51
|
Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT 3A receptor. Nature 2018; 563:270-274. [PMID: 30401837 PMCID: PMC6237196 DOI: 10.1038/s41586-018-0660-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Serotonin receptor (5-HT3AR)1, a cationic pentameric ligand-gated ion channel (pLGIC), is the clinical target for management of nausea and vomiting associated with radiation and chemotherapies2. Upon binding, serotonin induces a global conformational change encompassing the ligand-binding extracellular domain (ECD), the transmembrane domain (TMD), and the intracellular domain (ICD), the molecular details of which are unclear. Here, we present two serotonin-bound structures of the full-length 5-HT3AR in distinct conformations at 3.32 Å and 3.89 Å resolutions that reveal the mechanism underlying channel activation. When compared to Apo-5-HT3AR, serotonin-bound states underwent a large twisting motion in the ECD and TMD leading to the opening of a 165 Å long permeation pathway. Notably, this motion results in creation of lateral portals for ion permeation at the interface of the TMD and ICD. Combined with molecular dynamics simulations, these structures provide novel insights into conformational coupling across domains and functional modulation.
Collapse
|
52
|
Polovinkin L, Hassaine G, Perot J, Neumann E, Jensen AA, Lefebvre SN, Corringer PJ, Neyton J, Chipot C, Dehez F, Schoehn G, Nury H. Conformational transitions of the serotonin 5-HT 3 receptor. Nature 2018; 563:275-279. [PMID: 30401839 DOI: 10.1038/s41586-018-0672-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023]
Abstract
The serotonin 5-HT3 receptor is a pentameric ligand-gated ion channel (pLGIC). It belongs to a large family of receptors that function as allosteric signal transducers across the plasma membrane1,2; upon binding of neurotransmitter molecules to extracellular sites, the receptors undergo complex conformational transitions that result in transient opening of a pore permeable to ions. 5-HT3 receptors are therapeutic targets for emesis and nausea, irritable bowel syndrome and depression3. In spite of several reported pLGIC structures4-8, no clear unifying view has emerged on the conformational transitions involved in channel gating. Here we report four cryo-electron microscopy structures of the full-length mouse 5-HT3 receptor in complex with the anti-emetic drug tropisetron, with serotonin, and with serotonin and a positive allosteric modulator, at resolutions ranging from 3.2 Å to 4.5 Å. The tropisetron-bound structure resembles those obtained with an inhibitory nanobody5 or without ligand9. The other structures include an 'open' state and two ligand-bound states. We present computational insights into the dynamics of the structures, their pore hydration and free-energy profiles, and characterize movements at the gate level and cation accessibility in the pore. Together, these data deepen our understanding of the gating mechanism of pLGICs and capture ligand binding in unprecedented detail.
Collapse
Affiliation(s)
| | | | - Jonathan Perot
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | | | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solène N Lefebvre
- Channel Receptors Unit, CNRS UMR 3571, Institut Pasteur, Paris, France
| | | | - Jacques Neyton
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| | - Christophe Chipot
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Francois Dehez
- Université de Lorraine, CNRS, LPCT, Nancy, France.,Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, Vandoeuvre-les-Nancy, France
| | - Guy Schoehn
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France
| | - Hugues Nury
- CNRS, Université Grenoble Alpes, CEA, IBS, Grenoble, France.
| |
Collapse
|
53
|
Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity. Proc Natl Acad Sci U S A 2018; 115:10672-10677. [PMID: 30275330 PMCID: PMC6196478 DOI: 10.1073/pnas.1809650115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to ∼30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.
Collapse
|
54
|
Structural basis of neurosteroid anesthetic action on GABA A receptors. Nat Commun 2018; 9:3972. [PMID: 30266951 PMCID: PMC6162318 DOI: 10.1038/s41467-018-06361-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are inhibitory pentameric ligand-gated ion channels in the brain. Many anesthetics and neurosteroids act through binding to the GABAAR transmembrane domain (TMD), but the structural basis of their actions is not well understood and no resting-state GABAAR structure has been determined. Here, we report crystal structures of apo and the neurosteroid anesthetic alphaxalone-bound desensitized chimeric α1GABAAR (ELIC-α1GABAAR). The chimera retains the functional and pharmacological properties of GABAARs, including potentiation, activation and desensitization by alphaxalone. The apo-state structure reveals an unconventional activation gate at the intracellular end of the pore. The desensitized structure illustrates molecular determinants for alphaxalone binding to an inter-subunit TMD site. These structures suggest a plausible signaling pathway from alphaxalone binding at the bottom of the TMD to the channel gate in the pore-lining TM2 through the TM1–TM2 linker. The study provides a framework to discover new GABAAR modulators with therapeutic potential. The anesthetic alphaxalone binds γ-aminobutyric acid type A receptors (GABAARs) that play an important role in regulating sensory processes. Here the authors present the structures of a α1GABAAR chimera in the resting state and in an alphaxalone-bound desensitized state, which might facilitate the development of new GABAAR modulators.
Collapse
|
55
|
Direct visualization of ion-channel gating in a native environment. Proc Natl Acad Sci U S A 2018; 115:10198-10200. [PMID: 30257939 DOI: 10.1073/pnas.1814277115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
56
|
Abstract
Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein-protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.
Collapse
|
57
|
Kasimova MA, Lindahl E, Delemotte L. Determining the molecular basis of voltage sensitivity in membrane proteins. J Gen Physiol 2018; 150:1444-1458. [PMID: 30150239 PMCID: PMC6168238 DOI: 10.1085/jgp.201812086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The identification of voltage-sensing elements in membrane proteins is challenging due to the diversity of voltage-sensing mechanisms. Kasimova et al. present a computational approach to predict the elements involved in voltage sensing, which they validate using voltage-gated ion channels. Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested.
Collapse
Affiliation(s)
- Marina A Kasimova
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
58
|
Bouzat C, Mukhtasimova N. The nicotinic acetylcholine receptor as a molecular machine for neuromuscular transmission. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
59
|
Bouzat C, Sine SM. Nicotinic acetylcholine receptors at the single-channel level. Br J Pharmacol 2018; 175:1789-1804. [PMID: 28261794 PMCID: PMC5979820 DOI: 10.1111/bph.13770] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 01/28/2023] Open
Abstract
Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc/.
Collapse
Affiliation(s)
- Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, INIBIBB (CONICET‐UNS), Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del SurBahía BlancaArgentina
| | - Steven M Sine
- Receptor Biology Laboratory, Department of Physiology and Biomedical EngineeringMayo Clinic College of MedicineRochesterMN55905USA
- Department of NeurologyMayo Clinic College of MedicineRochesterMN55905USA
- Department of Pharmacology and Experimental TherapeuticsMayo Clinic College of MedicineRochesterMN55905USA
| |
Collapse
|
60
|
Lasala M, Corradi J, Bruzzone A, Esandi MDC, Bouzat C. A human-specific, truncated α7 nicotinic receptor subunit assembles with full-length α7 and forms functional receptors with different stoichiometries. J Biol Chem 2018; 293:10707-10717. [PMID: 29784875 DOI: 10.1074/jbc.ra117.001698] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/15/2018] [Indexed: 11/06/2022] Open
Abstract
The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation. We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine whether dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, which require at least two α7 subunits for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compared with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders.
Collapse
Affiliation(s)
- Matías Lasala
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Jeremías Corradi
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Ariana Bruzzone
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - María Del Carmen Esandi
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| |
Collapse
|
61
|
Gielen M, Corringer P. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J Physiol 2018; 596:1873-1902. [PMID: 29484660 PMCID: PMC5978336 DOI: 10.1113/jp275100] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast neurotransmission in the nervous system. Their dysfunction is associated with psychiatric, neurological and neurodegenerative disorders such as schizophrenia, epilepsy and Alzheimer's disease. Understanding their biophysical and pharmacological properties, at both the functional and the structural level, thus holds many therapeutic promises. In addition to their agonist-elicited activation, most pLGICs display another key allosteric property, namely desensitization, in which they enter a shut state refractory to activation upon sustained agonist binding. While the activation mechanisms of several pLGICs have been revealed at near-atomic resolution, the structural foundation of desensitization has long remained elusive. Recent structural and functional data now suggest that the activation and desensitization gates are distinct, and are located at both sides of the ion channel. Such a 'dual gate mechanism' accounts for the marked allosteric effects of channel blockers, a feature illustrated herein by theoretical kinetics simulations. Comparison with other classes of ligand- and voltage-gated ion channels shows that this dual gate mechanism emerges as a common theme for the desensitization and inactivation properties of structurally unrelated ion channels.
Collapse
Affiliation(s)
- Marc Gielen
- Channel Receptors UnitInstitut PasteurCNRS UMR 3571ParisFrance
| | | |
Collapse
|
62
|
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and TherapeuticsMcGill UniversityMontréalQuébec H3G 1Y6Canada
| |
Collapse
|
63
|
Crystal structures of a pentameric ion channel gated by alkaline pH show a widely open pore and identify a cavity for modulation. Proc Natl Acad Sci U S A 2018; 115:E3959-E3968. [PMID: 29632192 DOI: 10.1073/pnas.1717700115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) constitute a widespread class of ion channels, present in archaea, bacteria, and eukaryotes. Upon binding of their agonists in the extracellular domain, the transmembrane pore opens, allowing ions to go through, via a gating mechanism that can be modulated by a number of drugs. Even though high-resolution structural information on pLGICs has increased in a spectacular way in recent years, both in bacterial and in eukaryotic systems, the structure of the open channel conformation of some intensively studied receptors whose structures are known in a nonactive (closed) form, such as Erwinia chrysanthemi pLGIC (ELIC), is still lacking. Here we describe a gammaproteobacterial pLGIC from an endo-symbiont of Tevnia jerichonana (sTeLIC), whose sequence is closely related to the pLGIC from ELIC with 28% identity. We provide an X-ray crystallographic structure at 2.3 Å in an active conformation, where the pore is found to be more open than any current conformation found for pLGICs. In addition, two charged restriction rings are present in the vestibule. Functional characterization shows sTeLIC to be a cationic channel activated at alkaline pH. It is inhibited by divalent cations, but not by quaternary ammonium ions, such as tetramethylammonium. Additionally, we found that sTeLIC is allosterically potentiated by aromatic amino acids Phe and Trp, as well as their derivatives, such as 4-bromo-cinnamate, whose cocrystal structure reveals a vestibular binding site equivalent to, but more deeply buried than, the one already described for benzodiazepines in ELIC.
Collapse
|
64
|
Chen Q, Xu Y, Tang P. X-Ray Crystallographic Studies for Revealing Binding Sites of General Anesthetics in Pentameric Ligand-Gated Ion Channels. Methods Enzymol 2018; 603:21-47. [PMID: 29673527 DOI: 10.1016/bs.mie.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
X-ray crystallography is a powerful tool in structural biology and can offer insight into structured-based understanding of general anesthetic action on various relevant molecular targets, including pentameric ligand-gated ion channels (pLGICs). In this chapter, we outline the procedures for expression and purification of pLGICs. Optimization of crystallization conditions, especially to achieve high-resolution structures of pLGICs bound with general anesthetics, is also presented. Case studies of pLGICs bound with the volatile general anesthetic isoflurane, 2-bromoethanol, and the intravenous general anesthetic ketamine are revisited.
Collapse
Affiliation(s)
- Qiang Chen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yan Xu
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Pei Tang
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
65
|
Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses. eNeuro 2018; 5:eN-NWR-0042-17. [PMID: 29464196 PMCID: PMC5818551 DOI: 10.1523/eneuro.0042-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.
Collapse
|
66
|
Targowska-Duda KM, Kaczor AA, Jozwiak K, Arias HR. Molecular interactions of type I and type II positive allosteric modulators with the human α7 nicotinic acetylcholine receptor: an in silico study. J Biomol Struct Dyn 2018; 37:411-439. [PMID: 29363414 DOI: 10.1080/07391102.2018.1427634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The binding site locations and structural components for type I and type II positive allosteric modulators (PAMs) of the α7 nicotinic acetylcholine receptor (nAChR) have not been fully characterized yet. In this regard, homology models of the human α7 nAChR and hα7/m5-HT3A chimera, built using the crystal structure of the serotonin type 3A receptor (5-ΗΤ3ΑR), were used for molecular docking and molecular dynamics simulations to study the molecular interactions of selected type I (5-hydroxyindol, NS-1738, and LY-2087101) and type II (PNU-120596, PAM-2, and TBS-516) PAMs. The docking results indicate: (1) a site located in the extracellular domain (ECD) for type I PAMs such as NS-1738 and LY-2087101, but not for 5-HI; (2) an overlapping site in the ECD-transmembrane domain (TMD) junction for all studied PAMs. Additional docking results on the hα7/m5-HT3A chimera supported experimental results indicating that the ECD site might be relevant for type I PAM activity; and (3) two TMD sites, an intrasubunit site that recognizes type II PAMs, and an intersubunit pocket with high specificity for 5-HI (type I PAM). The in silico α7TSLMF mutant results support the view that M1-Ser223 and M3-Ile281 are key residues for the interaction of PAM-2 and PNU-120596 with the intrasubunit cavity. Our in silico results are in agreement with experimental data showing that the intrasubunit cavity is relevant for the activity of type II PAMs, and suggest that the ECD-TMD junction and intersubunit sites could be significant for the activity of type I PAMs.
Collapse
Affiliation(s)
| | - Agnieszka A Kaczor
- b Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab , Medical University of Lublin , Lublin , Poland.,c School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Krzysztof Jozwiak
- a Department of Biopharmacy , Medical University of Lublin , Lublin , Poland
| | - Hugo R Arias
- d Department of Basic Sciences , California Northstate University College of Medicine , Elk Grove , CA , USA
| |
Collapse
|
67
|
Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nat Commun 2018; 9:544. [PMID: 29416037 PMCID: PMC5803273 DOI: 10.1038/s41467-018-02996-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 02/05/2023] Open
Abstract
In meso crystallization of membrane proteins from lipidic mesophases is central to protein structural biology but limited to membrane proteins with small extracellular domains (ECDs), comparable to the water channels (3–5 nm) of the mesophase. Here we present a strategy expanding the scope of in meso crystallization to membrane proteins with very large ECDs. We combine monoacylglycerols and phospholipids to design thermodynamically stable ultra-swollen bicontinuous cubic phases of double-gyroid (Ia3d), double-diamond (Pn3m), and double-primitive (Im3m) space groups, with water channels five times larger than traditional lipidic mesophases, and showing re-entrant behavior upon increasing hydration, of sequences Ia3d→Pn3m→Ia3d and Pn3m→Im3m→Pn3m, unknown in lipid self-assembly. We use these mesophases to crystallize membrane proteins with ECDs inaccessible to conventional in meso crystallization, demonstrating the methodology on the Gloeobacter ligand-gated ion channel (GLIC) protein, and show substantial modulation of packing, molecular contacts and activation state of the ensued proteins crystals, illuminating a general strategy in protein structural biology. In meso crystallization of membrane proteins is limited to proteins with small extracellular domains (ECDs). Here, authors combine monoacylglycerols and phospholipids to design stable ultra-swollen bicontinuous cubic phases that allow in meso crystallization of proteins with large ECDs.
Collapse
|
68
|
Basak S, Gicheru Y, Samanta A, Molugu SK, Huang W, Fuente MLD, Hughes T, Taylor DJ, Nieman MT, Moiseenkova-Bell V, Chakrapani S. Cryo-EM structure of 5-HT 3A receptor in its resting conformation. Nat Commun 2018; 9:514. [PMID: 29410406 PMCID: PMC5802770 DOI: 10.1038/s41467-018-02997-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022] Open
Abstract
Serotonin receptors (5-HT3AR) directly regulate gut movement, and drugs that inhibit 5-HT3AR function are used to control emetic reflexes associated with gastrointestinal pathologies and cancer therapies. The 5-HT3AR function involves a finely tuned orchestration of three domain movements that include the ligand-binding domain, the pore domain, and the intracellular domain. Here, we present the structure from the full-length 5-HT3AR channel in the apo-state determined by single-particle cryo-electron microscopy at a nominal resolution of 4.3 Å. In this conformation, the ligand-binding domain adopts a conformation reminiscent of the unliganded state with the pore domain captured in a closed conformation. In comparison to the 5-HT3AR crystal structure, the full-length channel in the apo-conformation adopts a more expanded conformation of all the three domains with a characteristic twist that is implicated in gating. Serotonin receptor (5-HT3AR), a pentameric ligand-gated ion channel, regulates numerous gastrointestinal functions. Here the authors provide a cryo-electron microscopic structure from the full-length 5-HT3AR in the apo-state which corresponds to a resting conformation of the channel.
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Yvonne Gicheru
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Amrita Samanta
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Sudheer Kumar Molugu
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Maria la de Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Taylor Hughes
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Vera Moiseenkova-Bell
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4970, USA
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106-4970, USA. .,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4970, USA.
| |
Collapse
|
69
|
Nemecz Á, Hu H, Fourati Z, Van Renterghem C, Delarue M, Corringer PJ. Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel. PLoS Biol 2017; 15:e2004470. [PMID: 29281623 PMCID: PMC5760087 DOI: 10.1371/journal.pbio.2004470] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/09/2018] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD. Pentameric ligand-gated ion channels are an important class of receptors that are involved in many neurological diseases. They have been extensively studied but a full understanding of their mechanism of action has yet to be achieved. In an effort to bypass obstacles in the research of human receptors, bacterial versions have been used to characterize the family’s structure-function relationship. One key bacterial receptor, known as GLIC, has lead the way in structural resolution of various mechanistic states along the gating pathway, yet its activation by protons is significantly less understood than its human counterparts. To define the site(s) involved in proton gating, we systematically mutated all titratable residues near the pH50 of activation: Asp, Glu, and His. We determined that a previously established His residue in the transmembrane domain is structurally important but likely plays little or no role in proton gating. We instead found that proton activation is a complex multiple loci mechanism, with the key contribution stemming from the coupling interface between the extracellular and transmembrane domain, with E35 acting as a key proton-sensing residue.
Collapse
Affiliation(s)
- Ákos Nemecz
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Haidai Hu
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Zaineb Fourati
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Catherine Van Renterghem
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Unité Mixte de Recherche 3528 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Pierre-Jean Corringer
- Unité Récepteurs-Canaux, Unité Mixte de Recherche 3571 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
70
|
Delbart F, Brams M, Gruss F, Noppen S, Peigneur S, Boland S, Chaltin P, Brandao-Neto J, von Delft F, Touw WG, Joosten RP, Liekens S, Tytgat J, Ulens C. An allosteric binding site of the α7 nicotinic acetylcholine receptor revealed in a humanized acetylcholine-binding protein. J Biol Chem 2017; 293:2534-2545. [PMID: 29237730 PMCID: PMC5818190 DOI: 10.1074/jbc.m117.815316] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the β8-β9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.
Collapse
Affiliation(s)
- Florian Delbart
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Marijke Brams
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Fabian Gruss
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sam Noppen
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Steve Peigneur
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sandro Boland
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium
| | - Patrick Chaltin
- the Center for Innovation and Stimulation of Drug Discovery Leuven, Cistim Leuven vzw, 3001 Heverlee, Belgium.,the Center for Innovation and Stimulation of Drug Discovery Leuven and Center for Drug Design and Discovery, KU Leuven, 3001 Heverlee, Belgium
| | - Jose Brandao-Neto
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom, and
| | - Wouter G Touw
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Robbie P Joosten
- the Division of Biochemistry, Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Sandra Liekens
- the Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jan Tytgat
- the Laboratory of Toxicology and Pharmacology, Faculty of Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Chris Ulens
- From the Department of Cellular and Molecular Medicine, Laboratory of Structural Neurobiology, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium,
| |
Collapse
|
71
|
Gonzalez-Gutierrez G, Wang Y, Cymes GD, Tajkhorshid E, Grosman C. Chasing the open-state structure of pentameric ligand-gated ion channels. J Gen Physiol 2017; 149:1119-1138. [PMID: 29089419 PMCID: PMC5715906 DOI: 10.1085/jgp.201711803] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/14/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Members of the pentameric ligand-gated ion channel family have been crystallized in different conformations, including one in which the transmembrane pore is surprisingly wide. Gonzalez-Gutierrez et al. show that the open-channel conformation of animal members is more similar to the models with narrow pores. Remarkable advances have been made toward the structural characterization of ion channels in the last two decades. However, the unambiguous assignment of well-defined functional states to the obtained structural models has proved challenging. In the case of the superfamily of nicotinic-receptor channels (also referred to as pentameric ligand-gated ion channels [pLGICs]), for example, two different types of model of the open-channel conformation have been proposed on the basis of structures solved to resolutions better than 4.0 Å. At the level of the transmembrane pore, the open-state models of the proton-gated pLGIC from Gloeobacter violaceus (GLIC) and the invertebrate glutamate-gated Cl– channel (GluCl) are very similar to each other, but that of the glycine receptor (GlyR) is considerably wider. Indeed, the mean distances between the axis of ion permeation and the Cα atoms at the narrowest constriction of the pore (position −2′) differ by ∼2 Å in these two classes of model, a large difference when it comes to understanding the physicochemical bases of ion conduction and charge selectivity. Here, we take advantage of the extreme open-channel stabilizing effect of mutations at pore-facing position 9′. We find that the I9′A mutation slows down entry into desensitization of GLIC to the extent that macroscopic currents decay only slightly by the end of pH 4.5 solution applications to the extracellular side for several minutes. We crystallize (at pH 4.5) two variants of GLIC carrying this mutation and solve their structures to resolutions of 3.12 Å and 3.36 Å. Furthermore, we perform all-atom molecular dynamics simulations of ion permeation and picrotoxinin block, using the different open-channel structural models. On the basis of these results, we favor the notion that the open-channel structure of pLGICs from animals is much closer to that of the narrow models (of GLIC and GluCl) than it is to that of the GlyR.
Collapse
Affiliation(s)
| | - Yuhang Wang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Gisela D Cymes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Claudio Grosman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
72
|
Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics. PLoS Comput Biol 2017; 13:e1005784. [PMID: 29069080 PMCID: PMC5673239 DOI: 10.1371/journal.pcbi.1005784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/06/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate intercellular communication at synapses through the opening of an ion pore in response to the binding of a neurotransmitter. Despite the increasing availability of high-resolution structures of pLGICs, a detailed understanding of the functional isomerization from closed to open (gating) and back is currently missing. Here, we provide the first atomistic description of the transition from open to closed (un-gating) in the glutamate-gated chloride channel (GluCl) from Caenorhabditis Elegans. Starting with the active-state structure solved in complex with the neurotransmitter L-glutamate and the positive allosteric modulator (PAM) ivermectin, we analyze the spontaneous relaxation of the channel upon removal of ivermectin by explicit solvent/membrane Molecular Dynamics (MD) simulations. The μs-long trajectories support the conclusion that ion-channel deactivation is mediated by two distinct quaternary transitions, i.e. a global receptor twisting followed by the radial expansion (or blooming) of the extracellular domain. At variance with previous models, we show that pore closing is exclusively regulated by the global twisting, which controls the position of the β1-β2 loop relative to the M2-M3 loop at the EC/TM domain interface. Additional simulations with L-glutamate restrained to the crystallographic binding mode and ivermectin removed indicate that the same twisting isomerization is regulated by agonist binding at the orthosteric site. These results provide a structural model for gating in pLGICs and suggest a plausible mechanism for the pharmacological action of PAMs in this neurotransmitter receptor family. The simulated un-gating converges to the X-ray structure of GluCl resting state both globally and locally, demonstrating the predictive character of state-of-art MD simulations.
Collapse
|
73
|
Abstract
Agonists turn on receptors because they have a higher affinity for active versus resting conformations of the protein. Activation can occur by either of two pathways that connect to form a cycle: Agonists bind to resting receptors that then become active, or resting receptors activate and then bind agonists. We used mutations to construct endplate acetylcholine receptors (AChRs) having only one functional neurotransmitter-binding site and single-channel electrophysiology to measure independently binding constants for four different agonists, to both resting and active conformations of each site. For all agonists and sites, the total free energy change in each pathway was the same, confirming the activation cycle without external energy. Other results show that (i) there is no cooperativity between sites; (ii) agonist association is slower than diffusion in resting receptors but nearly diffusional in active receptors; (iii) whereas resting affinity is determined mainly by agonist association, active affinity is determined mainly by agonist dissociation; and (iv) at each site and for all agonists, receptor activation approximately doubles the agonist-binding free energy. We discuss a two-step mechanism for binding that involves diffusion and a local conformational change ("catch") that is modulated by receptor activation. The results suggest that binding to a resting site and the switch to high affinity are both integral parts of a single allosteric transition. We hypothesize that catch ensures proper signal recognition in complex chemical environments and that binding site compaction is a determinant of both resting and active affinity.
Collapse
|
74
|
Ghosh B, Tsao TW, Czajkowski C. A chimeric prokaryotic-eukaryotic pentameric ligand gated ion channel reveals interactions between the extracellular and transmembrane domains shape neurosteroid modulation. Neuropharmacology 2017; 125:343-352. [PMID: 28803966 PMCID: PMC5600277 DOI: 10.1016/j.neuropharm.2017.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are the targets of several clinical and endogenous allosteric modulators including anesthetics and neurosteroids. Molecular mechanisms underlying allosteric drug modulation are poorly understood. Here, we constructed a chimeric pLGIC by fusing the extracellular domain (ECD) of the proton-activated, cation-selective bacterial channel GLIC to the transmembrane domain (TMD) of the human ρ1 chloride-selective GABAAR, and tested the hypothesis that drug actions are regulated locally in the domain that houses its binding site. The chimeric channels were proton-gated and chloride-selective demonstrating the GLIC ECD was functionally coupled to the GABAρ TMD. Channels were blocked by picrotoxin and inhibited by pentobarbital, etomidate and propofol. The point mutation, ρ TMD W328M, conferred positive modulation and direct gating by pentobarbital. The data suggest that the structural machinery mediating general anesthetic modulation resides in the TMD. Proton-activation and neurosteroid modulation of the GLIC-ρ chimeric channels, however, did not simply mimic their respective actions on GLIC and GABAρ revealing that across domain interactions between the ECD and TMD play important roles in determining their actions. Proton-induced current responses were biphasic suggesting that the chimeric channels contain an additional proton sensor. Neurosteroid modulation of the GLIC-ρ chimeric channels by the stereoisomers, 5α-THDOC and 5β-THDOC, were swapped compared to their actions on GABAρ indicating that positive versus negative neurosteroid modulation is not encoded solely in the TMD nor by neurosteroid isomer structure but is dependent on specific interdomain connections between the ECD and TMD. Our data reveal a new mechanism for shaping neurosteroid modulation.
Collapse
Affiliation(s)
- Borna Ghosh
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA; Eli Lilly and Company, 1220 W Morris St, Indianapolis, IN 46221, USA
| | - Tzu-Wei Tsao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA; Physiology Training Program, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Cynthia Czajkowski
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
75
|
A possible desensitized state conformation of the human α 7 nicotinic receptor: A molecular dynamics study. Biophys Chem 2017; 229:99-109. [DOI: 10.1016/j.bpc.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 11/18/2022]
|
76
|
Changeux JP, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab 2017; 19 Suppl 1:4-21. [PMID: 28880476 DOI: 10.1111/dom.12959] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Animals
- Binding Sites/drug effects
- Dimerization
- Drug Discovery/trends
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacology
- Humans
- Ligand-Gated Ion Channels/agonists
- Ligand-Gated Ion Channels/antagonists & inhibitors
- Ligand-Gated Ion Channels/chemistry
- Ligand-Gated Ion Channels/metabolism
- Ligands
- Models, Molecular
- Protein Conformation/drug effects
- Protein Multimerization/drug effects
- Receptor Protein-Tyrosine Kinases/agonists
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Voltage-Gated Sodium Channels/chemistry
- Voltage-Gated Sodium Channels/metabolism
Collapse
Affiliation(s)
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, VIC 3052 Parkville, Australia
| |
Collapse
|
77
|
Ion BF, Wells MM, Chen Q, Xu Y, Tang P. Ketamine Inhibition of the Pentameric Ligand-Gated Ion Channel GLIC. Biophys J 2017; 113:605-612. [PMID: 28793215 DOI: 10.1016/j.bpj.2017.06.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ketamine inhibits pentameric ligand-gated ion channels (pLGICs), including the bacterial pLGIC from Gloeobacter violaceus (GLIC). The crystal structure of GLIC shows R-ketamine bound to an extracellular intersubunit cavity. Here, we performed molecular dynamics simulations of GLIC in the absence and presence of R- or S-ketamine. No stable binding of S-ketamine in the original cavity was observed in the simulations, largely due to its unfavorable access to residue D154, which provides important electrostatic interactions to stabilize R-ketamine binding. Contrary to the symmetric binding shown in the crystal structure, R-ketamine moved away from some of the binding sites and was bound to GLIC asymmetrically at the end of simulations. The asymmetric binding is consistent with the experimentally measured negative cooperativity of ketamine binding to GLIC. In the presence of R-ketamine, all subunits showed changes in structure and dynamics, irrespective of binding stability; the extracellular intersubunit cavity expanded and intersubunit electrostatic interactions involved in channel activation were altered. R-ketamine binding promoted a conformational shift toward closed GLIC. Conformational changes near the ketamine-binding site were propagated to the interface between the extracellular and transmembrane domains, and further to the pore-lining TM2 through two pathways: pre-TM1 and the β1-β2 loop. Both signaling pathways have been predicted previously using the perturbation-based Markovian transmission model. The study provides a structural and dynamics basis for the inhibitory modulation of ketamine on pLGICs.
Collapse
Affiliation(s)
- Bogdan F Ion
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marta M Wells
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiang Chen
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yan Xu
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pei Tang
- Departments of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
78
|
Nemecz Á, Prevost MS, Menny A, Corringer PJ. Emerging Molecular Mechanisms of Signal Transduction in Pentameric Ligand-Gated Ion Channels. Neuron 2017; 90:452-70. [PMID: 27151638 DOI: 10.1016/j.neuron.2016.03.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Nicotinic acetylcholine, serotonin type 3, γ-amminobutyric acid type A, and glycine receptors are major players of human neuronal communication. They belong to the family of pentameric ligand-gated ion channels, sharing a highly conserved modular 3D structure. Recently, high-resolution structures of both open- and closed-pore conformations have been solved for a bacterial, an invertebrate, and a vertebrate receptor in this family. These data suggest that a common gating mechanism occurs, coupling neurotransmitter binding to pore opening, but they also pinpoint significant differences among subtypes. In this Review, we summarize the structural and functional data in light of these gating models and speculate about their mechanistic consequences on ion permeation, pathological mutations, as well as functional regulation by orthosteric and allosteric effectors.
Collapse
Affiliation(s)
- Ákos Nemecz
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France
| | - Marie S Prevost
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Anaïs Menny
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France; Université Pierre et Marie Curie (UPMC), Cellule Pasteur, 75005 Paris, France
| | - Pierre-Jean Corringer
- Channel-Receptors Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR 3571, 75015 Paris, France.
| |
Collapse
|
79
|
Giastas P, Zouridakis M, Tzartos SJ. Understanding structure-function relationships of the human neuronal acetylcholine receptor: insights from the first crystal structures of neuronal subunits. Br J Pharmacol 2017; 175:1880-1891. [PMID: 28452148 DOI: 10.1111/bph.13838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
Nicotinic ACh receptors (nAChRs) are the best studied members of the superfamily of pentameric ligand-gated ion channels (pLGICs). Neuronal nAChRs regulate neuronal excitability and neurotransmitter release in the nervous system and form either homo- or hetero-pentameric complexes with various combinations of the 11 neuronal nAChR subunits (α2-7, α9, α10 and β2-4) known to exist in humans. In addition to their wide distribution in the nervous system, neuronal nAChRs have been also found in immune cells and many peripheral tissues. These nAChRs are important drug targets for neurological and neuropsychiatric diseases (e.g. Alzheimer's, schizophrenia) and substance addiction (e.g. nicotine), as well as in a variety of diseases such as chronic pain, auditory disorders and some cancers. To decipher the functional mechanisms of human nAChRs and develop efficient and specific therapeutic drugs, elucidation of their high-resolution structures is needed. Recent studies, including the X-ray crystal structures of the near-intact α4β2 nAChR and of the ligand-binding domains of the α9 and α2 subunits, have advanced our knowledge on the detailed structure of the ligand-binding sites formed between the same and different subunits and revealed many other functionally important interactions. The aim of this review is to highlight some of the structural and functional findings of these studies and to compare them with recent breakthrough findings on other pLGIC members and earlier data from their homologous ACh-binding proteins. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Petros Giastas
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | |
Collapse
|
80
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
81
|
Lev B, Murail S, Poitevin F, Cromer BA, Baaden M, Delarue M, Allen TW. String method solution of the gating pathways for a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2017; 114:E4158-E4167. [PMID: 28487483 PMCID: PMC5448215 DOI: 10.1073/pnas.1617567114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-energy gating pathways of the proton-activated bacterial GLIC channel. We describe stable wetted/open and dewetted/closed states, and uncover conformational changes in the agonist-binding extracellular domain, ion-conducting transmembrane domain, and gating interface that control communication between these domains. Transition analysis is used to compute free-energy surfaces that suggest allosteric pathways; stabilization with pH; and intermediates, including states that facilitate channel closing in the presence of an agonist. We describe a switching mechanism that senses proton binding by marked reorganization of subunit interface, altering the packing of β-sheets to induce changes that lead to asynchronous pore-lining M2 helix movements. These results provide molecular details of GLIC gating and insight into the allosteric mechanisms for the superfamily of pentameric ligand-gated channels.
Collapse
Affiliation(s)
- Bogdan Lev
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Samuel Murail
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, F-75005 Paris, France
| | - Frédéric Poitevin
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Brett A Cromer
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, F-75005 Paris, France
| | - Marc Delarue
- Department of Structural Biology and Chemistry, Institut Pasteur and UMR 3528 du CNRS, F-75015 Paris, France
| | - Toby W Allen
- School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| |
Collapse
|
82
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
83
|
Alqazzaz MA, Price KL, Lummis SCR. The Proton Responsiveness in the Extracellular Domain of GLIC Differs in the Presence of the ELIC Transmembrane Domain. Biochemistry 2017; 56:2134-2138. [PMID: 28383883 DOI: 10.1021/acs.biochem.6b00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prokaryotic homologues of Cys-loop receptors have proven to be useful in understanding their eukaryotic counterparts, but even the best studied of these, Gloeobacter ligand-gated ion channel (GLIC), is still not yet fully understood. GLIC is activated by protons with a pH50 between 5 and 6, implicating a histidine residue in its activation, but although a histidine residue (His11') in the pore-forming α-helix (M2) is known to be involved in gating, the His in the extracellular domain (ECD), His127, is not. Nevertheless, there is evidence from a GLIC-glycine chimera for a proton sensitive residue or region in the GLIC extracellular domain. Here we create a novel chimeric receptor with the ECD of GLIC and the transmembrane domain of ELIC (GELIC). Expression of this receptor in oocytes reveals proton activation, although the pH50 (6.7) differs from that of GLIC (5.4). Exploration of protonatable residues in the ECD reveals that the pKas of five Asp residues (31, 49, 91, 136, and 178) differ between the open and closed states of GLIC. Substitution of these residues with Ala or Asn shows somewhat similar effects for GLIC and GELIC in Asp91 mutants, but different effects for the others. Overall, the data suggest that protonation of residues in the ECD is a requirement for channel opening in GELIC but plays only a minor role in GLIC, where gating may be largely driven via protonation of the His residue in its pore.
Collapse
Affiliation(s)
- Mona A Alqazzaz
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| | - Kerry L Price
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| |
Collapse
|
84
|
Menny A, Lefebvre SN, Schmidpeter PA, Drège E, Fourati Z, Delarue M, Edelstein SJ, Nimigean CM, Joseph D, Corringer PJ. Identification of a pre-active conformation of a pentameric channel receptor. eLife 2017; 6. [PMID: 28294942 PMCID: PMC5398890 DOI: 10.7554/elife.23955] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching. We show that proton application causes a global compaction of the extracellular subunit interface, coupled to an outward motion of the M2-M3 loop near the channel gate. These movements are highly similar in lipid vesicles and detergent micelles. These reorganizations are essentially completed within 2 ms and occur without channel opening at low proton concentration, indicating that they report a pre-active intermediate state in the transition pathway toward activation. This provides a template to investigate the gating of eukaryotic neurotransmitter receptors, for which intermediate states also participate in activation. DOI:http://dx.doi.org/10.7554/eLife.23955.001 In the nervous system, proteins of the pLGIC family are found in the membrane that surrounds each neuron. These proteins have channels that can allow ions to pass through the membrane and are responsible for transmitting electrical signals from one neuron to the next. Small molecules called neurotransmitters interact with the pLGICs to open or close the ion channel. If the ability of the pLGIC channels to open is altered, it can lead to behavioral changes like addiction, or diseases such as schizophrenia or epilepsy. For a pLGIC channel to switch between the “open” and “closed” states, specific parts of the protein need to move in relation to each other. However, to study these transitions researchers have previously relied on comparing the three-dimensional structures of open and closed pLGICs extracted out of the cell membrane. Different techniques are needed to directly follow these movements within membranes. Bacteria also have proteins belonging to the pLGIC family, and Menny et al. have now investigated one such bacterial protein to understand how pLGICs open. First, a small fluorescent molecule that glows differently if the environment around it changes was attached to various parts of the bacterial channel. These fluorescent markers revealed how several parts of the protein move and they also made it possible to measure how quickly these movements take place. Some of these movements happen before the channel opens, suggesting that the activation of this pLGIC protein happens in stages and involves the protein adopting a temporary intermediate state. The next step will be to better understand the structure of the intermediate state, which could help us to understand how pLGICs work in the nervous systems of animals. In future this may aid the design of new drugs that can modify the activity of these channels in patients with neurological conditions or addictions. DOI:http://dx.doi.org/10.7554/eLife.23955.002
Collapse
Affiliation(s)
- Anaïs Menny
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur, Paris, France
| | - Solène N Lefebvre
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur, Paris, France
| | - Philipp Am Schmidpeter
- Departments of Anesthesiology, Physiology and Biophysics, Biochemistry, Weill Cornell Medicine, New York, United States
| | - Emmanuelle Drège
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zaineb Fourati
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3528, Centre National de la Recherche Scientifique, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3528, Centre National de la Recherche Scientifique, Paris, France
| | - Stuart J Edelstein
- Biologie Cellulaire de la Synapse, Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Crina M Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, Biochemistry, Weill Cornell Medicine, New York, United States
| | - Delphine Joseph
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
85
|
Elberson BW, Whisenant TE, Cortes DM, Cuello LG. A cost-effective protocol for the over-expression and purification of fully-functional and more stable Erwinia chrysanthemi ligand-gated ion channel. Protein Expr Purif 2017; 133:177-186. [PMID: 28279818 DOI: 10.1016/j.pep.2017.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/21/2017] [Accepted: 03/04/2017] [Indexed: 10/20/2022]
Abstract
The Erwinia chrysanthemi ligand-gated ion channel, ELIC, is considered an excellent structural and functional surrogate for the whole pentameric ligand-gated ion channel family. Despite its simplicity, ELIC is structurally capable of undergoing ligand-dependent activation and a concomitant desensitization process. To determine at the molecular level the structural changes underlying ELIC's function, it is desirable to produce large quantities of protein. This protein should be properly folded, fully-functional and amenable to structural determinations. In the current paper, we report a completely new protocol for the expression and purification of milligram quantities of fully-functional, more stable and crystallizable ELIC. The use of an autoinduction media and inexpensive detergents during ELIC extraction, in addition to the high-quality and large quantity of the purified channel, are the highlights of this improved biochemical protocol.
Collapse
Affiliation(s)
- Benjamin W Elberson
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6551, Lubbock, TX 79430, USA
| | - Ty E Whisenant
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6551, Lubbock, TX 79430, USA
| | - D Marien Cortes
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6551, Lubbock, TX 79430, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6551, Lubbock, TX 79430, USA.
| |
Collapse
|
86
|
Basak S, Schmandt N, Gicheru Y, Chakrapani S. Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. eLife 2017; 6:23886. [PMID: 28262093 PMCID: PMC5378477 DOI: 10.7554/elife.23886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Desensitization in pentameric ligand-gated ion channels plays an important role in regulating neuronal excitability. Here, we show that docosahexaenoic acid (DHA), a key ω−3 polyunsaturated fatty acid in synaptic membranes, enhances the agonist-induced transition to the desensitized state in the prokaryotic channel GLIC. We determined a 3.25 Å crystal structure of the GLIC-DHA complex in a potentially desensitized conformation. The DHA molecule is bound at the channel-periphery near the M4 helix and exerts a long-range allosteric effect on the pore across domain-interfaces. In this previously unobserved conformation, the extracellular-half of the pore-lining M2 is splayed open, reminiscent of the open conformation, while the intracellular-half is constricted, leading to a loss of both water and permeant ions. These findings, in combination with spin-labeling/EPR spectroscopic measurements in reconstituted-membranes, provide novel mechanistic details of desensitization in pentameric channels. DOI:http://dx.doi.org/10.7554/eLife.23886.001 The nerve cells (or neurons) in the brain communicate with each other by releasing chemicals called neurotransmitters that bind to ion channels on neighboring neurons. This ultimately causes ions to flow in or out of the receiving neuron through these ion channels; this ion flow determines how the neuron responds. One family of ion channels that is found at the junction between neurons, and between neurons and muscle fibers, is known as the pentameric ligand-gated ion channels (or pLGICs). These channels act as ‘gates’ that open to allow ions through them when a neurotransmitter binds to the channel. In addition to the open ‘active’ state, the channels can take on two different ‘inactive’ states that do not allow ions to pass through the channel: a closed (resting) state and a desensitized state (that is still bound to the neurotransmitter). Understanding how channels switch between these states is important for designing drugs that correct problems that cause the channels to work incorrectly. Problems that affect the desensitized state have been linked to neurological disorders such as epilepsy. Medically important molecules such as anesthetics and alcohols are thought to affect desensitization, and drugs that target desensitized ion channels may present ways of treating neurological disorders with fewer side effects. Docosahexaenoic acid (DHA) is an abundant lipid molecule that is present in the membranes of neurons. It is one of the key ingredients in fish oil supplements and is thought to enhance learning and memory. DHA affects the desensitization of pLGICs but it is not clear exactly how it does so. Basak et al. now show that DHA affects a bacterial pLGIC in the same way as it affects human channels – by enhancing desensitization. Using a technique called X-ray crystallography to analyze the channel while bound to DHA revealed a previously unobserved channel structure. The DHA molecule binds to a site at the edge of the channel and causes a change in its structure that leaves the upper part of the channel open while the lower part is constricted. Basak et al. predict that molecules such as anesthetics target this desensitized state. The next step will be to obtain the structures of bacterial and human pLGIC channels in a natural membrane environment. This will allow us to better understand the changes in structure that the channels go through as they transmit signals between neurons, and so help in the development of new treatments for neurological disorders. DOI:http://dx.doi.org/10.7554/eLife.23886.002
Collapse
Affiliation(s)
- Sandip Basak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Nicolaus Schmandt
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Yvonne Gicheru
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Sudha Chakrapani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, United States
| |
Collapse
|
87
|
Michałowski MA, Kraszewski S, Mozrzymas JW. Binding site opening by loop C shift and chloride ion-pore interaction in the GABAAreceptor model. Phys Chem Chem Phys 2017; 19:13664-13678. [DOI: 10.1039/c7cp00582b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Molecular dynamics simulations of the shut α1β2γ2GABAAheteropentamer receptor homology model reveal significant differences between intersubunit interfaces (ligand binding G1, G2 and non-binding) compared to homomeric receptor assemblies and possible ion interaction sites in the top part of the transmembrane domain (TMD).
Collapse
Affiliation(s)
- M. A. Michałowski
- Laboratory of Neuroscience
- Department of Biophysics
- Wrocław Medical University
- ul. Chałubińskiego 3a
- 50-358 Wrocław
| | - S. Kraszewski
- Department of Biomedical Engineering
- Faculty of Fundamental Problems of Technology
- Wroclaw University of Science and Technology
- Wyb. Wyspiańskiego 27
- 50-370 Wrocław
| | - J. W. Mozrzymas
- Laboratory of Neuroscience
- Department of Biophysics
- Wrocław Medical University
- ul. Chałubińskiego 3a
- 50-358 Wrocław
| |
Collapse
|
88
|
Discovery, synthesis, biological evaluation and structure-based optimization of novel piperidine derivatives as acetylcholine-binding protein ligands. Acta Pharmacol Sin 2017; 38:146-155. [PMID: 27917874 DOI: 10.1038/aps.2016.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
The homomeric α7 nicotinic receptor (α7 nAChR) is widely expressed in the human brain that could be activated to suppress neuroinflammation, oxidative stress and neuropathic pain. Consequently, a number of α7 nAChR agonists have entered clinical trials as anti-Alzheimer's or anti-psychotic therapies. However, high-resolution crystal structure of the full-length α7 receptor is thus far unavailable. Since acetylcholine-binding protein (AChBP) from Lymnaea stagnalis is most closely related to the α-subunit of nAChRs, it has been used as a template for the N-terminal domain of α-subunit of nAChR to study the molecular recognition process of nAChR-ligand interactions, and to identify ligands with potential nAChR-like activities.Here we report the discovery and optimization of novel acetylcholine-binding protein ligands through screening, structure-activity relationships and structure-based design. We manually screened in-house CNS-biased compound library in vitro and identified compound 1, a piperidine derivative, as an initial hit with moderate binding affinity against AChBP (17.2% inhibition at 100 nmol/L). During the 1st round of optimization, with compound 2 (21.5% inhibition at 100 nmol/L) as the starting point, 13 piperidine derivatives with different aryl substitutions were synthesized and assayed in vitro. No apparent correlation was demonstrated between the binding affinities and the steric or electrostatic effects of aryl substitutions for most compounds, but compound 14 showed a higher affinity (Ki=105.6 nmol/L) than nicotine (Ki=777 nmol/L). During the 2nd round of optimization, we performed molecular modeling of the putative complex of compound 14 with AChBP, and compared it with the epibatidine-AChBP complex. The results suggested that a different piperidinyl substitution might confer a better fit for epibatidine as the reference compound. Thus, compound 15 was designed and identified as a highly affinitive acetylcholine-binding protein ligand. In this study, through two rounds of optimization, compound 15 (Ki=2.8 nmol/L) has been identified as a novel, piperidine-based acetylcholine-binding protein ligand with a high affinity.
Collapse
|
89
|
Congreve M, Bortolato A, Brown G, Cooke R. Modeling and Design for Membrane Protein Targets. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017:145-188. [DOI: 10.1016/b978-0-12-409547-2.12358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
90
|
Baenziger JE, Domville JA, Therien JD. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors. CURRENT TOPICS IN MEMBRANES 2017; 80:95-137. [DOI: 10.1016/bs.ctm.2017.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
91
|
Gupta S, Chakraborty S, Vij R, Auerbach A. A mechanism for acetylcholine receptor gating based on structure, coupling, phi, and flip. J Gen Physiol 2016; 149:85-103. [PMID: 27932572 PMCID: PMC5217088 DOI: 10.1085/jgp.201611673] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 01/29/2023] Open
Abstract
Gupta et al. use single-channel electrophysiology to investigate the gating mechanism of acetylcholine receptor ion channels. They propose that channel opening starts at the M2–M3 linker and ligand-binding sites and proceeds through four brief intermediate conformations before ending with the collapse of a gate bubble. Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.
Collapse
Affiliation(s)
- Shaweta Gupta
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Srirupa Chakraborty
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Ridhima Vij
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
92
|
Sun J, Comeau JF, Baenziger JE. Probing the structure of the uncoupled nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:146-154. [PMID: 27871840 DOI: 10.1016/j.bbamem.2016.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
In the absence of activating anionic lipids and cholesterol, the nicotinic acetylcholine receptor (nAChR) from Torpedo adopts an uncoupled conformation that does not usually gate open in response to agonist. The uncoupled conformation binds both agonists and non-competitive channel blockers with a lower affinity than the desensitized state, consistent with both the extracellular agonist-binding and transmembrane channel-gating domains individually adopting resting-state like conformations. To test this hypothesis, we characterized the binding of the agonist, acetylcholine, and two fluorescent channel blockers, ethidium and crystal violet, to resting, desensitized and uncoupled nAChRs in reconstituted membranes. The measured Kd for acetylcholine binding to the uncoupled nAChR is similar to that for the resting state, confirming that the agonist binding site adopts a resting-state like conformation. Although both ethidium and crystal violet bind to the resting and desensitized channel pores with distinct affinities, no binding of either probe was detected to the uncoupled nAChR. Our data suggest that the transmembrane domain of the uncoupled nAChR adopts a conformation distinct from that of the resting and desensitized states. The lack of binding is consistent with a more constricted channel pore, possibly along the lines of what is observed in crystal structures of the prokaryotic homolog, ELIC.
Collapse
Affiliation(s)
- Jiayin Sun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5 Ottawa, ON, Canada
| | - J Frederique Comeau
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5 Ottawa, ON, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, K1H 8M5 Ottawa, ON, Canada.
| |
Collapse
|
93
|
Hénault CM, Baenziger JE. Functional characterization of two prokaryotic pentameric ligand-gated ion channel chimeras - role of the GLIC transmembrane domain in proton sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:218-227. [PMID: 27845033 DOI: 10.1016/j.bbamem.2016.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
With the long-term goal of using a chimeric approach to dissect the distinct lipid sensitivities and thermal stabilities of the pentameric ligand-gated ion channels (pLGIC), GLIC and ELIC, we constructed chimeras by cross-combining their extracellular (ECD) and transmembrane (TMD) domains. As expected, the chimera formed between GLIC-ECD and ELIC-TMD (GE) responded to protons, the agonist for GLIC, but not cysteamine, the agonist for ELIC, although GE exhibited a 25-fold decrease in proton-sensitivity relative to wild type. The chimera formed between ELIC-ECD and the GLIC-TMD (EG) was usually toxic, unless it contained a pore-lining Ile9'Ala gain-of-function mutation. No significant improvements in expression/toxicity were observed with extensive loop substitutions at the ECD/TMD interface. Surprisingly, oocytes expressing EG-I9'A responded to both the ELIC agonist, cysteamine and the GLIC agonist, protons - the latter at pH values ≤4.0. The cysteamine- and proton-induced currents in EG-I9'A were inhibited by the GLIC TMD pore blocker, amantadine. The cysteamine-induced response of EG-I9'A was also inhibited by protons at pH values down to 4.5, but potentiated at lower pH values. Proton-induced gating at low pH was not abolished by mutation of an intramembrane histidine residue previously implicated in GLIC TMD function. We show that the TMD plays a major role governing the thermal stability of a pLGIC, and identify three distinct mechanisms by which agonists and protons influence the gating of the EG chimera. A structural basis for the impaired function of GE is suggested.
Collapse
Affiliation(s)
- Camille M Hénault
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
94
|
Two-dimensional crystallization of the mouse serotonin 5-HT 3A receptor. Micron 2016; 92:19-24. [PMID: 27825023 DOI: 10.1016/j.micron.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/23/2022]
Abstract
The mouse serotonin 5-HT3A receptor is a homo-pentameric ligand-gated ion channel (pLGIC) mediating fast excitatory neurotransmission in the central nervous system. The molecular mechanism of ion permeation of 5-HT3A receptors triggered by the neurotransmitter serotonin is not yet fully understood. The recent X-ray structure of the mouse serotonin 5-HT3A receptor in complex with a stabilizing nanobody revealed for the first time the entire structure of a mammalian pLGIC in detergent. Structural information of the receptor in a lipid bilayer however is still limited primarily due to the lack of 2D crystals of the receptor in a lipid bilayer. Here we present our results on the formation and improvement of diffracting 2D crystals of the mouse 5-HT3A by limited proteolysis and addition of conformational nanobodies.
Collapse
|
95
|
Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine. Proc Natl Acad Sci U S A 2016; 113:E6696-E6703. [PMID: 27791038 DOI: 10.1073/pnas.1603101113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8-β9 loop in the extracellular ligand-binding domain. The β8-β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8-β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors.
Collapse
|
96
|
Corradi J, Bouzat C. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol Pharmacol 2016; 90:288-99. [PMID: 27190210 DOI: 10.1124/mol.116.104240] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.
Collapse
Affiliation(s)
- Jeremías Corradi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, CONICET/UNS, Bahía Blanca, Argentina
| |
Collapse
|
97
|
Burgos CF, Yévenes GE, Aguayo LG. Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol Pharmacol 2016; 90:318-25. [PMID: 27401877 PMCID: PMC4998662 DOI: 10.1124/mol.116.105726] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023] Open
Abstract
Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology (C.F.B., L.G.A.), and Laboratory of Neuropharmacology (G.E.Y.), Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
98
|
Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations. Nat Commun 2016; 7:12575. [PMID: 27578633 PMCID: PMC5013691 DOI: 10.1038/ncomms12575] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Protein conformational changes are at the heart of cell functions, from signalling to ion transport. However, the transient nature of the intermediates along transition pathways hampers their experimental detection, making the underlying mechanisms elusive. Here we retrieve dynamic information on the actual transition routes from principal component analysis (PCA) of structurally-rich ensembles and, in combination with coarse-grained simulations, explore the conformational landscapes of five well-studied proteins. Modelling them as elastic networks in a hybrid elastic-network Brownian dynamics simulation (eBDIMS), we generate trajectories connecting stable end-states that spontaneously sample the crystallographic motions, predicting the structures of known intermediates along the paths. We also show that the explored non-linear routes can delimit the lowest energy passages between end-states sampled by atomistic molecular dynamics. The integrative methodology presented here provides a powerful framework to extract and expand dynamic pathway information from the Protein Data Bank, as well as to validate sampling methods in general. Protein conformational changes are key to a wide range of cellular functions but remain difficult to access experimentally. Here the authors describe eBDIMS, a novel approach to predict intermediates observed in structural transition pathways from experimental ensembles.
Collapse
|
99
|
Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell 2016; 166:1084-1102. [DOI: 10.1016/j.cell.2016.08.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022]
|
100
|
Schmandt N, Velisetty P, Chalamalasetti SV, Stein RA, Bonner R, Talley L, Parker MD, Mchaourab HS, Yee VC, Lodowski DT, Chakrapani S. A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. ACTA ACUST UNITED AC 2016; 146:323-40. [PMID: 26415570 PMCID: PMC4586589 DOI: 10.1085/jgp.201511478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent high resolution structures of several pentameric ligand-gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron-electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand-gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand-gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.
Collapse
Affiliation(s)
- Nicolaus Schmandt
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Phanindra Velisetty
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Sreevatsa V Chalamalasetti
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Ross Bonner
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Lauren Talley
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Mark D Parker
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Vivien C Yee
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - David T Lodowski
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Sudha Chakrapani
- Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 Department of Neuroscience, Department of Physiology and Biophysics, Department of Biochemistry, and Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|