51
|
Affiliation(s)
- Prachee Avasthi
- Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
52
|
Smith TS, Spitzbarth B, Li J, Dugger DR, Stern-Schneider G, Sehn E, Bolch SN, McDowell JH, Tipton J, Wolfrum U, Smith WC. Light-dependent phosphorylation of Bardet-Biedl syndrome 5 in photoreceptor cells modulates its interaction with arrestin1. Cell Mol Life Sci 2013; 70:4603-16. [PMID: 23817741 DOI: 10.1007/s00018-013-1403-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 01/14/2023]
Abstract
Arrestins are dynamic proteins that move between cell compartments triggered by stimulation of G-protein-coupled receptors. Even more dynamically in vertebrate photoreceptors, arrestin1 (Arr1) moves between the inner and outer segments according to the light conditions. Previous studies have shown that the light-driven translocation of Arr1 in rod photoreceptors is initiated by rhodopsin through a phospholipase C/protein kinase C (PKC) signaling cascade. The purpose of this study is to identify the PKC substrate that regulates the translocation of Arr1. Mass spectrometry was used to identify the primary phosphorylated proteins in extracts prepared from PKC-stimulated mouse eye cups, confirming the finding with in vitro phosphorylation assays. Our results show that Bardet-Biedl syndrome 5 (BBS5) is the principal protein phosphorylated either by phorbol ester stimulation or by light stimulation of PKC. Via immunoprecipitation of BBS5 in rod outer segments, Arr1 was pulled down; phosphorylation of BBS5 reduced this co-precipitation of Arr1. Immunofluorescence and immunoelectron microscopy showed that BBS5 principally localizes along the axonemes of rods and cones, but also in photoreceptor inner segments, and synaptic regions. Our principal findings in this study are threefold. First, we demonstrate that BBS5 is post-translationally regulated by phosphorylation via PKC, an event that is triggered by light in photoreceptor cells. Second, we find a direct interaction between BBS5 and Arr1, an interaction that is modulated by phosphorylation of BBS5. Finally, we show that BBS5 is distributed along the photoreceptor axoneme, co-localizing with Arr1 in the dark. These findings suggest a role for BBS5 in regulating light-dependent translocation of Arr1 and a model describing its role in Arr1 translocation is proposed.
Collapse
Affiliation(s)
- Tyler S Smith
- Department of Ophthalmology, University of Florida, Box 100284 JHMHC, Gainesville, FL, 32610-0284, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Lin YC, Phua SC, Lin B, Inoue T. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches. Curr Opin Chem Biol 2013; 17:663-71. [PMID: 23731778 DOI: 10.1016/j.cbpa.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, United States.
| | | | | | | |
Collapse
|
54
|
Lin YC, Niewiadomski P, Lin B, Nakamura H, Phua SC, Jiao J, Levchenko A, Inoue T, Rohatgi R, Inoue T. Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nat Chem Biol 2013; 9:437-43. [PMID: 23666116 DOI: 10.1038/nchembio.1252] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/05/2013] [Indexed: 11/09/2022]
Abstract
Primary cilia function as specialized compartments for signal transduction. The stereotyped structure and signaling function of cilia inextricably depend on the selective segregation of molecules in cilia. However, the fundamental principles governing the access of soluble proteins to primary cilia remain unresolved. We developed a methodology termed 'chemically inducible diffusion trap at cilia' to visualize the diffusion process of a series of fluorescent proteins ranging in size from 3.2 nm to 7.9 nm into primary cilia. We found that the interior of the cilium was accessible to proteins as large as 7.9 nm. The kinetics of ciliary accumulation of this panel of proteins was exponentially limited by their Stokes radii. Quantitative modeling suggests that the diffusion barrier operates as a molecular sieve at the base of cilia. Our study presents a set of powerful, generally applicable tools for the quantitative monitoring of ciliary protein diffusion under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - Pawel Niewiadomski
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University
| | - Benjamin Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University.,Department of Biomedical Engineering, Johns Hopkins University
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Siew Cheng Phua
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - John Jiao
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University.,PRESTO Investigator, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
55
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
56
|
Kuznetsov AV. Modeling of Transient Transport of Soluble Proteins in the Connecting Cilium of a Photoreceptor Cell. J Nanotechnol Eng Med 2013. [DOI: 10.1115/1.4007567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A minimal mathematical model describing mass transport in the connecting cilium (CC) of a photoreceptor cell in response to a suddenly increased protein concentration at the base of the CC is developed. Dimensionless governing equations and dimensionless parameters are identified. Analytical solutions are obtained for concentrations of free (diffusion-driven) and motor-driven proteins. The obtained solutions make it possible to predict mass transfer in the CC as a function of two dimensionless transport parameters involved in the model: the diffusivity of free soluble proteins and the transition rate from the diffusion-driven to the motor-driven state. Sensitivities of the obtained solutions to these two parameters are discussed.
Collapse
Affiliation(s)
- A. V. Kuznetsov
- Department of Mechanical
and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 e-mail:
| |
Collapse
|
57
|
Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci U S A 2013; 110:942-947. [PMID: 23277586 PMCID: PMC3549108 DOI: 10.1073/pnas.1215176110] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Solution NMR spectroscopy of labeled arrestin-1 was used to explore its interactions with dark-state phosphorylated rhodopsin (P-Rh), phosphorylated opsin (P-opsin), unphosphorylated light-activated rhodopsin (Rh*), and phosphorylated light-activated rhodopsin (P-Rh*). Distinct sets of arrestin-1 elements were seen to be engaged by Rh* and inactive P-Rh, which induced conformational changes that differed from those triggered by binding of P-Rh*. Although arrestin-1 affinity for Rh* was seen to be low (K(D) > 150 μM), its affinity for P-Rh (K(D) ~80 μM) was comparable to the concentration of active monomeric arrestin-1 in the outer segment, suggesting that P-Rh generated by high-gain phosphorylation is occupied by arrestin-1 under physiological conditions and will not signal upon photo-activation. Arrestin-1 was seen to bind P-Rh* and P-opsin with fairly high affinity (K(D) of~50 and 800 nM, respectively), implying that arrestin-1 dissociation is triggered only upon P-opsin regeneration with 11-cis-retinal, precluding noise generated by opsin activity. Based on their observed affinity for arrestin-1, P-opsin and inactive P-Rh very likely affect the physiological monomer-dimer-tetramer equilibrium of arrestin-1, and should therefore be taken into account when modeling photoreceptor function. The data also suggested that complex formation with either P-Rh* or P-opsin results in a global transition in the conformation of arrestin-1, possibly to a dynamic molten globule-like structure. We hypothesize that this transition contributes to the mechanism that triggers preferential interactions of several signaling proteins with receptor-activated arrestins.
Collapse
Affiliation(s)
- Tiandi Zhuang
- Department of Biochemistry
- Center for Structural Biology
| | - Qiuyan Chen
- Center for Structural Biology
- Department of Pharmacology, and
| | | | | | - Tina M. Iverson
- Department of Biochemistry
- Center for Structural Biology
- Department of Pharmacology, and
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | | | - Charles R. Sanders
- Department of Biochemistry
- Center for Structural Biology
- Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
58
|
Smith WC. The role of arrestins in visual and disease processes of the eye. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:243-65. [PMID: 23764057 DOI: 10.1016/b978-0-12-394440-5.00010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Visual arrestins are well known for their function in quenching the phototransduction process in rods and cones. Perhaps not as well known is their participation in multiple other processes in the normal and disease states of the eye. This chapter covers the range of the known functions of the visual arrestins, beginning with their classical role in quenching light-activated visual pigments. The role of visual arrestins is also reviewed from the perspective of their dynamic mobility whereby they redistribute significantly between the compartments of highly polarized photoreceptor cells. Additional roles of the visual arrestins are also reviewed based on new interacting partners that have been discovered over the past decade. Finally, the contribution of the visual arrestins to diseases of the visual system is explored.
Collapse
Affiliation(s)
- W Clay Smith
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
59
|
Broekhuis JR, Leong WY, Jansen G. Regulation of cilium length and intraflagellar transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:101-38. [PMID: 23445809 DOI: 10.1016/b978-0-12-407697-6.00003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Primary cilia are highly conserved sensory organelles that extend from the surface of almost all vertebrate cells. The importance of cilia is evident from their involvement in many diseases, called ciliopathies. Primary cilia contain a microtubular axoneme that is used as a railway for transport of both structural components and signaling proteins. This transport machinery is called intraflagellar transport (IFT). Cilia are dynamic organelles whose presence on the cell surface, morphology, length and function are highly regulated. It is clear that the IFT machinery plays an important role in this regulation. However, it is not clear how, for example environmental cues or cell fate decisions are relayed to modulate IFT and cilium morphology or function. This chapter presents an overview of molecules that have been shown to regulate cilium length and IFT. Several examples where signaling modulates IFT and cilium function are used to discuss the importance of these systems for the cell and for understanding of the etiology of ciliopathies.
Collapse
|
60
|
Garcia-Gonzalo FR, Reiter JF. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. ACTA ACUST UNITED AC 2012; 197:697-709. [PMID: 22689651 PMCID: PMC3373398 DOI: 10.1083/jcb.201111146] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
61
|
Najafi M, Calvert PD. Transport and localization of signaling proteins in ciliated cells. Vision Res 2012; 75:11-8. [PMID: 22922002 DOI: 10.1016/j.visres.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/05/2012] [Accepted: 08/08/2012] [Indexed: 11/16/2022]
Abstract
Most cells in the human body elaborate cilia which serve a wide variety of functions, including cell and tissue differentiation during development, sensing physical and chemical properties of the extracellular milieu and mechanical force generation. Common among cilia is the transduction of external stimuli into signals that regulate the activities of the cilia and the cells that possess them. These functions require the transport and localization of specialized proteins to the cilium, a process that many recent studies have shown to be vital for normal cell function and, ultimately, the health of the organism. Here we discuss several mechanisms proposed for the transport and localization of soluble and peripheral membrane proteins to, or their exclusion from the ciliary compartment with a focus on how the structure of the cytoplasm and the size and shape of proteins influence these processes. Additionally, we examine the impact of cell and protein structure on our ability to accurately measure the relative concentrations of fluorescently tagged proteins amongst various cellular domains, which is integral to our understanding of the molecular mechanisms underlying protein localization and transport.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Ophthalmology and the Center for Vision Research, SUNY Upstate Medical University, United States
| | | |
Collapse
|
62
|
Najafi M, Haeri M, Knox BE, Schiesser WE, Calvert PD. Impact of signaling microcompartment geometry on GPCR dynamics in live retinal photoreceptors. ACTA ACUST UNITED AC 2012; 140:249-66. [PMID: 22891277 PMCID: PMC3434098 DOI: 10.1085/jgp.201210818] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
G protein–coupled receptor (GPCR) cascades rely on membrane protein diffusion for signaling and are generally found in spatially constrained subcellular microcompartments. How the geometry of these microcompartments impacts cascade activities, however, is not understood, primarily because of the inability of current live cell–imaging technologies to resolve these small structures. Here, we examine the dynamics of the GPCR rhodopsin within discrete signaling microcompartments of live photoreceptors using a novel high resolution approach. Rhodopsin fused to green fluorescent protein variants, either enhanced green fluorescent protein (EGFP) or the photoactivatable PAGFP (Rho-E/PAGFP), was expressed transgenically in Xenopus laevis rod photoreceptors, and the geometries of light signaling microcompartments formed by lamellar disc membranes and their incisure clefts were resolved by confocal imaging. Multiphoton fluorescence relaxation after photoconversion experiments were then performed with a Ti–sapphire laser focused to the diffraction limit, which produced small sub–cubic micrometer volumes of photoconverted molecules within the discrete microcompartments. A model of molecular diffusion was developed that allows the geometry of the particular compartment being examined to be specified. This was used to interpret the experimental results. Using this unique approach, we showed that rhodopsin mobility across the disc surface was highly heterogeneous. The overall relaxation of Rho-PAGFP fluorescence photoactivated within a microcompartment was biphasic, with a fast phase lasting several seconds and a slow phase of variable duration that required up to several minutes to reach equilibrium. Local Rho-EGFP diffusion within defined compartments was monotonic, however, with an effective lateral diffusion coefficient Dlat = 0.130 ± 0.012 µm2s−1. Comparison of rhodopsin-PAGFP relaxation time courses with model predictions revealed that microcompartment geometry alone may explain both fast local rhodopsin diffusion and its slow equilibration across the greater disc membrane. Our approach has for the first time allowed direct examination of GPCR dynamics within a live cell signaling microcompartment and a quantitative assessment of the impact of compartment geometry on GPCR activity.
Collapse
Affiliation(s)
- Mehdi Najafi
- Department of Ophthalmology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
63
|
Deretic D, Wang J. Molecular assemblies that control rhodopsin transport to the cilia. Vision Res 2012; 75:5-10. [PMID: 22892112 DOI: 10.1016/j.visres.2012.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023]
Abstract
This review will focus on the conserved molecular mechanisms for the specific targeting of rhodopsin and rhodopsin-like sensory receptors to the primary cilia. We will discuss the molecular assemblies that control the movement of rhodopsin from the central sorting station of the cell, the trans-Golgi network (TGN), into membrane-enclosed rhodopsin transport carriers (RTCs), and their delivery to the primary cilia and the cilia-derived sensory organelle, the rod outer segment (ROS). Recent studies reveal that these processes are initiated by the synergistic interaction of rhodopsin with the active form of the G-protein Arf4 and the Arf GTPase activating protein (GAP) ASAP1. During rhodopsin progression, ASAP1 serves as an activation platform that brings together the proteins necessary for transport to the cilia, including the Rab11a-Rabin8-Rab8 complex involved in ciliogenesis. These specialized molecular assemblies, through successive action of discrete modules, cooperatively determine how rhodopsin and other rhodopsin-like signaling receptors gain access to primary cilia.
Collapse
Affiliation(s)
- Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, United States.
| | | |
Collapse
|
64
|
The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012; 13:608-18. [PMID: 22653444 DOI: 10.1038/embor.2012.73] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022] Open
Abstract
Both the basal body and the microtubule-based axoneme it nucleates have evolutionarily conserved subdomains crucial for cilium biogenesis, function and maintenance. Here, we focus on two conspicuous but underappreciated regions of these structures that make membrane connections. One is the basal body distal end, which includes transition fibres of largely undefined composition that link to the base of the ciliary membrane. Transition fibres seem to serve as docking sites for intraflagellar transport particles, which move proteins within the ciliary compartment and are required for cilium biogenesis and sustained function. The other is the proximal-most region of the axoneme, termed the transition zone, which is characterized by Y-shaped linkers that span from the axoneme to the ciliary necklace on the membrane surface. The transition zone comprises a growing number of ciliopathy proteins that function as modular components of a ciliary gate. This gate, which forms early during ciliogenesis, might function in part by regulating intraflagellar transport. Together with a recently described septin ring diffusion barrier at the ciliary base, the transition fibres and transition zone deserve attention for their varied roles in forming functional ciliary compartments.
Collapse
|
65
|
Lieven CJ, Ribich JD, Crowe ME, Levin LA. Redox proteomic identification of visual arrestin dimerization in photoreceptor degeneration after photic injury. Invest Ophthalmol Vis Sci 2012; 53:3990-8. [PMID: 22599583 DOI: 10.1167/iovs.11-9321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Light-induced oxidative stress is an important risk factor for age-related macular degeneration, but the downstream mediators of photoreceptor and retinal pigment epithelium cell death after photic injury are unknown. Given our previous identification of sulfhydryl/disulfide redox status as a factor in photoreceptor survival, we hypothesized that formation of one or more disulfide-linked homo- or hetero-dimeric proteins might signal photoreceptor death after light-induced injury. METHODS Two-dimensional (non-reducing/reducing) gel electrophoresis of Wistar rat retinal homogenates after 10 hours of 10,000 lux (4200°K) light in vivo, followed by mass spectrometry identification of differentially oxidized proteins. RESULTS The redox proteomic screen identified homodimers of visual arrestin (Arr1; S antigen) after toxic levels of light injury. Immunoblot analysis revealed a light duration-dependent formation of Arr1 homodimers, as well as other Arr1 oligomers. Immunoprecipitation studies revealed that the dimerization of Arr1 due to photic injury was distinct from association with its physiological binding partners, rhodopsin and enolase1. Systemic delivery of tris(2-carboxyethyl)phosphine, a specific disulfide reductant, both decreased Arr1 dimer formation and protected photoreceptors from light-induced degeneration in vivo. CONCLUSIONS These findings suggest a novel arrestin-associated pathway by which oxidative stress could result in cell death, and identify disulfide-dependent dimerization as a potential therapeutic target in retinal degeneration.
Collapse
Affiliation(s)
- Christopher J Lieven
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
66
|
Corless JM. Cone outer segments: a biophysical model of membrane dynamics, shape retention, and lamella formation. Biophys J 2012; 102:2697-705. [PMID: 22735519 DOI: 10.1016/j.bpj.2012.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022] Open
Abstract
An hypothesis is developed to explain how the unique, right circular conical geometry of cone outer segments (COSs) in Xenopus laevis and other lower vertebrates is maintained during the cycle of axial shortening by apical phagocytosis and axial elongation via the addition of new basal lamellae. Extension of a new basal evagination (BE) applies radial (lateral) traction to membrane and cytoplasmic domains, achieving two coupled effects. 1), The bilayer domain is locally stretched/dilated, creating an entropic driving force that draws membrane components into the BE from the COS's distributed bilayer phase, i.e., plasmalemma and older lamellae (membrane recycling). Membrane proteins, e.g., opsins, are carried passively in this advective, bilayer-driven process. 2), With BE stretching, hydrostatic pressure within the BE cytoplasm is reduced slightly with respect to that of the axonemal cytoplasmic reservoir, allowing cytoplasmic flow into the BE. Attendant lowering of the reservoir's hydrostatic pressure facilitates the subsequent transfer of cytoplasm from lamellar domains to the reservoir (cytoplasmic recycling). The geometry of the BE reflects the membrane/cytoplasm ratio needed for its construction, and essentially specifies the ratio of components recycled from older lamellae. Length and taper angle of the COS reflect the ratio of recycled/new components constructing a new BE. The model also integrates the trajectories and dynamics of lamella open margin lattice components. Although not fully evaluated, the initial model has been assessed against the relevant literature, and three experimental predictions are derived.
Collapse
Affiliation(s)
- Joseph M Corless
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|