore how sequence-based approaches can be used to elucidate the history of conflicts that are difficult to observe directly.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY 10027, USA
| | - Xiangjun Tian
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huaiyang Jiang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fremiet Lara-Garduno
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - LaRonda Jackson
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shobha Patil
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lesley Chaboub
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
75
|
Allen B, Nowak MA. Games among relatives revisited. J Theor Biol 2015; 378:103-16. [PMID: 25953388 DOI: 10.1016/j.jtbi.2015.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/09/2015] [Accepted: 04/22/2015] [Indexed: 11/28/2022]
Abstract
We present a simple model for the evolution of social behavior in family-structured, finite sized populations. Interactions are represented as evolutionary games describing frequency-dependent selection. Individuals interact more frequently with siblings than with members of the general population, as quantified by an assortment parameter r, which can be interpreted as "relatedness". Other models, mostly of spatially structured populations, have shown that assortment can promote the evolution of cooperation by facilitating interaction between cooperators, but this effect depends on the details of the evolutionary process. For our model, we find that sibling assortment promotes cooperation in stringent social dilemmas such as the Prisoner's Dilemma, but not necessarily in other situations. These results are obtained through straightforward calculations of changes in gene frequency. We also analyze our model using inclusive fitness. We find that the quantity of inclusive fitness does not exist for general games. For special games, where inclusive fitness exists, it provides less information than the straightforward analysis.
Collapse
Affiliation(s)
- Benjamin Allen
- Department of Mathematics, Emmanuel College, Boston, MA 02115, United States; Center for Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, United States; Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, United States.
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138, United States; Department of Mathematics, Harvard University, Cambridge, MA 02138, United States; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
76
|
Affiliation(s)
- Andrew G. Zink
- Department of Biology; San Francisco State University; San Francisco CA USA
| |
Collapse
|
77
|
|
78
|
Abstract
The theories of inclusive fitness and multilevel selection provide alternative perspectives on social evolution. The question of whether these perspectives are of equal generality remains a divisive issue. In an analysis based on the Price equation, Queller argued (by means of a principle he called the separation condition) that the two approaches are subject to the same limitations, arising from their fundamentally quantitative-genetical character. Recently, van Veelen et al. have challenged Queller's results, using this as the basis for a broader critique of the Price equation, the separation condition, and the very notion of inclusive fitness. Here we show that the van Veelen et al. model, when analyzed in the way Queller intended, confirms rather than refutes his original conclusions. We thereby confirm (i) that Queller's separation condition remains a legitimate theoretical principle and (ii) that the standard inclusive fitness and multilevel approaches are indeed subject to the same limitations.
Collapse
Affiliation(s)
- Jonathan Birch
- Christ's College, University of Cambridge, St. Andrew's Street, Cambridge CB2 3BU, United Kingdom
| | | |
Collapse
|
79
|
Schwagmeyer PL. Partner switching can favour cooperation in a biological market. J Evol Biol 2014; 27:1765-74. [DOI: 10.1111/jeb.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 11/28/2022]
|
80
|
Van Cleve J, Akçay E. PATHWAYS TO SOCIAL EVOLUTION: RECIPROCITY, RELATEDNESS, AND SYNERGY. Evolution 2014; 68:2245-58. [DOI: 10.1111/evo.12438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/16/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Jeremy Van Cleve
- National Evolutionary Synthesis Center (NESCent); 2024 W. Main Street, Suite A200 Durham North Carolina 27705
| | - Erol Akçay
- Department of Biology, University of Pennsylvania; 433 S. University Avenue Philadelphia Pennsylvania 19104
| |
Collapse
|
81
|
|
82
|
González-Forero M. AN EVOLUTIONARY RESOLUTION OF MANIPULATION CONFLICT. Evolution 2014; 68:2038-51. [DOI: 10.1111/evo.12420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Mauricio González-Forero
- Department of Ecology and Evolutionary Biology; University of Tennessee; Knoxville Tennessee 37996-1610
- National Institute for Mathematical and Biological Synthesis (NIMBioS); Knoxville Tennessee 37996-3410
| |
Collapse
|
83
|
Abstract
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
| | - Kevin Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Francisco Úbeda
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
84
|
Queller DC. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130423. [PMID: 24686940 PMCID: PMC3982670 DOI: 10.1098/rstb.2013.0423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher's fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels.
Collapse
Affiliation(s)
- David C. Queller
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
85
|
Bailey NW, Hoskins JL. Detecting cryptic indirect genetic effects. Evolution 2014; 68:1871-82. [PMID: 24627971 PMCID: PMC4257566 DOI: 10.1111/evo.12401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/17/2014] [Indexed: 01/13/2023]
Abstract
Indirect genetic effects (IGEs) occur when genes expressed in one individual alter the phenotype of an interacting partner. IGEs can dramatically affect the expression and evolution of social traits. However, the interacting phenotype(s) through which they are transmitted are often unknown, or cryptic, and their detection would enhance our ability to accurately predict evolutionary change. To illustrate this challenge and possible solutions to it, we assayed male leg-tapping behavior using inbred lines of Drosophila melanogaster paired with a common focal male strain. The expression of tapping in focal males was dependent on the genotype of their interacting partner, but this strong IGE was cryptic. Using a multiple-regression approach, we identified male startle response as a candidate interacting phenotype: the longer it took interacting males to settle after being startled, the less focal males tapped them. A genome-wide association analysis identified approximately a dozen candidate protein-coding genes potentially underlying the IGE, of which the most significant was slowpoke. Our methodological framework provides information about candidate phenotypes and candidate single-nucleotide polymorphisms that underpin a strong yet cryptic IGE. We discuss how this approach can facilitate the detection of cryptic IGEs contributing to unusual evolutionary dynamics in other study systems.
Collapse
Affiliation(s)
- Nathan W Bailey
- Centre for Biological Diversity, University of St Andrews, St Andrews, Fife KY16 9TH, United Kingdom.
| | | |
Collapse
|
86
|
McGlothlin JW, Wolf JB, Brodie ED, Moore AJ. Quantitative genetic versions of Hamilton's rule with empirical applications. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130358. [PMID: 24686930 PMCID: PMC3982660 DOI: 10.1098/rstb.2013.0358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution.
Collapse
Affiliation(s)
- Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, , Derring Hall 2125, 1405 Perry Street, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
87
|
Okasha S, Weymark JA, Bossert W. Inclusive fitness maximization: An axiomatic approach. J Theor Biol 2014; 350:24-31. [PMID: 24530825 DOI: 10.1016/j.jtbi.2014.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 11/25/2022]
Abstract
Kin selection theorists argue that evolution in social contexts will lead organisms to behave as if maximizing their inclusive, as opposed to personal, fitness. The inclusive fitness concept allows biologists to treat organisms as akin to rational agents seeking to maximize a utility function. Here we develop this idea and place it on a firm footing by employing a standard decision-theoretic methodology. We show how the principle of inclusive fitness maximization and a related principle of quasi-inclusive fitness maximization can be derived from axioms on an individual׳s 'as if preferences' (binary choices) for the case in which phenotypic effects are additive. Our results help integrate evolutionary theory and rational choice theory, help draw out the behavioural implications of inclusive fitness maximization, and point to a possible way in which evolution could lead organisms to implement it.
Collapse
Affiliation(s)
- Samir Okasha
- Department of Philosophy, University of Bristol, 9 Woodland Road, Bristol BS8 1TB, United Kingdom.
| | - John A Weymark
- Department of Economics, Vanderbilt University, VU Station B #351819, 2301 Vanderbilt Place, Nashville, TN 37235-1819, USA.
| | - Walter Bossert
- Department of Economics and CIREQ, University of Montreal, P.O. Box 6128, Station Downtown, Montreal, QC, Canada H3C 3J7.
| |
Collapse
|
88
|
El Mouden C, André JB, Morin O, Nettle D. Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation. J Evol Biol 2013; 27:231-41. [PMID: 24329934 DOI: 10.1111/jeb.12296] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/01/2022]
Abstract
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.
Collapse
Affiliation(s)
- C El Mouden
- Department of Zoology & Nuffield College, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
89
|
Abstract
Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed.
Collapse
|
90
|
|
91
|
Abstract
Many social behaviors are triggered by social partners. For example, cells in a multicellular organism often become soma via extrinsically regulated differentiation, while individuals in a eusocial colony often become helpers via extrinsic caste determination. One explanation for social triggering is that it informs when it is beneficial to express the behavior. Alternatively, social triggering can represent manipulation where social partners partially or completely control the focal individual's behavior. For instance, caste determination in primitively eusocial taxa is typically accomplished via differential feeding or dominance hierarchies, suggesting some manipulation. However, selection would favor resistance if manipulation is detrimental to manipulated parties, and the outcome of the manipulation conflict remains intricate. We analyze the coevolution of manipulation and resistance in a simple but general setting. We show that, despite possible resistance, manipulated behavior can be established under less stringent conditions than spontaneous (i.e., nonmanipulated) behavior because of resistance costs. The existence of this advantage might explain why primitive eusocial behavior tends to be triggered socially and coercively. We provide a simple condition for the advantage of manipulated behavior that may help infer whether a socially triggered behavior is manipulated. We illustrate our analysis with a hypothetical example of maternal manipulation relevant to primitive eusociality.
Collapse
Affiliation(s)
- Mauricio González-Forero
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996
| | | |
Collapse
|
92
|
Doncaster CP, Jackson A, Watson RA. Manipulated into giving: when parasitism drives apparent or incidental altruism. Proc Biol Sci 2013; 280:20130108. [PMID: 23486440 DOI: 10.1098/rspb.2013.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Altruistic acts involve the actor donating fitness to beneficiaries at net cost to itself. In contrast, parasitic acts involve the actor extracting benefit from others at net cost to the donors. Both behaviours may have the same direct net-cost transferral of fitness from donor to beneficiary; the key difference between parasitism and altruism is thus who drives the interaction. Identifying the evolutionary driver is not always straightforward in practice, yet it is crucial in determining the conditions necessary to sustain such fitness exchange. Here, we put classical ecological competition into a novel game-theoretic framework in order to distinguish altruism from parasitism. The distinction depends on the type of interaction that beneficiaries have among themselves. When this is not costly, net-cost transferrals of fitness from the donor are strongly altruistic, and sustained only by indirect benefits to the donor from assortative mixing. When the interaction among beneficiaries is costly, however, net-cost transferrals of fitness from the donor are sustainable without assortative mixing. The donor is then forced into apparent or incidental altruism driven by parasitism from the beneficiary. We consider various scenarios in which direct and indirect fitness consequences of strong altruism may have different evolutionary drivers.
Collapse
Affiliation(s)
- C Patrick Doncaster
- Centre for Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | |
Collapse
|
93
|
Abstract
We investigate a class of evolutionary models, encompassing many established models of well-mixed and spatially structured populations. Models in this class have fixed population size and structure. Evolution proceeds as a Markov chain, with birth and death probabilities dependent on the current population state. Starting from basic assumptions, we show how the asymptotic (long-term) behavior of the evolutionary process can be characterized by probability distributions over the set of possible states. We then define and compare three quantities characterizing evolutionary success: fixation probability, expected frequency, and expected change due to selection. We show that these quantities yield the same conditions for success in the limit of low mutation rate, but may disagree when mutation is present. As part of our analysis, we derive versions of the Price equation and the replicator equation that describe the asymptotic behavior of the entire evolutionary process, rather than the change from a single state. We illustrate our results using the frequency-dependent Moran process and the birth-death process on graphs as examples. Our broader aim is to spearhead a new approach to evolutionary theory, in which general principles of evolution are proven as mathematical theorems from axioms.
Collapse
|
94
|
Evolutionary models of extended phenotypes. Trends Ecol Evol 2012; 27:561-9. [DOI: 10.1016/j.tree.2012.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/18/2022]
|
95
|
Watkins CD, DeBruine LM, Little AC, Jones BC. Social support influences preferences for feminine facial cues in potential social partners. Exp Psychol 2012; 59:340-7. [PMID: 22750745 DOI: 10.1027/1618-3169/a000162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most previous studies of individual differences in women's and men's preferences for sexually dimorphic physical characteristics have focused on the importance of mating-related factors for judgments of opposite-sex individuals. Although studies have suggested that people may show stronger preferences for feminine individuals of both sexes under conditions where social support may be at a premium (e.g., during phases of the menstrual cycle where raised progesterone prepares women's bodies for pregnancy), these studies have not demonstrated that perceptions of available social support directly influence femininity preferences. Here we found that (1) women and men randomly allocated to low social support priming conditions demonstrated stronger preferences for feminine shape cues in own- and opposite-sex faces than did individuals randomly allocated to high social support priming conditions and (2) that people perceived men and women displaying feminine characteristics as more likely to provide them with high-quality social support than those displaying relatively masculine characteristics. Together, these findings suggest that social support influences face preferences directly, potentially implicating facultative responses whereby people increase their preferences for pro-social individuals under conditions of low social support.
Collapse
Affiliation(s)
- Christopher D Watkins
- Face Research Laboratory, School of Psychology, University of Aberdeen, Scotland, UK.
| | | | | | | |
Collapse
|
96
|
Platt TG, Fuqua C, Bever JD. Resource and competitive dynamics shape the benefits of public goods cooperation in a plant pathogen. Evolution 2012; 66:1953-65. [PMID: 22671559 PMCID: PMC3707318 DOI: 10.1111/j.1558-5646.2011.01571.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cooperative benefits depend on a variety of ecological factors. Many cooperative bacteria increase the population size of their groups by making a public good available. Increased local population size can alleviate the constraints of kin competition on the evolution of cooperation by enhancing the between-group fitness of cooperators. The cooperative pathogenesis of Agrobacterium tumefaciens causes infected plants to exude opines--resources that provide a nearly exclusive source of nutrient for the pathogen. We experimentally demonstrate that opines provide cooperative A. tumefaciens cells a within-group fitness advantage over saprophytic agrobacteria. Our results are congruent with a resource-consumer competition model, which predicts that cooperative, virulent agrobacteria are at a competitive disadvantage when opines are unavailable, but have an advantage when opines are available at sufficient levels. This model also predicts that freeloading agrobacteria that catabolize opines but cannot infect plants competitively displace the cooperative pathogen from all environments. However, we show that these cooperative public goods also promote increased local population size. A model built from the Price Equation shows that this effect on group size can contribute to the persistence of cooperative pathogenesis despite inherent kin competition for the benefits of pathogenesis.
Collapse
Affiliation(s)
- Thomas G. Platt
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| | - Clay Fuqua
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| | - James D. Bever
- 1001 East 3 Street, Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
97
|
Abstract
Recognition of relatives is important in microbes because they perform many behaviors that have costs to the actor while benefiting neighbors. Microbes cooperate for nourishment, movement, virulence, iron acquisition, protection, quorum sensing, and production of multicellular biofilms or fruiting bodies. Helping others is evolutionarily favored if it benefits others who share genes for helping, as specified by kin selection theory. If microbes generally find themselves in clonal patches, then no special means of discrimination is necessary. Much real discrimination is actually of kinds, not kin, as in poison-antidote systems, such as bacteriocins, in which cells benefit their own kind by poisoning others, and in adhesion systems, in which cells of the same kind bind together. These behaviors can elevate kinship generally and make cooperation easier to evolve and maintain.
Collapse
Affiliation(s)
- Joan E Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA.
| | | | | |
Collapse
|
98
|
Westneat DF. EVOLUTION IN RESPONSE TO SOCIAL SELECTION: THE IMPORTANCE OF INTERACTIVE EFFECTS OF TRAITS ON FITNESS. Evolution 2011; 66:890-895. [PMID: 22380447 DOI: 10.1111/j.1558-5646.2011.01490.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David F Westneat
- Department of Biology and Center for Ecology, Evolution, and Behavior, 101 Morgan Building, University of Kentucky, Lexington, KY 40506-0225 E-mail:
| |
Collapse
|
99
|
Genomic imprinting and the evolutionary psychology of human kinship. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10878-85. [PMID: 21690414 DOI: 10.1073/pnas.1100295108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomic imprinting is predicted to influence behaviors that affect individuals to whom an actor has different degrees of matrilineal and patrilineal kinship (asymmetric kin). Effects of imprinted genes are not predicted in interactions with nonrelatives or with individuals who are equally related to the actor's maternally and paternally derived genes (unless a gene also has pleiotropic effects on fitness of asymmetric kin). Long-term mating bonds are common in most human populations, but dissolution of marriage has always affected a significant proportion of mated pairs. Children born in a new union are asymmetric kin of children born in a previous union. Therefore, the innate dispositions of children toward parents and sibs are expected to be sensitive to cues of marital stability, and these dispositions may be subject to effects of imprinted genes.
Collapse
|
100
|
In the light of evolution V: cooperation and conflict. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10787-91. [PMID: 21690379 DOI: 10.1073/pnas.1100289108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|