51
|
Dixit AB, Sharma D, Tripathi M, Srivastava A, Paul D, Prakash D, Sarkar C, Kumar K, Banerjee J, Chandra PS. Genome-wide DNA Methylation and RNAseq Analyses Identify Aberrant Signalling Pathways in Focal Cortical Dysplasia (FCD) Type II. Sci Rep 2018; 8:17976. [PMID: 30568293 PMCID: PMC6299275 DOI: 10.1038/s41598-018-35892-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/01/2018] [Indexed: 01/26/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common pathologies associated with drug-resistant epilepsy (DRE). The pharmacological targets remain obscured, as the molecular mechanisms underlying FCD are unclear. Implications of epigenetically modulated aberrant gene expression in disease progression are reported in various DRE pathologies except FCD. Here we performed genome-wide CpG-DNA methylation profiling by methylated DNA immunoprecipitation (MeDIP) microarray and RNA sequencing (RNAseq) on cortical tissues resected from FCD type II patients. A total of 19088 sites showed altered DNA methylation in all the CpG islands. Of these, 5725 sites were present in the promoter regions, of which 176 genes showed an inverse correlation between methylation and gene expression. Many of these 176 genes were found to belong to a cohesive network of physically interacting proteins linked to several cellular functions. Pathway analysis revealed significant enrichment of receptor tyrosine kinases (RTK), EGFR, PDGFRA, NTRK3, and mTOR signalling pathways. This is the first study that investigates the epigenetic signature associated with FCD type II pathology. The candidate genes and pathways identified in this study may play a crucial role in the regulation of the pathogenic mechanisms of epileptogenesis associated with FCD type II pathologies.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India. .,Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Devina Sharma
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Manjari Tripathi
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurology, AIIMS, New Delhi, India
| | | | - Debasmita Paul
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Deepak Prakash
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Krishan Kumar
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Biophysics, AIIMS, New Delhi, India
| | - P Sarat Chandra
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India. .,Department of Neurosurgery, AIIMS, New Delhi, India.
| |
Collapse
|
52
|
Bianchi FT, Berto GE, Di Cunto F. Impact of DNA repair and stability defects on cortical development. Cell Mol Life Sci 2018; 75:3963-3976. [PMID: 30116853 PMCID: PMC11105354 DOI: 10.1007/s00018-018-2900-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Maintenance of genome stability is a crucial cellular function for normal mammalian development and physiology. However, despite the general relevance of this process, genome stability alteration due to genetic or non-genetic conditions has a particularly profound impact on the developing cerebral cortex. In this review, we will analyze the main pathways involved in maintenance of genome stability, the consequences of their alterations with regard to central nervous system development, as well as the possible molecular and cellular basis of this specificity.
Collapse
Affiliation(s)
- Federico T Bianchi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.
| | - Gaia E Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
53
|
Xu P, Liu Q, Xie Y, Shi X, Li Y, Peng M, Guo H, Sun R, Li J, Hong Y, Liu X, Xu G. Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2-mediated antioxidant pathway. Redox Biol 2018; 18:158-172. [PMID: 30014904 PMCID: PMC6068089 DOI: 10.1016/j.redox.2018.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022] Open
Abstract
Cellular oxidative stress plays a vital role in the pathological process of neural damage in cerebral ischemia/reperfusion (I/R). The breast cancer susceptibility protein 1 (BRCA1), a tumor suppressor, can modulate cellular antioxidant response and DNA repair. Yet the role of BRCA1 in cerebral I/R injury has not been explored. In this study, we observed that BRCA1 was mainly expressed in neurons and was up-regulated in response to I/R insult. Overexpression of BRCA1 attenuated reactive oxygen species production and lipid peroxidation. Enhanced BRCA1 expression promoted DNA double strand break repair through non-homologous end joining pathway. These effects consequently led to neuronal cell survival and neurological recovery. Mechanically, BRCA1 can interact with the nuclear factor (erythroid-derived 2)-like 2 (NRF2) through BRCA1 C-terminal (BRCT) domain. The cross-talk between BRCT and NRF2 activated the NRF2/Antioxidant Response Element signaling pathway and thus protected injured neurons during cerebral I/R. In conclusion, enhanced BRCA1 after cerebral I/R injury may attenuate or prevent neural damage from I/R via NRF2-mediated antioxidant pathway. The finding may provide a potential therapeutic target against ischemic stroke. BRCA1 was up-regulated after cerebral ischemia/reperfusion injury. Up-regulated BRCA1 attenuated cerebral ischemia/reperfusion injury and cognitive impairment. BRCA1 binding to NRF2 via BRCT domain triggered NRF2-mediated antioxidant response. BRCA1 promoted DSBs repair via non-homologous end joining-pathway.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaolei Shi
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Neurology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Rui Sun
- Department of Neurology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ye Hong
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
54
|
Principal Component Analysis-Based Unsupervised Feature Extraction Applied to Single-Cell Gene Expression Analysis. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-95933-7_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Zhu Q, Hoong N, Aslanian A, Hara T, Benner C, Heinz S, Miga KH, Ke E, Verma S, Soroczynski J, Yates JR, Hunter T, Verma IM. Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer. Mol Cell 2018; 70:842-853.e7. [PMID: 29861157 DOI: 10.1016/j.molcel.2018.04.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/22/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.
Collapse
Affiliation(s)
- Quan Zhu
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nien Hoong
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Aaron Aslanian
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Toshiro Hara
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christopher Benner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sven Heinz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen H Miga
- Center for Biomolecular Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eugene Ke
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sachin Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jan Soroczynski
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Abstract
Oxidative damage of DNA has recently been indicated as one of the strong pathogenic agent in Alzheimer's disease (AD). Oxidative stress induces numerous signaling pathways, including DNA damage response (DDR), associated with the breast cancer type 1 susceptibility protein (BRCA1) protein, known to date from numerous reports in the cancer field. In this Viewpoint, we discuss the latest discoveries related to the role of BRCA1 in the death of neurons in AD. We underline the role of BRCA1 in the development of neurons and speculate on the consequences of BRCA1 dysfunction in the dying brain. In general, this Viewpoint is in a line with several recent reports on the processes and players common at the molecular and genetic level for neurodegenerative and cancerous diseases.
Collapse
Affiliation(s)
- M. Wezyk
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - C. Zekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
57
|
Kitami K, Kitami M, Kaku M, Wang B, Komatsu Y. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development. PLoS Genet 2018; 14:e1007340. [PMID: 29718910 PMCID: PMC5951594 DOI: 10.1371/journal.pgen.1007340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/14/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022] Open
Abstract
Craniofacial abnormalities, including facial skeletal defects, comprise approximately one-third of all birth defects in humans. Since most bones in the face derive from cranial neural crest cells (CNCCs), which are multipotent stem cells, craniofacial bone disorders are largely attributed to defects in CNCCs. However, it remains unclear how the niche of CNCCs is coordinated by multiple gene regulatory networks essential for craniofacial bone development. Here we report that tumor suppressors breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) are required for craniofacial bone development in mice. Disruption of Brca1 in CNCC-derived mesenchymal cells, but not in epithelial-derived cells, resulted in craniofacial skeletal defects. Whereas osteogenic differentiation was normal, both osteogenic proliferation and survival were severely attenuated in Brca1 mutants. Brca1-deficient craniofacial skeletogenic precursors displayed increased DNA damage and enhanced cell apoptosis. Importantly, the craniofacial skeletal defects were sufficiently rescued by superimposing p53 null alleles in a neural crest-specific manner in vivo, indicating that BRCA1 deficiency induced DNA damage, cell apoptosis, and that the pathogenesis of craniofacial bone defects can be compensated by inactivation of p53. Mice lacking Brca2 in CNCCs, but not in epithelial-derived cells, also displayed abnormalities resembling the craniofacial skeletal malformations observed in Brca1 mutants. Our data shed light on the importance of BRCA1/BRCA2 function in CNCCs during craniofacial skeletal formation.
Collapse
Affiliation(s)
- Kohei Kitami
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States of America
- Division of Orthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Kitami
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States of America
| | - Masaru Kaku
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States of America
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Graduate Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, United States of America
- Graduate Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
| |
Collapse
|
58
|
Wang Q, Xu L, Chen P, Xu Z, Qiu J, Ge J, Yu K, Zhuang J. Brca1 Is Upregulated by 5-Aza-CdR and Promotes DNA Repair and Cell Survival, and Inhibits Neurite Outgrowth in Rat Retinal Neurons. Int J Mol Sci 2018; 19:ijms19041214. [PMID: 29673145 PMCID: PMC5979323 DOI: 10.3390/ijms19041214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/05/2023] Open
Abstract
Previous studies have reported that Brca1 acts as a “hinge” in the development of the central nervous system (CNS). However, the precise role of Brca1 in rat retinal neurons remains unclear. Here, we found that Brca1 is developmentally downregulated and silenced in adult retina. Brca1 was upregulated in rat primary retinal neurons by 5-Aza-2′-deoxycytidine (5-Aza-CdR) treatment. Moreover, the upregulation of Brca1 by both 5-Aza-CdR and transgenic Brca1 promoted genomic stability and improved cell viability following exposure to ionizing radiation (IR). Furthermore, transgenic Brca1 significantly inhibited neurite outgrowth of retinal neurons, which implicates that Brca1 silencing promotes cell differentiation and determines neuronal morphology. Taken together, our results reveal a biological function of Brca1 in retinal development.
Collapse
Affiliation(s)
- Qiyun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Lijun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Zhuojun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
59
|
Sengodan SK, K H S, Nadhan R, Srinivas P. Regulation of epithelial to mesenchymal transition by BRCA1 in breast cancer. Crit Rev Oncol Hematol 2018; 123:74-82. [PMID: 29482782 DOI: 10.1016/j.critrevonc.2018.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Reports till its discovery has proven multiple facets of Breast Cancer type 1 susceptibility gene (BRCA1) from nucleus to cytoplasm; from DNA repair to drug resistance; from Homologous Recombination (HR) to Ubiquitination; from breast to brain; from cancer to HIV and many of the roles are still unexplored. One of the recent attractions of BRCA1 is its role in regulating breast cancer metastasis though the exact mechanism is poorly understood. In this review, we will discuss the molecular interactions between BRCA1 and the key molecules of Epithelial to Mesenchymal Transition (EMT) associated with metastasis, its associated drug resistance and the possible treatment strategy for BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Sreelatha K H
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Revathy Nadhan
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 5, Rajiv Gandhi Centre for Biotechnology, Thycaud P O, Poojappura, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
60
|
Jackson KC, Tarpey MD, Valencia AP, Iñigo MR, Pratt SJ, Patteson DJ, McClung JM, Lovering RM, Thomson DM, Spangenburg EE. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet. FASEB J 2018; 32:3070-3084. [PMID: 29401626 DOI: 10.1096/fj.201700464r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The breast cancer type 1 susceptibility protein (Brca1) is a regulator of DNA repair in mammary gland cells; however, recent cell culture evidence suggests that Brca1 influences other processes, including those in nonmammary cells. In this study, we sought to determine whether Brca1 is necessary for metabolic regulation of skeletal muscle using a novel in vivo mouse model. We developed an inducible skeletal muscle-specific Brca1knockout (BRCA1KOsmi) model to test whether Brca1 expression is necessary for maintenance of metabolic function of skeletal muscle when exposed to a high-fat diet (HFD). Our data demonstrated that deletion of Brca1 prevented HFD-induced alterations in glucose and insulin tolerance. Irrespective of diet, BRCA1KOsmi mice exhibited significantly lower ADP-stimulated complex I mitochondrial respiration rates compared to age-matched wild-type (WT) mice. The data show that Brca1 has the ability to localize to the mitochondria in skeletal muscle and that BRCA1KOsmi mice exhibit higher whole-body CO2 production, respiratory exchange ratio, and energy expenditure, compared with the WT mice. Our results demonstrate that loss of Brca1 in skeletal muscle leads to dysregulated metabolic function, characterized by decreased mitochondrial respiration. Thus, any condition that results in loss of Brca1 function could induce metabolic imbalance in skeletal muscle.-Jackson, K. C., Tarpey, M. D., Valencia, A. P., Iñigo, M. R., Pratt, S. J., Patteson, D. J., McClung, J. M., Lovering, R. M., Thomson, D. M., Spangenburg, E. E. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet.
Collapse
Affiliation(s)
- Kathryn C Jackson
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Michael D Tarpey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ana P Valencia
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Melissa R Iñigo
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Stephen J Pratt
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Daniel J Patteson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Joseph M McClung
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; and
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | - Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina, USA; and
| |
Collapse
|
61
|
Bianchi FT, Tocco C, Pallavicini G, Liu Y, Vernì F, Merigliano C, Bonaccorsi S, El-Assawy N, Priano L, Gai M, Berto GE, Chiotto AMA, Sgrò F, Caramello A, Tasca L, Ala U, Neri F, Oliviero S, Mauro A, Geley S, Gatti M, Di Cunto F. Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly. Cell Rep 2017; 18:1674-1686. [PMID: 28199840 PMCID: PMC5318669 DOI: 10.1016/j.celrep.2017.01.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/16/2016] [Accepted: 01/22/2017] [Indexed: 11/16/2022] Open
Abstract
Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development.
Collapse
Affiliation(s)
- Federico Tommaso Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| | - Chiara Tocco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gianmarco Pallavicini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Yifan Liu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Chiara Merigliano
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Silvia Bonaccorsi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy
| | - Nadia El-Assawy
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy
| | - Lorenzo Priano
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Gaia Elena Berto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Alessandra Maria Adelaide Chiotto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Francesco Sgrò
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Alessia Caramello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Laura Tasca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Francesco Neri
- Human Genetics Foundation (HuGeF), via Nizza 52, 10126 Torino, Italy
| | | | - Alessandro Mauro
- Department of Neurology and Neurorehabilitation, San Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, 28824 Piancavallo (VB), Italy; Department of Neuroscience, University of Torino, 10126 Torino, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maurizio Gatti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University, 00185 Rome, Italy; Institute of Molecular Biology and Pathology (IBPM), CNR, 00185 Rome, Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano (TO), Italy.
| |
Collapse
|
62
|
Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:E9645-E9654. [PMID: 29042514 PMCID: PMC5692545 DOI: 10.1073/pnas.1707151114] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To extract critical information from Alzheimer’s disease (AD) postmortem brains that may otherwise be lost, we chose to screen epigenetic signatures. Epigenome analysis is a robust methodology in terms of its cell type and gene specificity, suitability for high-throughput analysis, and resistance to postmortem degradation. Analysis of the neuron-specific methylome revealed a variety of differentially methylated genes, including BRCA1. We demonstrate the pathogenic relevance of compromised genomic integrity by analyzing the neuroprotective function of BRCA1 against amyloid β (Aβ)-induced DNA double-strand breaks. Furthermore, insolubility of BRCA1 under the presence of aggregated tau suggested the reason for its dysfunction despite enhanced expression. We provide insight into the pathomechanism of AD and demonstrate the potential of screening neuron-specific methylome to reveal new pathogenic contributors. Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by pathology of accumulated amyloid β (Aβ) and phosphorylated tau proteins in the brain. Postmortem degradation and cellular complexity within the brain have limited approaches to molecularly define the causal relationship between pathological features and neuronal dysfunction in AD. To overcome these limitations, we analyzed the neuron-specific DNA methylome of postmortem brain samples from AD patients, which allowed differentially hypomethylated region of the BRCA1 promoter to be identified. Expression of BRCA1 was significantly up-regulated in AD brains, consistent with its hypomethylation. BRCA1 protein levels were also elevated in response to DNA damage induced by Aβ. BRCA1 became mislocalized to the cytoplasm and highly insoluble in a tau-dependent manner, resulting in DNA fragmentation in both in vitro cellular and in vivo mouse models. BRCA1 dysfunction under Aβ burden is consistent with concomitant deterioration of genomic integrity and synaptic plasticity. The Brca1 promoter region of AD model mice brain was similarly hypomethylated, indicating an epigenetic mechanism underlying BRCA1 regulation in AD. Our results suggest deterioration of DNA integrity as a central contributing factor in AD pathogenesis. Moreover, these data demonstrate the technical feasibility of using neuron-specific DNA methylome analysis to facilitate discovery of etiological candidates in sporadic neurodegenerative diseases.
Collapse
|
63
|
A BRCA1-Dependent DNA Damage Response in the Regenerating Adult Peripheral Nerve Milieu. Mol Neurobiol 2017; 55:4051-4067. [PMID: 28585187 DOI: 10.1007/s12035-017-0574-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
It is not generally appreciated that DNA repair machinery has a critical role in the remodeling of neurons that adopt a regenerative phenotype. We identified that breast cancer 1 (BRCA1)-dependent DNA activity, previously well known to repair cancer cells, is active in adult peripheral neurons and Schwann cells during their injury and regeneration response. Temporary or partial loss of BRCA1 or blockade of its intraneuronal nuclear entry impaired outgrowth in neurons in vitro and impacted nerve regeneration and functional recovery in vivo. We found that distal axonal injury triggered a BRCA1-dependent DNA damage response (DDR) signal in neuronal soma. BRCA1 also supported an enabling transcriptional program of injured neurons and supporting Schwann cells. Our findings indicate that BRCA1 offers prominent functional roles in neurons and glial cells including key support for their physical and molecular integrity. Since BRCA1 mutations are common in humans, this function of BRCA1 in peripheral neurons and their glial partners warrants attention.
Collapse
|
64
|
Connecting the dots: Overlaps between autism and cancer suggest possible common mechanisms regarding signaling pathways related to metabolic alterations. Med Hypotheses 2017; 103:118-123. [PMID: 28571796 DOI: 10.1016/j.mehy.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Common features between autism spectrum disorders (ASDs) and cancer have been discerned using methodologies from a number of disciplines, including genetics, bioinformatics and epidemiological studies. To understand such apparent overlaps between these two conditions and the mechanisms that may underlie these linkages, it is important to look at their multi-level systems context. Here we discuss ASDs and cancer linkages across levels ranging from genes to pathways and systems, as well as from the vantage points of mechanism and of clinical and epidemiological studies. Review of existing findings yielded evidence that ASDs and cancer overlap extensively in signal transduction pathways that are involved in metabolic processes. We hypothesize that further studies focusing on illuminating the relationships between ASDs and cancer, specifically with regard to signaling pathways that regulate metabolic activities, could help shed new insight on these conditions and develop treatment strategies that, by targeting underlying mechanisms, may be more efficient and effective for both conditions.
Collapse
|
65
|
Chen HR, Juan HC, Wong YH, Tsai JW, Fann MJ. Cdk12 Regulates Neurogenesis and Late-Arising Neuronal Migration in the Developing Cerebral Cortex. Cereb Cortex 2017; 27:2289-2302. [PMID: 27073218 DOI: 10.1093/cercor/bhw081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA damage response (DDR) pathways are critical for ensuring that replication stress and various types of DNA lesion do not perturb production of neural cells during development. Cdk12 maintains genomic stability by regulating expression of DDR genes. Mutant mice in which Cdk12 is conditionally deleted in neural progenitor cells (NPCs) die after birth and exhibit microcephaly with a thinner cortical plate and an aberrant corpus callosum. We show that NPCs of mutant mice accumulate at G2 and M phase, and have lower expression of DDR genes, more DNA double-strand breaks and increased apoptosis. In addition to there being fewer neurons, there is misalignment of layers IV-II neurons and the presence of abnormal axonal tracts of these neurons, suggesting that Cdk12 is also required for the migration of late-arising cortical neurons. Using in utero electroporation, we demonstrate that the migrating mutant cells remain within the intermediate zone and fail to adopt a bipolar morphology. Overexpression of Cdk5 brings about a partially restoration of the neurons reaching layers IV-II in the mutant mice. Thus, Cdk12 is crucial to the repair of DNA damage during the proliferation of NPCs and is also central to the proper migration of late-arising neurons.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| | - Hsien-Chia Juan
- Department of Life Sciences and Institute of Genome Sciences
| | | | - Jin-Wu Tsai
- Brain Research Center.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences.,Brain Research Center
| |
Collapse
|
66
|
Noristani HN, Gerber YN, Sabourin JC, Le Corre M, Lonjon N, Mestre-Frances N, Hirbec HE, Perrin FE. RNA-Seq Analysis of Microglia Reveals Time-Dependent Activation of Specific Genetic Programs following Spinal Cord Injury. Front Mol Neurosci 2017; 10:90. [PMID: 28420963 PMCID: PMC5376598 DOI: 10.3389/fnmol.2017.00090] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Neurons have inherent competence to regrow following injury, although not spontaneously. Spinal cord injury (SCI) induces a pronounced neuroinflammation driven by resident microglia and infiltrating peripheral macrophages. Microglia are the first reactive glial population after SCI and participate in recruitment of monocyte-derived macrophages to the lesion site. Both positive and negative influence of microglia and macrophages on axonal regeneration had been reported after SCI, raising the issue whether their response depends on time post-lesion or different lesion severity. We analyzed molecular alterations in microglia at several time-points after different SCI severities using RNA-sequencing. We demonstrate that activation of microglia is time-dependent post-injury but is independent of lesion severity. Early transcriptomic response of microglia after SCI involves proliferation and neuroprotection, which is then switched to neuroinflammation at later stages. Moreover, SCI induces an autologous microglial expression of astrocytic markers with over 6% of microglia expressing glial fibrillary acidic protein and vimentin from as early as 72 h post-lesion and up to 6 weeks after injury. We also identified the potential involvement of DNA damage and in particular tumor suppressor gene breast cancer susceptibility gene 1 (Brca1) in microglia after SCI. Finally, we established that BRCA1 protein is specifically expressed in non-human primate spinal microglia and is upregulated after SCI. Our data provide the first transcriptomic analysis of microglia at multiple stages after different SCI severities. Injury-induced microglia expression of astrocytic markers at RNA and protein levels demonstrates novel insights into microglia plasticity. Finally, increased microglia expression of BRCA1 in rodents and non-human primate model of SCI, suggests the involvement of oncogenic proteins after CNS lesion.
Collapse
Affiliation(s)
- Harun N Noristani
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France
| | - Yannick N Gerber
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Jean-Charles Sabourin
- "Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| | - Marine Le Corre
- Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nicolas Lonjon
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Department of Neurosurgery, Gui de Chauliac HospitalMontpellier, France
| | - Nadine Mestre-Frances
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France
| | - Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, Institut National de la Santé et de la Recherche Médicale U1191Montpellier, France
| | - Florence E Perrin
- MMDN, University of Montpellier; EPHE, Institut National de la Santé et de la Recherche Médicale U1198Montpellier, France.,Institut National de la Santé et de la Recherche Médicale U1051Montpellier, France.,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque CountryBilbao, Spain
| |
Collapse
|
67
|
Laporte MH, Chatellard C, Vauchez V, Hemming FJ, Deloulme JC, Vossier F, Blot B, Fraboulet S, Sadoul R. Alix is required during development for normal growth of the mouse brain. Sci Rep 2017; 7:44767. [PMID: 28322231 PMCID: PMC5359572 DOI: 10.1038/srep44767] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Alix (ALG-2 interacting protein X) drives deformation and fission of endosomal and cell surface membranes and thereby intervenes in diverse biological processes including cell proliferation and apoptosis. Using embryonic fibroblasts of Alix knock-out mice, we recently demonstrated that Alix is required for clathrin-independent endocytosis. Here we show that mice lacking Alix suffer from severe reduction in the volume of the brain which affects equally all regions examined. The cerebral cortex of adult animals shows normal layering but is reduced in both medio-lateral length and thickness. Alix controls brain size by regulating its expansion during two distinct developmental stages. Indeed, embryonic surface expansion of the Alix ko cortex is reduced because of the loss of neural progenitors during a transient phase of apoptosis occurring between E11.5 and E12.5. Subsequent development of the Alix ko cortex occurs normally until birth, when Alix is again required for the post-natal radial expansion of the cortex through its capacity to allow proper neurite outgrowth. The need of Alix for both survival of neural progenitor cells and neurite outgrowth is correlated with its role in clathrin-independent endocytosis in neural progenitors and at growth cones. Thus Alix-dependent, clathrin independent endocytosis is essential for controlling brain size.
Collapse
Affiliation(s)
- Marine H. Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Victoria Vauchez
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Fiona J. Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Jean-Christophe Deloulme
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Frédérique Vossier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France
- Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
68
|
Shimada M, Matsuzaki F, Kato A, Kobayashi J, Matsumoto T, Komatsu K. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly. PLoS One 2016; 11:e0158236. [PMID: 27367050 PMCID: PMC4930206 DOI: 10.1371/journal.pone.0158236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/12/2016] [Indexed: 11/19/2022] Open
Abstract
The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly.
Collapse
Affiliation(s)
- Mikio Shimada
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, Center for Developmental Biology, RIKEN, Kobe, Japan
| | - Akihiro Kato
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Tomohiro Matsumoto
- Department of Radiation System Biology, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
69
|
A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep 2016; 6:24953. [PMID: 27112667 PMCID: PMC4844952 DOI: 10.1038/srep24953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems.
Collapse
|
70
|
Wen Y, Alshikho MJ, Herbert MR. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling. PLoS One 2016; 11:e0153329. [PMID: 27055244 PMCID: PMC4824422 DOI: 10.1371/journal.pone.0153329] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging—they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)—and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process “calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK” is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG’s category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic conditions and heart diseases. ASDs may thus arise, or emerge, from underlying vulnerabilities related to pleiotropic genes associated with pervasively important molecular mechanisms, vulnerability to environmental input and multiple systemic co-morbidities.
Collapse
Affiliation(s)
- Ya Wen
- TRANSCEND Research, Neurology Department, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
- Higher Synthesis Foundation, Cambridge, Massachusetts, United States of America
- * E-mail: (YW); (MRH)
| | - Mohamad J. Alshikho
- TRANSCEND Research, Neurology Department, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Martha R. Herbert
- TRANSCEND Research, Neurology Department, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
- Higher Synthesis Foundation, Cambridge, Massachusetts, United States of America
- * E-mail: (YW); (MRH)
| |
Collapse
|
71
|
Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol 2015; 16:263. [PMID: 26607552 PMCID: PMC4659173 DOI: 10.1186/s13059-015-0827-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. Results Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. Conclusions These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0827-6) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Noristani HN, Sabourin JC, Gerber YN, Teigell M, Sommacal A, Vivanco MDM, Weber M, Perrin FE. Brca1 is expressed in human microglia and is dysregulated in human and animal model of ALS. Mol Neurodegener 2015; 10:34. [PMID: 26227626 PMCID: PMC4521418 DOI: 10.1186/s13024-015-0023-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/25/2015] [Indexed: 02/07/2023] Open
Abstract
Background There is growing evidence that microglia are key players in the pathological process of amyotrophic lateral sclerosis (ALS). It is suggested that microglia have a dual role in motoneurone degeneration through the release of both neuroprotective and neurotoxic factors. Results To identify candidate genes that may be involved in ALS pathology we have analysed at early symptomatic age (P90), the molecular signature of microglia from the lumbar region of the spinal cord of hSOD1G93A mice, the most widely used animal model of ALS. We first identified unique hSOD1G93A microglia transcriptomic profile that, in addition to more classical processes such as chemotaxis and immune response, pointed toward the potential involvement of the tumour suppressor gene breast cancer susceptibility gene 1 (Brca1). Secondly, comparison with our previous data on hSOD1G93A motoneurone gene profile substantiated the putative contribution of Brca1 in ALS. Finally, we established that Brca1 protein is specifically expressed in human spinal microglia and is up-regulated in ALS patients. Conclusions Overall, our data provide new insights into the pathogenic concept of a non-cell-autonomous disease and the involvement of microglia in ALS. Importantly, the identification of Brca1 as a novel microglial marker and as possible contributor in both human and animal model of ALS may represent a valid therapeutic target. Moreover, our data points toward novel research strategies such as investigating the role of oncogenic proteins in neurodegenerative diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0023-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harun Najib Noristani
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France.
| | - Jean Charles Sabourin
- "Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain.
| | - Yannick Nicolas Gerber
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France. .,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain.
| | - Marisa Teigell
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France.
| | - Andreas Sommacal
- Kantonspital St. Gallen. FachMuskelzentrum/ALS clinic, St. Gallen, Switzerland.
| | - Maria dM Vivanco
- CIC bioGUNE, Cell Biology & Stem Cells Unit, Technological Park of Bizkaia, Derio, Spain.
| | - Markus Weber
- Kantonspital St. Gallen. FachMuskelzentrum/ALS clinic, St. Gallen, Switzerland.
| | - Florence Evelyne Perrin
- Institute for Neurosciences of Montpellier (INM), INSERM U1051, 80, rue Augustin Fliche, 34091, Montpellier, Cedex 5, France. .,"Integrative Biology of Neurodegeneration", IKERBASQUE Basque Foundation for Science and Neuroscience Department, University of the Basque Country, Bilbao, Spain. .,Department "Biologie-Mécanismes du Vivant" Faculty of Science, University of Montpellier, Montpellier, France.
| |
Collapse
|
73
|
Pulvers JN, Journiac N, Arai Y, Nardelli J. MCPH1: a window into brain development and evolution. Front Cell Neurosci 2015; 9:92. [PMID: 25870538 PMCID: PMC4376118 DOI: 10.3389/fncel.2015.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/28/2015] [Indexed: 12/21/2022] Open
Abstract
The development of the mammalian cerebral cortex involves a series of mechanisms: from patterning, progenitor cell proliferation and differentiation, to neuronal migration. Many factors influence the development of the cerebral cortex to its normal size and neuronal composition. Of these, the mechanisms that influence the proliferation and differentiation of neural progenitor cells are of particular interest, as they may have the greatest consequence on brain size, not only during development but also in evolution. In this context, causative genes of human autosomal recessive primary microcephaly, such as ASPM and MCPH1, are attractive candidates, as many of them show positive selection during primate evolution. MCPH1 causes microcephaly in mice and humans and is involved in a diverse array of molecular functions beyond brain development, including DNA repair and chromosome condensation. Positive selection of MCPH1 in the primate lineage has led to much insight and discussion of its role in brain size evolution. In this review, we will present an overview of MCPH1 from these multiple angles, and whilst its specific role in brain size regulation during development and evolution remain elusive, the pieces of the puzzle will be discussed with the aim of putting together the full picture of this fascinating gene.
Collapse
Affiliation(s)
| | - Nathalie Journiac
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| | - Yoko Arai
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité Paris, France
| | - Jeannette Nardelli
- U1141 Inserm Paris, France ; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141 Paris, France
| |
Collapse
|
74
|
Abstract
A quintessential trait of stem cells is embedded in their ability to self-renew without incurring DNA damage as a result of genome replication. One key self-renewal factor is the nucleolar GTP-binding protein nucleostemin (also known as guanine-nucleotide-binding protein-like 3, GNL3, in invertebrate species). Several studies have recently pointed to an unexpected role of nucleostemin in safeguarding the genome integrity of stem and cancer cells. Since its discovery, the predominant presence of nucleostemin in the nucleolus has led to the notion that it might function in the card-carrying event of the nucleolus--the biogenesis of ribosomes. As tantalizing as this might be, a ribosomal role of nucleostemin is refuted by evidence from recent studies, which argues that nucleostemin depletion triggers a primary event of DNA damage in S phase cells that then leads to ribosomal perturbation. Furthermore, there have been conflicting reports regarding the p53 dependency of nucleostemin activity and the cell cycle arrest profile of nucleostemin-depleted cells. In this Commentary, I propose a model that explains how the many contradictory observations surrounding nucleostemin can be reconciled and suggest that this protein might not be as multi-tasking as has been previously perceived. The story of nucleostemin highlights the complexity of the underlying molecular events associated with the appearance of any cell biological phenotype and also signifies a new understanding of the genome maintenance program in stem cells.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|