51
|
Pant K, Karpel RL, Rouzina I, Williams MC. Mechanical measurement of single-molecule binding rates: kinetics of DNA helix-destabilization by T4 gene 32 protein. J Mol Biol 2004; 336:851-70. [PMID: 15095865 DOI: 10.1016/j.jmb.2003.12.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriophage T4 gene 32 protein (gp32) is a single-stranded DNA (ssDNA) binding protein, and is essential for DNA replication, recombination and repair. While gp32 binds preferentially and cooperatively to ssDNA, it has not been observed to lower the thermal melting temperature of natural double-stranded DNA (dsDNA). However, in single-molecule stretching experiments, gp32 significantly destabilizes lambda DNA. In this study, we develop a theory of the effect of the protein on single dsDNA stretching curves, and apply it to the measured dependence of the DNA overstretching force on pulling rate in the presence of the full-length and two truncated forms of the protein. This allows us to calculate the rate of cooperative growth of single clusters of protein along ssDNA that are formed as the dsDNA molecule is stretched, as well as determine the site size of the protein binding to ssDNA. The rate of cooperative binding (ka) of both gp32 and of its proteolytic fragment *I (which lacks 48 residues from the C terminus) varies non-linearly with protein concentration, and appears to exceed the diffusion limit. We develop a model of protein association with the ends of growing clusters of cooperatively bound protein enhanced by 1-D diffusion along dsDNA, under the condition of protein excess. Upon globally fitting ka versus protein concentration, we determine the binding site size and the non-cooperative binding constants to dsDNA for gp32 and I. Our experiment mimics the growth of clusters of gp32 that likely exist at the DNA replication fork in vivo, and explains the origin of the "kinetic block" to dsDNA melting by gene 32 protein observed in thermal melting experiments.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
52
|
Ma Y, Wang T, Villemain JL, Giedroc DP, Morrical SW. Dual functions of single-stranded DNA-binding protein in helicase loading at the bacteriophage T4 DNA replication fork. J Biol Chem 2004; 279:19035-45. [PMID: 14871889 DOI: 10.1074/jbc.m311738200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
53
|
Bleuit JS, Ma Y, Munro J, Morrical SW. Mutations in a conserved motif inhibit single-stranded DNA binding and recombination mediator activities of bacteriophage T4 UvsY protein. J Biol Chem 2003; 279:6077-86. [PMID: 14634008 DOI: 10.1074/jbc.m311557200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The UvsY recombination mediator protein is critical for homologous recombination in bacteriophage T4. UvsY uses both protein-protein and protein-DNA interactions to mediate the assembly of the T4 UvsX recombinase onto single-stranded (ss) DNA, forming presynaptic filaments that initiate DNA strand exchange. UvsY helps UvsX compete with Gp32, the T4 ssDNA-binding protein, for binding sites on ssDNA, in part by destabilizing Gp32-ssDNA interactions, and in part by stabilizing UvsX-ssDNA interactions. The relative contributions of UvsY-ssDNA, UvsY-Gp32, UvsY-UvsX, and UvsY-UvsY interactions to these processes are only partially understood. The goal of this study was to isolate mutant forms of UvsY protein that are specifically defective in UvsY-ssDNA interactions, so that the contribution of this activity to recombination processes could be assessed independent of other factors. A conserved motif of UvsY found in other DNA-binding proteins was targeted for mutagenesis. Two missense mutants of UvsY were isolated in which ssDNA binding activity is compromised. These mutants retain self-association activity, and form stable associations with UvsX and Gp32 proteins in patterns similar to wild-type UvsY. Both mutants are partially, but not totally, defective in stimulating UvsX-catalyzed recombination functions including ssDNA-dependent ATP hydrolysis and DNA strand exchange. The data are consistent with a model in which UvsY plays bipartite roles in presynaptic filament assembly. Its protein-ssDNA interactions are suggested to moderate the destabilization of Gp32-ssDNA, whereas its protein-protein contacts induce a conformational change of the UvsX protein, giving UvsX a higher affinity for the ssDNA and allowing it to compete more effectively with Gp32 for binding sites.
Collapse
Affiliation(s)
- Jill S Bleuit
- Departments of Biochemistry and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
54
|
Sung P, Krejci L, Van Komen S, Sehorn MG. Rad51 recombinase and recombination mediators. J Biol Chem 2003; 278:42729-32. [PMID: 12912992 DOI: 10.1074/jbc.r300027200] [Citation(s) in RCA: 332] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
55
|
Nimonkar AV, Boehmer PE. Reconstitution of recombination-dependent DNA synthesis in herpes simplex virus 1. Proc Natl Acad Sci U S A 2003; 100:10201-6. [PMID: 12928502 PMCID: PMC193539 DOI: 10.1073/pnas.1534569100] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Indexed: 12/28/2022] Open
Abstract
The repair of double-strand DNA breaks by homologous recombination is essential for the maintenance of genome stability. In herpes simplex virus 1, double-strand DNA breaks may arise as a consequence of replication fork collapse at sites of oxidative damage, which is known to be induced upon viral infection. Double-strand DNA breaks are also generated by cleavage of viral a sequences by endonuclease G during genome isomerization. We have reconstituted a system using purified proteins in which strand invasion is coupled with DNA synthesis. In this system, the viral single-strand DNA-binding protein promotes assimilation of single-stranded DNA into a homologous supercoiled plasmid, resulting in the formation of a displacement loop. The 3' terminus of the invading DNA serves as a primer for long-chain DNA synthesis promoted by the viral DNA replication proteins, including the polymerase and helicase-primase. Efficient extension of the invading primer also requires a DNA-relaxing enzyme (eukaryotic topoisomerase I or DNA gyrase). The viral polymerase by itself is insufficient for DNA synthesis, and a DNA-relaxing enzyme cannot substitute for the viral helicase-primase. The viral single-strand DNA-binding protein, in addition to its role in the invasion process, is also required for long-chain DNA synthesis. Form X, a topologically distinct, positively supercoiled form of displacement-loop, does not serve as a template for DNA synthesis. These observations support a model in which recombination and replication contribute toward maintaining viral genomic stability by repairing double-strand breaks. They also account for the extensive branching observed during viral replication in vivo.
Collapse
Affiliation(s)
- Amitabh V Nimonkar
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
56
|
Kadyrov FA, Drake JW. Properties of bacteriophage T4 proteins deficient in replication repair. J Biol Chem 2003; 278:25247-55. [PMID: 12697750 DOI: 10.1074/jbc.m302564200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An epistasis group of mutations engendering increased sensitivity to diverse DNA-damaging agents was described previously in bacteriophage T4. These mutations are alleles of genes 32 and 41, which, respectively, encode a single-stranded DNA-binding protein (gp32) and the replicative DNA helicase (gp41). The mechanism by which the lethality of DNA damage is mitigated is unknown but seems not to involve the direct reversal of damage, excision repair, conventional recombination repair, or translesion synthesis. Here we explore the hypothesis that the mechanism involves a switch in DNA primer extension from the cognate template to an alternative template, the just-synthesized daughter strand of the other parental strand. The activities of the mutant proteins are reduced about 2-fold (for gp32) or 4-fold (for gp41) in replication complexes catalyzing coordinated synthesis of leading and lagging strands, in binding single-stranded DNA, promoting DNA annealing, and promoting branch migration. In striking contrast, the mutant proteins are strongly impaired in promoting template switching, thus supporting the hypothesis of survival by template switching.
Collapse
Affiliation(s)
- Farid A Kadyrov
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health/Department of Health and Human Services, Research Triangle Park, North Carolina 27709-2233, USA
| | | |
Collapse
|
57
|
Pant K, Karpel RL, Williams MC. Kinetic regulation of single DNA molecule denaturation by T4 gene 32 protein structural domains. J Mol Biol 2003; 327:571-8. [PMID: 12634053 DOI: 10.1016/s0022-2836(03)00153-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bacteriophage T4 gene 32 protein (gp32) specifically binds single-stranded DNA, a property essential for its role in DNA replication, recombination, and repair. Although on a thermodynamic basis, single-stranded DNA binding proteins should lower the thermal melting temperature of double-stranded DNA (dsDNA), gp32 does not. Using single molecule force spectroscopy, we show for the first time that gp32 is capable of slowly destabilizing natural dsDNA. Direct measurements of single DNA molecule denaturation and renaturation kinetics in the presence of gp32 and its proteolytic fragments reveal three types of kinetic behavior, attributable to specific protein structural domains, which regulate gp32's helix-destabilizing capabilities. Whereas the full-length protein exhibits very slow denaturation kinetics, a truncate lacking the acidic C-domain exhibits much faster kinetics. This may reflect a steric blockage of the DNA binding site and/or a conformational change associated with this domain. Additional removal of the N-domain, which is needed for binding cooperativity, further increases the DNA denaturation rate, suggesting that both of these domains are critical to the regulation of gp32's helix-destabilization capabilities. This regulation is potentially biologically significant because uncontrolled helix-destabilization would be lethal to the cell. We also obtain equilibrium measurements of the helix-coil transition free energy in the presence of these proteins for the first time.
Collapse
Affiliation(s)
- Kiran Pant
- Department of Physics, Northeastern University, 111 Dana Research Center, Boston, MA 02115, USA
| | | | | |
Collapse
|
58
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 589] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
The extensive chromosome replication (ECR) model of double-strand-break repair (DSBR) proposes that each end of a double-strand break (DSB) is repaired independently by initiating extensive semiconservative DNA replication after strand invasion into homologous template DNA. In contrast, several other DSBR models propose that the two ends of a break are repaired in a coordinated manner using a single repair template with only limited DNA synthesis. We have developed plasmid and chromosomal recombinational repair assays to assess coordination of the broken ends during DSBR in bacteriophage T4. Results from the plasmid assay demonstrate that the two ends of a DSB can be repaired independently using homologous regions on two different plasmids and that extensive replication is triggered in the process. These findings are consistent with the ECR model of DSBR. However, results from the chromosomal assay imply that the two ends of a DSB utilize the same homologous repair template even when many potential templates are present, suggesting coordination of the broken ends during chromosomal repair. This result is consistent with several coordinated models of DSBR, including a modified version of the ECR model.
Collapse
Affiliation(s)
- Bradley A Stohr
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
60
|
Fortin GS, Symington LS. Mutations in yeast Rad51 that partially bypass the requirement for Rad55 and Rad57 in DNA repair by increasing the stability of Rad51-DNA complexes. EMBO J 2002; 21:3160-70. [PMID: 12065428 PMCID: PMC126052 DOI: 10.1093/emboj/cdf293] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes.
Collapse
Affiliation(s)
| | - Lorraine S. Symington
- Institute of Cancer Research and Department of Microbiology, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA
Corresponding author e-mail:
| |
Collapse
|
61
|
Bork JM, Cox MM, Inman RB. The RecOR proteins modulate RecA protein function at 5' ends of single-stranded DNA. EMBO J 2001; 20:7313-22. [PMID: 11743007 PMCID: PMC125792 DOI: 10.1093/emboj/20.24.7313] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Escherichia coli RecF, RecO and RecR pro teins have previously been implicated in bacterial recombinational DNA repair at DNA gaps. The RecOR-facilitated binding of RecA protein to single-stranded DNA (ssDNA) that is bound by single-stranded DNA-binding protein (SSB) is much faster if the ssDNA is linear, suggesting that a DNA end (rather than a gap) facilitates binding. In addition, the RecOR complex facilitates RecA protein-mediated D-loop formation at the 5' ends of linear ssDNAs. RecR protein remains associated with the RecA filament and its continued presence is required to prevent filament disassembly. RecF protein competes with RecO protein for RecR protein association and its addition destabilizes RecAOR filaments. An enhanced function of the RecO and RecR proteins can thus be seen in vitro at the 5' ends of linear ssDNA that is not as evident in DNA gaps. This function is countered by the RecF/RecO competition for association with the RecR protein.
Collapse
Affiliation(s)
- Julie M. Bork
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
Present address: Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA Corresponding author e-mail:
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA
Present address: Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA Corresponding author e-mail:
| | | |
Collapse
|
62
|
Cromie GA, Connelly JC, Leach DR. Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. Mol Cell 2001; 8:1163-74. [PMID: 11779493 DOI: 10.1016/s1097-2765(01)00419-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The recombination mechanisms that deal with double-strand breaks in organisms as diverse as phage, bacteria, yeast, and humans are remarkably conserved. We discuss conservation in the biochemical pathways required to recombine DNA ends and in the structure of the DNA products. In addition, we highlight that two fundamentally distinct broken DNA substrates exist and describe how they are repaired differently by recombination. Finally, we discuss the need to coordinate recombinational repair with cell division through DNA damage response pathways.
Collapse
Affiliation(s)
- G A Cromie
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
63
|
Gasior SL, Olivares H, Ear U, Hari DM, Weichselbaum R, Bishop DK. Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proc Natl Acad Sci U S A 2001; 98:8411-8. [PMID: 11459983 PMCID: PMC37451 DOI: 10.1073/pnas.121046198] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the RecA family of recombinases from bacteriophage T4, Escherichia coli, yeast, and higher eukaryotes function in recombination as higher-order oligomers assembled on tracts of single-strand DNA (ssDNA). Biochemical studies have shown that assembly of recombinase involves accessory factors. These studies have identified a class of proteins, called recombination mediator proteins, that act by promoting assembly of recombinase on ssDNA tracts that are bound by ssDNA-binding protein (ssb). In the absence of mediators, ssb inhibits recombination reactions by competing with recombinase for DNA-binding sites. Here we briefly review mediated recombinase assembly and present results of new in vivo experiments. Immuno-double-staining experiments in Saccharomyces cerevisiae suggest that Rad51, the eukaryotic recombinase, can assemble at or near sites containing ssb (replication protein A, RPA) during the response to DNA damage, consistent with a need for mediator activity. Correspondingly, mediator gene mutants display defects in Rad51 assembly after DNA damage and during meiosis, although the requirements for assembly are distinct in the two cases. In meiosis, both Rad52 and Rad55/57 are required, whereas either Rad52 or Rad55/57 is sufficient to promote assembly of Rad51 in irradiated mitotic cells. Rad52 promotes normal amounts of Rad51 assembly in the absence of Rad55 at 30 degrees C but not 20 degrees C, accounting for the cold sensitivity of rad55 null mutants. Finally, we show that assembly of Rad51 is induced by radiation during S phase but not during G(1), consistent with the role of Rad51 in repairing the spontaneous damage that occurs during DNA replication.
Collapse
Affiliation(s)
- S L Gasior
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
64
|
Kuzminov A. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8461-8. [PMID: 11459990 PMCID: PMC37458 DOI: 10.1073/pnas.151260698] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair.
Collapse
Affiliation(s)
- A Kuzminov
- Department of Microbiology, University of Illinois, Urbana-Champaign, B103, Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
65
|
George JW, Stohr BA, Tomso DJ, Kreuzer KN. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4. Proc Natl Acad Sci U S A 2001; 98:8290-7. [PMID: 11459966 PMCID: PMC37434 DOI: 10.1073/pnas.131007598] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid.
Collapse
Affiliation(s)
- J W George
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
66
|
Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc Natl Acad Sci U S A 2001; 98:8306-11. [PMID: 11459968 PMCID: PMC37436 DOI: 10.1073/pnas.131007398] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major pathways of recombination-dependent DNA replication, "join-copy" and "join-cut-copy," can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | |
Collapse
|