51
|
Forsythe A, Fontaine N, Bissonnette J, Hayashi B, Insuk C, Ghosh S, Kam G, Wong A, Lausen C, Xu J, Cheeptham N. Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings. Sci Rep 2022; 12:9895. [PMID: 35701553 PMCID: PMC9198084 DOI: 10.1038/s41598-022-14223-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudogymnoascus destructans (Pd) is the causative agent of white-nose syndrome, which has resulted in the death of millions of bats in North America (NA) since 2006. Based on mortalities in eastern NA, the westward spread of infections likely poses a significant threat to western NA bats. To help prevent/reduce Pd infections in bats in western NA, we isolated bacteria from the wings of wild bats and screened for inhibitory activity against Pd. In total, we obtained 1,362 bacterial isolates from 265 wild bats of 13 species in western Canada. Among the 1,362 isolates, 96 showed inhibitory activity against Pd based on a coculture assay. The inhibitory activities varied widely among these isolates, ranging from slowing fungal growth to complete inhibition. Interestingly, host bats containing isolates with anti-Pd activities were widely distributed, with no apparent geographic or species-specific pattern. However, characteristics of roosting sites and host demography showed significant associations with the isolation of anti-Pd bacteria. Specifically, anthropogenic roosts and swabs from young males had higher frequencies of anti-Pd bacteria than those from natural roosts and those from other sex and age-groups, respectively. These anti-Pd bacteria could be potentially used to help mitigate the impact of WNS. Field trials using these as well as additional microbes from future screenings are needed in order to determine their effectiveness for the prevention and treatment against WNS.
Collapse
Affiliation(s)
- Adrian Forsythe
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Nick Fontaine
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Julianna Bissonnette
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Brandon Hayashi
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Chadabhorn Insuk
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Soumya Ghosh
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.,Department of Genetics, Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Gabrielle Kam
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Aaron Wong
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada
| | - Cori Lausen
- Wildlife Conservation Society Canada, P.O. Box 606, Kaslo, BC, V0G 1M0, Canada.
| | - Jianping Xu
- Department of Biology, Faculty of Science, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| | - Naowarat Cheeptham
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, V2C 08C, Canada.
| |
Collapse
|
52
|
Martins RA, Greenspan SE, Medina D, Buttimer S, Marshall VM, Neely WJ, Siomko S, Lyra ML, Haddad CFB, São-Pedro V, Becker CG. Signatures of functional bacteriome structure in a tropical direct-developing amphibian species. Anim Microbiome 2022; 4:40. [PMID: 35672870 PMCID: PMC9172097 DOI: 10.1186/s42523-022-00188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Host microbiomes may differ under the same environmental conditions and these differences may influence susceptibility to infection. Amphibians are ideal for comparing microbiomes in the context of disease defense because hundreds of species face infection with the skin-invading microbe Batrachochytrium dendrobatidis (Bd), and species richness of host communities, including their skin bacteria (bacteriome), may be exceptionally high. We conducted a landscape-scale Bd survey of six co-occurring amphibian species in Brazil’s Atlantic Forest. To test the bacteriome as a driver of differential Bd prevalence, we compared bacteriome composition and co-occurrence network structure among the six focal host species.
Results
Intensive sampling yielded divergent Bd prevalence in two ecologically similar terrestrial-breeding species, a group with historically low Bd resistance. Specifically, we detected the highest Bd prevalence in Ischnocnema henselii but no Bd detections in Haddadus binotatus. Haddadus binotatus carried the highest bacteriome alpha and common core diversity, and a modular network partitioned by negative co-occurrences, characteristics associated with community stability and competitive interactions that could inhibit Bd colonization.
Conclusions
Our findings suggest that community structure of the bacteriome might drive Bd resistance in H. binotatus, which could guide microbiome manipulation as a conservation strategy to protect diverse radiations of direct-developing species from Bd-induced population collapses.
Collapse
|
53
|
Microbial Diversity of the Chinese Tiger Frog (Hoplobatrachus rugulosus) on Healthy versus Ulcerated Skin. Animals (Basel) 2022; 12:ani12101241. [PMID: 35625087 PMCID: PMC9137582 DOI: 10.3390/ani12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As amphibians’ skin is highly sensitive to the environment, skin defects such as ulceration may pose a particular threat to them. Our study has found a stark difference in the microbial communities between healthy and ulcerated Hoplobatrachus rugulosus skin. The proportion and type of bacteria differed between the two groups, and we suggest that ulceration on the skin may lead to changes in skin microbial communities. The functional pathways of skin microbes may be influenced by ulceration on the skin surface of H. rugulosus. We also found that Vogesella is more abundant in healthy H. rugulosus, which may be a potential probiotic candidate for the reduction or removal of pathogens. Abstract The Chinese tiger frog (Hoplobatrachus rugulosus) is extensively farmed in southern China. Due to cramped living conditions, skin diseases are prevalent among unhealthy tiger frogs which thereby affects their welfare. In this study, the differences in microbiota present on healthy versus ulcerated H. rugulosus skin were examined using 16S rRNA sequences. Proteobacteria were the dominant phylum on H. rugulosus skin, but their abundance was greater on the healthy skin than on the ulcerated skin. Rhodocyclaceae and Comamonadaceae were the most dominant families on the healthy skin, whereas Moraxellaceae was the most dominant family on the ulcerated skin. The abundance of these three families was different between the groups. Acidovorax was the most dominant genus on the healthy skin, whereas Acinetobacter was the most dominant genus on the ulcerated skin, and its abundance was greater on the ulcerated skin than on the healthy skin. Moreover, the genes related to the Kyoto Encyclopedia of Genes and Genomes pathways of levels 2–3, especially those genes that are involved in cell motility, flagellar assembly, and bacterial chemotaxis in the skin microbiota, were found to be greater on the healthy skin than on the ulcerated skin, indicating that the function of skin microbiota was affected by ulceration. Overall, the composition, abundance, and function of skin microbial communities differed between the healthy and ulcerated H. rugulosus skin. Our results may assist in developing measures to combat diseases in H. rugulosus.
Collapse
|
54
|
Li Z, Li A, Dai W, Leng H, Liu S, Jin L, Sun K, Feng J. Skin Microbiota Variation Among Bat Species in China and Their Potential Defense Against Pathogens. Front Microbiol 2022; 13:808788. [PMID: 35432245 PMCID: PMC9009094 DOI: 10.3389/fmicb.2022.808788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.
Collapse
Affiliation(s)
- Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
55
|
Bates KA, Sommer U, Hopkins KP, Shelton JMG, Wierzbicki C, Sergeant C, Tapley B, Michaels CJ, Schmeller DS, Loyau A, Bosch J, Viant MR, Harrison XA, Garner TWJ, Fisher MC. Microbiome function predicts amphibian chytridiomycosis disease dynamics. MICROBIOME 2022; 10:44. [PMID: 35272699 PMCID: PMC8908643 DOI: 10.1186/s40168-021-01215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.
Collapse
Affiliation(s)
- Kieran A Bates
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| | - Ulf Sommer
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kevin P Hopkins
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Jennifer M G Shelton
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Claudia Wierzbicki
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Christopher Sergeant
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Benjamin Tapley
- ZSL London Zoo, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | | | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Adeline Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Jaime Bosch
- IMIB Biodiversity Research Institute (CSIC-University of Oviedo), 33600, Mieres, Spain
| | - Mark R Viant
- NERC Biomolecular Analysis Facility - Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4DQ, UK
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Matthew C Fisher
- MRC Centre for GlobaI Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
56
|
Sultana S, Khan MN, Hossain MS, Dai J, Rahman MS, Salimullah M. Community Structure and Functional Annotations of the Skin Microbiome in Healthy and Diseased Catfish, Heteropneustes fossilis. Front Microbiol 2022; 13:856014. [PMID: 35295300 PMCID: PMC8918984 DOI: 10.3389/fmicb.2022.856014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
The skin mucosa of fish serves as a primary barrier against pathogens. In lesion sites in diseased fish, the mucosal barrier is expected to be compromised, with a substantial presence of potential pathogens. An understanding of the skin microbiome and its functional repertoire would provide important insights into host-microbe interactions, which has important implications for prophylactic measures in aquaculture. This study revealed the skin microbiomes and their functional annotations from healthy and diseased stinging catfish (Heteropneustes fossilis) based on 16S rRNA metagenomics. The OTUs consisted of four major phyla, Proteobacteria, Bacteroidota, Actinobacteriota and Firmicutes. Among members of the predominant phyla, Proteobacteria were rich in healthy fishes, but Bacteroidota and Firmicutes were significantly differentiated in healthy and diseased fish. The diversified microbiome was high in the skin of healthy fishes and did not significantly differ from that of the diseased groups. At the genus level, Pseudomonas showed the highest abundance in healthy fish but was nearly absent in diseased fish, whereas Flavobacterium showed the highest abundance in diseased fish. Linear discriminant analysis identified two phyla (Bacteroidota, Firmicutes) and two genera (Flavobacterium, Allorhizobium) that were consistently identified in diseased fishes. Functional prediction analysis specified that the genes related to physiological functions such as metabolism, immune and digestive systems and environmental adaptations could be highly expressed in diseased fishes. The present study indicates that the compositions, richness and functions of the bacterial community could influence the health status of cultured stinging catfish. Aquaculture-associated pathogenic bacteria may be identified, and preventive measures can be taken for the surveillance of fish health.
Collapse
Affiliation(s)
- Shirin Sultana
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Md. Nasir Khan
- Fisheries Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | | | - Jingcheng Dai
- School of Life Sciences and Technology, Wuhan Polytechnique University, Wuhan, China
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, University of Dhaka, Dhaka, Bangladesh
| | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
57
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
58
|
Host microbiome responses to the Snake Fungal Disease pathogen (Ophidiomyces ophidiicola) are driven by changes in microbial richness. Sci Rep 2022; 12:3078. [PMID: 35197501 PMCID: PMC8866498 DOI: 10.1038/s41598-022-07042-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Dermatophytic pathogens are a source of disturbance to the host microbiome, but the temporal progression of these disturbances is unclear. Here, we determined how Snake Fungal Disease, caused by Ophidiomyces ophidiicola, resulted in disturbance to the host microbiome. To assess disease effects on the microbiome, 22 Common Watersnakes (Nerodia sipedon) were collected and half were inoculated with O. ophidiicola. Epidermal swabs were collected weekly for use in microbiome and pathogen load characterization. For the inoculated treatment only, we found a significant effect of disease progression on microbial richness and Shannon diversity consistent with the intermediate disturbance hypothesis. When explicitly accounting for differences in assemblage richness, we found that β-diversity among snakes was significantly affected by the interaction of time and treatment group, with assemblages becoming more dissimilar across time in the inoculated, but not the control group. Also, differences between treatments in average microbiome composition became greater with time, but this interactive effect was not evident when accounting for assemblage richness. These results suggest that changes in composition of the host microbiome associated with disease largely occur due to changes in microbial richness related to disease progression.
Collapse
|
59
|
Jiang H, Luo S, Zhou J, Huang W, Li L, Zhang X, He J, Chen J. Skin Microbiota Was Altered in Crocodile Lizards (Shinisaurus crocodilurus) With Skin Ulcer. Front Vet Sci 2022; 9:817490. [PMID: 35237680 PMCID: PMC8884271 DOI: 10.3389/fvets.2022.817490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 02/02/2023] Open
Abstract
Skin diseases commonly affect reptiles, but their relationships to the closely related skin microbiome are not well-understood. In recent years, both the wild and captive populations of the crocodile lizard, a Class I protected endangered animal in China, have suffered serious skin diseases that hamper the rescue and release projects for their conservation. This study conducted a detailed prevalence investigation of a major dermatosis characterized by foot skin ulcer in crocodile lizards. It should be noticed that skin ulcer has been prevalent in both captive and wild populations. There was positive correlation between skin ulcer and temperature, while no significant relationship between skin ulcer and humidity, sex, and age. We further studied the relationship between skin ulcer and the skin microbiota using meta-taxonomics. Results showed that the skin microbiota of crocodile lizards was significantly different from those of the environmental microbial communities, and that skin microbiota had a significant relationship with skin ulcer despite the impact of environment. Both bacterial and fungal communities on the ulcerated skin were significantly changed, which was characterized by lower community diversity and different dominant microbes. Our findings provide an insight into the relationship between skin microbiota and skin disease in reptile, serving as a reference for dermatological etiology in wildlife conservation.
Collapse
Affiliation(s)
- Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuyi Luo
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenzhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiasong He
- Guangxi Daguishan Crocodile Lizard National Nature Reserve, Hezhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Jinping Chen
| |
Collapse
|
60
|
Chen MY, Kueneman JG, González A, Humphrey G, Knight R, McKenzie VJ. Predicting fungal infection rate and severity with skin-associated microbial communities on amphibians. Mol Ecol 2022; 31:2140-2156. [PMID: 35076975 DOI: 10.1111/mec.16372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
Pathogen success (risk and severity) is influenced by host-associated microbiota, but the degree to which variation in microbial community traits predict future infection presence/absence (risk) and load (severity) for the host is unknown. We conducted a time-series experiment by sampling the skin-associated bacterial communities of five amphibian species before and after exposure to the fungal pathogen, Batrachochytrium dendrobaditis (Bd). We ask whether microbial community traits are predictors of, or are affected by, Bd infection risk and intensity. Our results show that richness of putative Bd-inhibitory bacteria strongly predicts infection risk, while the proportion of putative Bd-inhibitory bacteria predicts future infection intensity. Variation in microbial community composition is high across time and individual, and bacterial prevalence is low. Our findings demonstrate how ecological community traits of host-associated microbiota may be used to predict infection risk by pathogenic microbes.
Collapse
Affiliation(s)
- Melissa Y Chen
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| | - Jordan G Kueneman
- Smithsonian Tropical Research Institute, Luis Clement Avenue, Bldg. 401 Tupper, Balboa Ancon, Panama, Republic of Panama
| | - Antonio González
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Greg Humphrey
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, Bioengineering and Computer Science and Engineering, and Center for Microbiome Innovation, University of California, Gilman Drive, La Jolla, San Diego, CA, 92093, USA
| | - Valerie J McKenzie
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N-122, UCB 334, Boulder, CO, 80309, USA
| |
Collapse
|
61
|
Couch CE, Epps CW. Host, microbiome, and complex space: applying population and landscape genetic approaches to gut microbiome research in wild populations. J Hered 2022; 113:221-234. [PMID: 34983061 DOI: 10.1093/jhered/esab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 11/14/2022] Open
Abstract
In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.
Collapse
Affiliation(s)
- Claire E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Clinton W Epps
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
62
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
63
|
Buttimer S, Hernández-Gómez O, Rosenblum EB. Skin bacterial metacommunities of San Francisco Bay Area salamanders are structured by host genus and habitat quality. FEMS Microbiol Ecol 2021; 97:6464136. [PMID: 34918086 DOI: 10.1093/femsec/fiab162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Host-associated microbial communities can influence physiological processes of macroorganisms, including contributing to infectious disease resistance. For instance, some bacteria that live on amphibian skin produce antifungal compounds that inhibit two lethal fungal pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Therefore, differences in microbiome composition among host species or populations within a species can contribute to variation in susceptibility to Bd/Bsal. This study applies 16S rRNA sequencing to characterize the skin bacterial microbiomes of three widespread terrestrial salamander genera native to the western United States. Using a metacommunity structure analysis, we identified dispersal barriers for these influential bacteria between salamander families and localities. We also analyzed the effects of habitat characteristics such as percent natural cover and temperature seasonality on the microbiome. We found that certain environmental variables may influence the skin microbial communities of some salamander genera more strongly than others. Each salamander family had a somewhat distinct community of putative anti-Bd skin bacteria, suggesting that salamanders may select for a functional assembly of cutaneous symbionts that could differ in its ability to protect these amphibians from disease. Our observations raise the need to consider host identity and environmental heterogeneity during the selection of probiotics to treat wildlife diseases.
Collapse
Affiliation(s)
- Shannon Buttimer
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,Department of Biological Sciences - The University of Alabama, Tuscaloosa, AL, U.S.A
| | - Obed Hernández-Gómez
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A.,School of Health and Natural Sciences - Dominican University of California, San Rafael, CA, U.S.A
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management - The University of California, Berkeley, Berkeley, CA, U.S.A
| |
Collapse
|
64
|
Susser AL, Kralj S, Rosenblatt C. Co-revolving topological defects in a nematic liquid crystal. SOFT MATTER 2021; 17:9616-9623. [PMID: 34622261 PMCID: PMC8573773 DOI: 10.1039/d1sm01124c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A patterned surface defect of strength m = +1 and its associated disclination lines can decompose into a pair of surface defects and disclination lines of strength m = +1/2. For a negative dielectric anisotropy liquid crystal subjected to an applied ac electric field E, these half-integer defects are observed to wobble azimuthally for E > than some threshold field and, for sufficiently large fields, to co-revolve antipodally around a central point approximately midway between the two defects. This behavior is elucidated experimentally as a function of applied field strength E and frequency ν, where the threshold field for full co-revolution scales as ν1/2. Concurrently, nematic electrohydrodynamic instabilities were investigated. A complete field vs. frequency "phase diagram" compellingly suggests that the induced fluctuations and eventual co-revolutions of the ordinarily static defects are coupled strongly to-and driven by-the presence of the hydrodynamic instability. The observed behaviour suggests a Lehmann-like mechanism that drives the co-revolution.
Collapse
Affiliation(s)
- Adam L Susser
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia and Jožef Stefan Institute, Koroška cesta 160, SI-2000 Maribor, P.O. Box 3000, SI-1000 Ljubljana, Slovenia
| | - Charles Rosenblatt
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
65
|
Weitzman CL, Rostama B, Thomason CA, May M, Belden LK, Hawley DM. Experimental test of microbiome protection across pathogen doses reveals importance of resident microbiome composition. FEMS Microbiol Ecol 2021; 97:6385755. [PMID: 34626186 DOI: 10.1093/femsec/fiab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
The commensal microbes inhabiting a host tissue can interact with invading pathogens and host physiology in ways that alter pathogen growth and disease manifestation. Prior work in house finches (Haemorhous mexicanus) found that resident ocular microbiomes were protective against conjunctival infection and disease caused by a relatively high dose of Mycoplasma gallisepticum. Here, we used wild-caught house finches to experimentally examine whether protective effects of the resident ocular microbiome vary with the dose of invading pathogen. We hypothesized that commensal protection would be strongest at low M. gallisepticum inoculation doses because the resident microbiome would be less disrupted by invading pathogen. Our five M. gallisepticum dose treatments were fully factorial with an antibiotic treatment to perturb resident microbes just prior to M. gallisepticum inoculation. Unexpectedly, we found no indication of protective effects of the resident microbiome at any pathogen inoculation dose, which was inconsistent with the prior work. The ocular bacterial communities at the beginning of our experiment differed significantly from those previously reported in local wild-caught house finches, likely causing this discrepancy. These variable results underscore that microbiome-based protection in natural systems can be context dependent, and natural variation in community composition may alter the function of resident microbiomes in free-living animals.
Collapse
Affiliation(s)
- Chava L Weitzman
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Bahman Rostama
- Department of Biomedical Sciences, University of New England, Biddeford - 04005, ME, USA
| | - Courtney A Thomason
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA.,Division of Remediation, Tennessee Department of Environment and Conservation, Oak Ridge - 37830, TN, USA
| | - Meghan May
- Department of Biomedical Sciences, University of New England, Biddeford - 04005, ME, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
66
|
Becker MH, Brophy JAN, Barrett K, Bronikowski E, Evans M, Glassey E, Kaganer AW, Klocke B, Lassiter E, Meyer AJ, Muletz-Wolz CR, Fleischer RC, Voigt CA, Gratwicke B. Genetically modifying skin microbe to produce violacein and augmenting microbiome did not defend Panamanian golden frogs from disease. ISME COMMUNICATIONS 2021; 1:57. [PMID: 37938636 PMCID: PMC9723765 DOI: 10.1038/s43705-021-00044-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 04/21/2023]
Abstract
We designed two probiotic treatments to control chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) on infected Panamanian golden frogs (Atelopus zeteki), a species that is thought to be extinct in the wild due to Bd. The first approach disrupted the existing skin microbe community with antibiotics then exposed the frogs to a core golden frog skin microbe (Diaphorobacter sp.) that we genetically modified to produce high titers of violacein, a known antifungal compound. One day following probiotic treatment, the engineered Diaphorobacter and the violacein-producing pathway could be detected on the frogs but the treatment failed to improve frog survival when exposed to Bd. The second approach exposed frogs to the genetically modified bacterium mixed into a consortium with six other known anti-Bd bacteria isolated from captive A. zeteki, with no preliminary antibiotic treatment. The consortium treatment increased the frequency and abundance of three probiotic isolates (Janthinobacterium, Chryseobacterium, and Stenotrophomonas) and these persisted on the skin 4 weeks after probiotic treatment. There was a temporary increase in the frequency and abundance of three other probiotics isolates (Masillia, Serratia, and Pseudomonas) and the engineered Diaphorobacter isolate, but they subsequently disappeared from the skin. This treatment also failed to reduce frog mortality upon exposure.
Collapse
Affiliation(s)
- Matthew H Becker
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
- Liberty University Department of Biology and Chemistry, Lynchburg, VA, USA
| | - Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ed Bronikowski
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Matthew Evans
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa W Kaganer
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
| | - Blake Klocke
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Elliot Lassiter
- Smithsonian's National Zoo and Conservation Biology Institute Reptile Discovery Center, Washington, DC, USA
| | - Adam J Meyer
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carly R Muletz-Wolz
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genetics, Washington, DC, 20001, USA
| | - Robert C Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Conservation Genetics, Washington, DC, 20001, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA, USA.
| |
Collapse
|
67
|
Chimetto Tonon LA, Rua C, Crnkovic CM, Bernardi DI, Pires Junior OR, Haddad CFB, Pedrosa CSG, Souza LRQ, Rehen SK, de Azevedo GPR, Thompson CC, Thompson FL, Berlinck RGS. Microbiome associated with the tetrodotoxin-bearing anuran Brachycephalus pitanga. Toxicon 2021; 203:139-146. [PMID: 34653444 DOI: 10.1016/j.toxicon.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022]
Abstract
The genus Brachycephalus includes small species of aposematic anurans known as microendemic, occurring in the mountains of the Atlantic Forest. Brachycephalus ephippium, B. nodoterga and B. pernix have been reported to contain the neurotoxin tetrodotoxin in skin and viscera. The biological conservation of several Brachycephalus species is currently threatened by climate change, deforestation, and the pandemic caused by the fungus Batrachochytrium dendrobatidis (Bd). Despite the well-known importance of amphibians' associated bacteria in the defensive role against pathogens, there is still a poor understanding of amphibian microbiome composition. The present study investigated the composition of B. pitanga microbial community and the presence of TTX in the host and in cultures of bacterial isolates, using a combination of metagenomics, bacterial culture isolation, mass spectrometry and metabolomic analyses. Results of culture-dependent and -independent analyses characterized the microbial communities associated with the skin and viscera of B. pitanga. Mass spectrometry analysis indicated the presence of TTX in host tissues, while bacterial production of TTX was not observed under the experimental conditions used in this investigation. This is the first report confirming the occurrence of TTX in B. pitanga.
Collapse
Affiliation(s)
- Luciane A Chimetto Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil.
| | - Cintia Rua
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Camila M Crnkovic
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil; Departamento de Tecnologia Bioquímico-Farmacêutica (FBT), Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Osmindo R Pires Junior
- Laboratório de Toxinologia, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | | | | | - Stevens K Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Gustavo P R de Azevedo
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Fabiano L Thompson
- Instituto de Biologia, SAGE-COPPE, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil.
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
68
|
Nava-González B, Suazo-Ortuño I, López PB, Maldonado-López Y, Lopez-Toledo L, Raggi L, Parra-Olea G, Alvarado-Díaz J, Gómez-Gil B. Inhibition of Batrachochytrium dendrobatidis Infection by Skin Bacterial Communities in Wild Amphibian Populations. MICROBIAL ECOLOGY 2021; 82:666-676. [PMID: 33598748 DOI: 10.1007/s00248-021-01706-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Skin-associated bacteria are known to inhibit infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibians. It has also been postulated that skin-associated bacterial community is related to Bd infection intensity. However, our understanding of host microbial dynamics and their importance in regulating Bd intensity is limited. We analyzed Bd infection and skin-associated bacteria from two amphibian species, the salamander Ambystoma rivulare and the frog Lithobates spectabilis that co-occurred in a tropical high-altitude site in central Mexico. Sixty-three percent of sampled salamander individuals and 80% of frog individuals tested positive for Bd. Overall, we registered 622 skin-associated bacterial genera, from which 73 are known to have Bd inhibitory effects. These inhibitory taxa represented a relative abundance of 50% in relation to total relative bacterial abundance. Our results indicated that, although sharing some bacterial taxa, bacterial community from the skin of both species was different in taxonomic composition and in relative abundance. Pseudomonas spp. and Stenotrophomonas spp. were among the five most abundant bacterial taxa of both species. Both bacterial taxa inhibit Bd infection. We detected that bacterial richness and relative abundance of inhibitory Bd bacteria were negatively related to intensity of Bd infection independent of species and seasons. Despite the high Bd prevalence in both host species, no dead or sick individuals were registered during field surveys. The relatively low levels of Bd load apparently do not compromise survival of host species. Therefore, our results suggested that individuals analyzed were able to survive and thrive under a dynamic relation with enzootic infections of Bd and their microbiota.
Collapse
Affiliation(s)
- Bisbrian Nava-González
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México.
| | - Perla Bibian López
- Universidad Tecnológica de Morelia, Avenida Vicepresidente Pino Suárez 750, Cd. Industrial, 58200, Morelia, Michoacán, México
| | - Yurixhi Maldonado-López
- CONACyT-Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Leonel Lopez-Toledo
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Luciana Raggi
- CONACYT-Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Cd de México, México
| | - Javier Alvarado-Díaz
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Juanito Itzícuaro SN, Nueva Esperanza, 58330, Morelia, Michoacán, México
| | - Bruno Gómez-Gil
- CIAD A.C., Mazatlán Unit for Aquaculture, AP 711, Mazatlán, 82000, Sinaloa, México
| |
Collapse
|
69
|
Li A, Li Z, Dai W, Parise KL, Leng H, Jin L, Liu S, Sun K, Hoyt JR, Feng J. Bacterial community dynamics on bats and the implications for pathogen resistance. Environ Microbiol 2021; 24:1484-1498. [PMID: 34472188 DOI: 10.1111/1462-2920.15754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 02/02/2023]
Abstract
The bats skin microbiota plays an important role in reducing pathogen infection, including the deadly fungal pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome. However, the dynamic of skin bacterial communities response to environmental perturbations remains poorly described. We characterized skin bacterial community over time and space in Rhinolophus ferrumequinum, a species with high resistance to the infection with P. destructans. We collected environmental covariate data to determine what factors influenced changes in community structure. We observed significant temporal and spatial shifts in the skin bacterial community, which was mainly associated with variation in operational taxonomic units. The skin bacterial community differed by the environmental microbial reservoirs and was most influenced by host body condition, bat roosting temperature and geographic distance between sites, but was not influenced by pathogen infection. Furthermore, the skin microbiota was enriched in particular taxa with antifungal abilities, such as Enterococcus, Burkholderia, Flavobacterium, Pseudomonas, Corynebacterium and Rhodococcus. And specific strains of Pseudomonas, Corynebacterium and Rhodococcus even inhibited P. destructans growth. Our findings provide new insights in characterizing the variation in bacterial communities can inform us about the processes of driving community assembly and predict the host's ability to resist or survive pathogen infection.
Collapse
Affiliation(s)
- Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China
| | - Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Katy L Parise
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Joseph R Hoyt
- Department of Biological Sciences, Virginia Polytechnic Institute, Blacksburg, VA, 24060, USA
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China.,College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
70
|
Ellison S, Knapp R, Vredenburg V. Longitudinal patterns in the skin microbiome of wild, individually marked frogs from the Sierra Nevada, California. ISME COMMUNICATIONS 2021; 1:45. [PMID: 37938625 PMCID: PMC9723788 DOI: 10.1038/s43705-021-00047-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 05/29/2023]
Abstract
The amphibian skin microbiome has been the focus of numerous studies because of the protective effects that some bacteria provide against the pathogenic fungus Batrachochytrium dendrobatidis, which has caused a global panzootic among amphibians. However, the mechanisms driving community structure and function in the amphibian skin microbiome are still poorly understood, and longitudinal analyses of the skin microbiome have not yet been conducted in wild populations. In this study, we investigate longitudinal patterns in the skin microbiome of 19 individually marked adult frogs from two wild populations of the endangered Sierra Nevada yellow-legged frog (Rana sierrae), sampled over the course of 2 years. We found that individuals with low bacterial diversity (dominated by order Burkhorderiales) had significantly more stable bacterial communities than those with higher diversity. Amplicon sequence variants (ASVs) with high relative abundance were significantly less transient than those with low relative abundance, and ASVs with intermediate-level relative abundances experienced the greatest volatility over time. Based on these results, we suggest that efforts to develop probiotic treatments to combat B. dendrobatidis should focus on bacteria that are found at high relative abundances in some members of a population, as these strains are more likely to persist and remain stable in the long term.
Collapse
Affiliation(s)
- Silas Ellison
- Department of Biology, San Francisco State University, San Francisco, California, USA.
| | - Roland Knapp
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, CA, USA
| | - Vance Vredenburg
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, California, USA
| |
Collapse
|
71
|
Barnes EM, Kutos S, Naghshineh N, Mesko M, You Q, Lewis JD. Assembly of the amphibian microbiome is influenced by the effects of land-use change on environmental reservoirs. Environ Microbiol 2021; 23:4595-4611. [PMID: 34190389 DOI: 10.1111/1462-2920.15653] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023]
Abstract
A growing focus in microbial ecology is understanding how beneficial microbiome function is created and maintained through various assembly mechanisms. This study explores the role of both the environment and disease in regulating the composition of microbial species in the soil and on amphibian hosts. We compared the microbial communities of Plethodon cinereus salamanders along a land-use gradient in the New York metropolitan area and paired these with associated soil cores. Additionally, we characterized the diversity of bacterial and fungal symbionts that putatively inhibit the pathogenic fungus Batrachochytrium dendrobatidis. We predicted that variation in skin microbial community composition would correlate with changes seen in the soil which functions as the regional species pool. We found that salamanders and soil share many microbial taxa but that these two communities exhibit differences in the relative abundances of the bacterial phyla Acidobacteria, Actinobacteria, and Proteobacteria and the fungal phyla Ascomycota and genus Basidiobolus. Microbial community composition varies with changes in land-use associated factors creating site-specific compositions. By employing a quantitative, null-based assembly model, we identified that dispersal limitation, variable selection, and drift guide assembly of microbes onto their skin, creating high dissimilarity between individuals with likely consequences in disease preventative function.
Collapse
Affiliation(s)
- Elle M Barnes
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Steve Kutos
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Nina Naghshineh
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Marissa Mesko
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Qing You
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - J D Lewis
- Louis Calder Center - Biological Field Station, Fordham University, Armonk, NY, 10504, USA.,Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| |
Collapse
|
72
|
Zhu L, Wang J, Bahrndorff S. Editorial: The Wildlife Gut Microbiome and Its Implication for Conservation Biology. Front Microbiol 2021; 12:697499. [PMID: 34234768 PMCID: PMC8256134 DOI: 10.3389/fmicb.2021.697499] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lifeng Zhu
- Colleges of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
73
|
Characterization of oral and cloacal microbial communities in cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) during the time course of rehabilitation. PLoS One 2021; 16:e0252086. [PMID: 34043685 PMCID: PMC8159006 DOI: 10.1371/journal.pone.0252086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Microbial communities of animals play a role in health and disease, including immunocompromised conditions. In the northeastern United States, cold-stunning events often cause endangered Kemp's ridley turtles (Lepidochelys kempii) to become stranded on beaches in autumn. These sea turtles are admitted to rehabilitation facilities when rescued alive and are presumed immunocompromised secondary to hypothermia. To better understand the role that microbes play in the health of cold-stunned sea turtles, we characterized the oral and cloacal microbiome from Kemp's ridley turtles at multiple timepoints during rehabilitation, from admission to pre-release, by using Illumina sequencing to analyze the 16S rRNA gene. Microbial communities were distinct between body sites and among turtles that survived and those that died. We found that clinical parameters such as presence of pneumonia or values for various blood analytes did not correlate with oral or cloacal microbial community composition. We also investigated the effect of antibiotics on the microbiome during rehabilitation and prior to release and found that the type of antibiotic altered the microbial community composition, yet overall taxonomic diversity remained the same. The microbiome of cold-stunned Kemp's ridley turtles gradually changed through the course of rehabilitation with environment, antibiotics, and disease status all playing a role in those changes and ultimately the release status of the turtles.
Collapse
|
74
|
Rollins-Smith LA, Le Sage EH. Batrachochytrium fungi: stealth invaders in amphibian skin. Curr Opin Microbiol 2021; 61:124-132. [PMID: 33964650 DOI: 10.1016/j.mib.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Amphibian populations around the world have been affected by two pathogenic fungi within the phylum Chytridiomycota. Batrachochytrium dendrobatidis (Bd) has infected hundreds of species and led to widespread declines and some species extinctions. Batrachochytrium salamandrivorans (Bsal) has devastated some native European salamanders, especially the iconic fire salamanders (Salamandra salamandra). Comparative genomic studies show that Bd is more diverse and widespread than previously thought, and global lineages occur together allowing for the development of hybrid lineages. New studies raise the concern of greater pathogenesis if both Bd and Bsal infect the same host. Although amphibians possess robust immune defenses, co-infected and many single-infected hosts seem unable to mount effective immune responses. A strong defense may actually be harmful. Analysis of Bd and Bsal secretions documents small metabolites that signal high density to limit their growth and to suppress adaptive immune defenses, thus enabling a stealth presence in the skin compartment.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Emily H Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
75
|
Medina D, Greenspan SE, Carvalho T, Becker CG, Toledo LF. Co-infecting pathogen lineages have additive effects on host bacterial communities. FEMS Microbiol Ecol 2021; 97:6134751. [PMID: 33580951 DOI: 10.1093/femsec/fiab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
Amphibian skin bacteria may confer protection against the fungus Batrachochytrium dendrobatidis (Bd), but responses of skin bacteria to different Bd lineages are poorly understood. The global panzootic lineage (Bd-GPL) has caused amphibian declines and extinctions globally. However, other lineages are enzootic (Bd-Asia-2/Brazil). Increased contact rates between Bd-GPL and enzootic lineages via globalization pose unknown consequences for host-microbiome-pathogen dynamics. We conducted a laboratory experiment and used 16S rRNA amplicon-sequencing to assess: (i) whether two lineages (Bd-Asia-2/Brazil and Bd-GPL) and their recombinant, in single and mixed infections, differentially affect amphibian skin bacteria; (ii) and the changes associated with the transition to laboratory conditions. We determined no clear differences in bacterial diversity among Bd treatments, despite differences in infection intensity. However, we observed an additive effect of mixed infections on bacterial alpha diversity and a potentially antagonistic interaction between Bd genotypes. Additionally, observed changes in community composition suggest a higher ability of Bd-GPL to alter skin bacteria. Lastly, we observed a drastic reduction in bacterial diversity and a change in community structure in laboratory conditions. We provide evidence for complex interactions between Bd genotypes and amphibian skin bacteria during coinfections, and expand on the implications of experimental conditions in ecological studies.
Collapse
Affiliation(s)
- Daniel Medina
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil.,Sistema Nacional de Investigación, SENACYT, Building 205, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, 1339 Science and Engineering Complex, Tuscaloosa 35487, Alabama, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255 - CEP 13083-862, Campinas, São Paulo, Brazil
| |
Collapse
|
76
|
O'Keeffe KR, Halliday FW, Jones CD, Carbone I, Mitchell CE. Parasites, niche modification and the host microbiome: A field survey of multiple parasites. Mol Ecol 2021; 30:2404-2416. [PMID: 33740826 DOI: 10.1111/mec.15892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.
Collapse
Affiliation(s)
- Kayleigh R O'Keeffe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fletcher W Halliday
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
77
|
First line of defence: Skin microbiota may protect anurans from infective larval lungworms. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:185-189. [PMID: 33898219 PMCID: PMC8056135 DOI: 10.1016/j.ijppaw.2021.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Functional roles of the rich microbiota of the skin are not fully understood, but include protection against microbial diseases and other environmental challenges. In experimental studies, we show that reducing the microbiota from cane toad (Rhinella marina) skin by gently wiping with absorptive gauze resulted in threefold higher rates of infection by lungworms (Rhabdias pseudosphaerocephala) following standardised exposure to infective skin-penetrating larvae. Higher concentrations of microbial DNA were associated with lower rates of lungworm entry. Our data suggest that microbial activity on the anuran skin comprises an important line of defence against attack by macroparasites as well as by fungi and other microbes.
Collapse
|
78
|
Bankers L, Dahan D, Neiman M, Adrian‐Tucci C, Frost C, Hurst GDD, King KC. Invasive freshwater snails form novel microbial relationships. Evol Appl 2021; 14:770-780. [PMID: 33767751 PMCID: PMC7980272 DOI: 10.1111/eva.13158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/04/2023] Open
Abstract
Resident microbes (microbiota) can shape host organismal function and adaptation in the face of environmental change. Invasion of new habitats exposes hosts to novel selection pressures, but little is known about the impact on microbiota and the host-microbiome relationship (e.g., how rapidly new microbial associations are formed, whether microbes influence invasion success). We used high-throughput 16S rRNA sequencing of New Zealand (native) and European (invasive) populations of the freshwater snail Potamopyrgus antipodarum and found that while invaders do carry over some core microbial taxa from New Zealand, their microbial community is largely distinct. This finding highlights that invasions can result in the formation of novel host-microbiome relationships. We further show that the native microbiome is composed of fewer core microbes than the microbiome of invasive snails, suggesting that the microbiota is streamlined to a narrower set of core members. Furthermore, native snails exhibit relatively low alpha diversity but high inter-individual variation, whereas invasive snails have higher alpha diversity but are relatively similar to each other. Together, our findings demonstrate that microbiota comparisons across native and invasive populations can reveal the impact of a long coevolutionary history and specialization of microbes in the native host range, as well as new associations occurring after invasion. We lay essential groundwork for understanding how microbial relationships affect invasion success and how microbes may be utilized in the control of invasive hosts.
Collapse
Affiliation(s)
- Laura Bankers
- Department of BiologyUniversity of IowaIowa CityIAUSA
- University of Colorado ‐ Anschutz Medical CampusAuroraCOUSA
| | - Dylan Dahan
- School of MedicineStanford UniversityStanfordCAUSA
| | | | | | - Crystal Frost
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | |
Collapse
|
79
|
Bie J, Zheng K, Gao X, Liu B, Ma J, Hayat MA, Xiao J, Wang H. Spatial Risk Analysis of Batrachochytrium dendrobatidis, A Global Emerging Fungal Pathogen. ECOHEALTH 2021; 18:3-12. [PMID: 34212260 DOI: 10.1007/s10393-021-01519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Chytridiomycosis, a leading cause for the global decline in the number of amphibians, is caused by the fungal pathogen Batrachochytrium dendrobatidis. In this study, global distribution data of B. dendrobatidis were collected from January 2009 to May 2019. Space-time scan statistics and the maximum entropy (MaxEnt) model were used to analyze the epidemic trends and aggregation of the pathogen, and predict B. dendrobatidis distribution through its relationships with climate factors, wind speed, and solar radiation. The results of space-time scan statistics show seven clusters of data for the distribution of B. dendrobatidis. The time was mainly concentrated in 2009, 2013, 2015, and 2016, and the regions were primarily concentrated in southeastern Canada, southwestern France, Nigeria, Cameroon, eastern Brazil, southeastern Brazil, central Madagascar, and central and eastern Australia. MaxEnt showed that annual precipitation had the largest contribution percentage in the model, and annual mean temperature highly influenced the distribution of B. dendrobatidis. The global high-risk areas of B. dendrobatidis distribution were mainly observed in western Canada, southern Brazil, Chile, the United Kingdom, Japan, the Republic of Korea, eastern South Africa, eastern Madagascar, southeastern Australia, and southern China.
Collapse
Affiliation(s)
- Jia Bie
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Keren Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Boyang Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jun Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Muhammad Abid Hayat
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jianhua Xiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Hongbin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China.
| |
Collapse
|
80
|
The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME JOURNAL 2021; 15:1628-1640. [PMID: 33564111 PMCID: PMC8163836 DOI: 10.1038/s41396-020-00875-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Infectious pathogens can disrupt the microbiome in addition to directly affecting the host. Impacts of disease may be dependent on the ability of the microbiome to recover from such disturbance, yet remarkably little is known about microbiome recovery after disease, particularly in nonhuman animals. We assessed the resilience of the amphibian skin microbial community after disturbance by the pathogen, Batrachochytrium dendrobatidis (Bd). Skin microbial communities of laboratory-reared mountain yellow-legged frogs were tracked through three experimental phases: prior to Bd infection, after Bd infection (disturbance), and after clearing Bd infection (recovery period). Bd infection disturbed microbiome composition and altered the relative abundances of several dominant bacterial taxa. After Bd infection, frogs were treated with an antifungal drug that cleared Bd infection, but this did not lead to recovery of microbiome composition (measured as Unifrac distance) or relative abundances of dominant bacterial groups. These results indicate that Bd infection can lead to an alternate stable state in the microbiome of sensitive amphibians, or that microbiome recovery is extremely slow—in either case resilience is low. Furthermore, antifungal treatment and clearance of Bd infection had the additional effect of reducing microbial community variability, which we hypothesize results from similarity across frogs in the taxa that colonize community vacancies resulting from the removal of Bd. Our results indicate that the skin microbiota of mountain yellow-legged frogs has low resilience following Bd-induced disturbance and is further altered by the process of clearing Bd infection, which may have implications for the conservation of this endangered amphibian.
Collapse
|
81
|
Smalling KL, Rowe JC, Pearl CA, Iwanowicz LR, Givens CE, Anderson CW, McCreary B, Adams MJ. Monitoring wetland water quality related to livestock grazing in amphibian habitats. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:58. [PMID: 33439357 PMCID: PMC7806560 DOI: 10.1007/s10661-020-08838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Land use alteration such as livestock grazing can affect water quality in habitats of at-risk wildlife species. Data from managed wetlands are needed to understand levels of exposure for aquatic life stages and monitor grazing-related changes afield. We quantified spatial and temporal variation in water quality in wetlands occupied by threatened Oregon spotted frog (Rana pretiosa) at Klamath Marsh National Wildlife Refuge in Oregon, United States (US). We used analyses for censored data to evaluate the importance of habitat type and grazing history in predicting concentrations of nutrients, turbidity, fecal indicator bacteria (FIB; total coliforms, Escherichia coli (E. coli), and enterococci), and estrogenicity, an indicator of estrogenic activity. Nutrients (orthophosphate and ammonia) and enterococci varied over time and space, while E. coli, total coliforms, turbidity, and estrogenicity were more strongly associated with local livestock grazing metrics. Turbidity was correlated with several grazing-related constituents and may be particularly useful for monitoring water quality in landscapes with livestock use. Concentrations of orthophosphate and estrogenicity were elevated at several sites relative to published health benchmarks, and their potential effects on Rana pretiosa warrant further investigation. Our data provided an initial assessment of potential exposure of amphibians to grazing-related constituents in western US wetlands. Increased monitoring of surface water quality and amphibian population status in combination with controlled laboratory toxicity studies could help inform future research and targeted management strategies for wetlands with both grazing and amphibians of conservation concern.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, 08648, USA.
| | - Jennifer C Rowe
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Christopher A Pearl
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, Kearneysville, WV, 25430, USA
| | - Carrie E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, Lansing, MI, 48911, USA
| | - Chauncey W Anderson
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, 97201, USA
| | - Brome McCreary
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| | - Michael J Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97331, USA
| |
Collapse
|
82
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
83
|
Ruthsatz K, Lyra ML, Lambertini C, Belasen AM, Jenkinson TS, da Silva Leite D, Becker CG, Haddad CFB, James TY, Zamudio KR, Toledo LF, Vences M. Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Sci Rep 2020; 10:22311. [PMID: 33339839 PMCID: PMC7749163 DOI: 10.1038/s41598-020-79130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
In Brazil’s Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host–pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host–pathogen interactions in the AF.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany.
| | - Mariana L Lyra
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anat M Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Thomas S Jenkinson
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Domingos da Silva Leite
- Laboratório de Antígenos Bacterianos II, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, CEP 13083-862, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35847, USA
| | - Célio F B Haddad
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany
| |
Collapse
|
84
|
Eleftheriou A. Relationships among host microbiota, parasite resistance or tolerance, and host fitness. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1327-1328. [PMID: 32652576 DOI: 10.1111/cobi.13582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Article impact statement: Parasite-induced shifts in host microbiota that lead to parasite resistance or tolerance may have unintended consequences for host fitness.
Collapse
Affiliation(s)
- Andreas Eleftheriou
- Wildlife Biology Program, University of Montana, 32 Campus Drive, FOR 109, Missoula, MT, 59812, U.S.A
| |
Collapse
|
85
|
Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith LA. Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium infections in Southern leopard frogs. J Anim Ecol 2020; 90:542-554. [PMID: 33179786 DOI: 10.1111/1365-2656.13386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Accurately predicting the impacts of climate change on wildlife health requires a deeper understanding of seasonal rhythms in host-pathogen interactions. The amphibian pathogen, Batrachochytrium dendrobatidis (Bd), exhibits seasonality in incidence; however, the role that biological rhythms in host defences play in defining this pattern remains largely unknown. The aim of this study was to examine whether host immune and microbiome defences against Bd correspond with infection risk and seasonal fluctuations in temperature and humidity. Over the course of a year, five populations of Southern leopard frogs (Rana [Lithobates] sphenocephala) in Tennessee, United States, were surveyed for host immunity, microbiome and pathogen dynamics. Frogs were swabbed for pathogen load and skin bacterial diversity and stimulated to release stored antimicrobial peptides (AMPs). Secretions were analysed to estimate total hydrophobic peptide concentrations, presence of known AMPs and effectiveness of Bd growth inhibition in vitro. The diversity and proportion of bacterial reads with a 99% match to sequences of isolates known to inhibit Bd growth in vitro were used as an estimate of predicted anti-Bd function of the skin microbiome. Batrachochytrium dendrobatidis dynamics followed the expected seasonal fluctuations-peaks in cooler months-which coincided with when host mucosal defences were most potent against Bd. Specifically, the concentration and expression of stored AMPs cycled synchronously with Bd dynamics. Although microbiome changes followed more linear trends over time, the proportion of bacteria that can function to inhibit Bd growth was greatest when risk of Bd infection was highest. We interpret the increase in peptide storage in the fall and the shift to a more anti-Bd microbiome over winter as a preparatory response for subsequent infection risk during the colder periods when AMP synthesis and bacterial growth is slow and pathogen pressure from this cool-adapted fungus is high. Given that a decrease in stored AMP concentrations as temperatures warm in spring likely means greater secretion rates, the subsequent decrease in prevalence suggests seasonality of Bd in this host may be in part regulated by annual immune rhythms, and dominated by the effects of temperature.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian T Miller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | | | - Doug C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, USA
| | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
86
|
Weeks DM, Parris MJ, Brown SP. Recovery and resiliency of skin microbial communities on the southern leopard frog (Lithobates sphenocephalus) following two biotic disturbances. Anim Microbiome 2020; 2:35. [PMID: 33499962 PMCID: PMC7807490 DOI: 10.1186/s42523-020-00053-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microorganisms have intimate functional relationships with invertebrate and vertebrate taxa, with the potential to drastically impact health outcomes. Perturbations that affect microbial communities residing on animals can lead to dysbiosis, a change in the functional relationship, often associated with disease. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, has been responsible for catastrophic amphibian population declines around the globe. Amphibians harbor a diverse cutaneous microbiome, including some members which are known to be antagonistic to Bd (anti-Bd). Anti-Bd microorganisms facilitate the ability of some frog populations to persist in the presence of Bd, where other populations that lack anti-Bd microorganisms have declined. Research suggests disease-antagonistic properties of the microbiome may be a function of microbial community interactions, rather than individual bacterial species. Conservation efforts have identified amphibian-associated bacteria that exhibit anti-fungal properties for use as 'probiotics' on susceptible amphibian populations. Probiotic application, usually with a single bacterial species, may benefit from a greater understanding of amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). We assessed microbiome responses to two microbial disturbance events over multiple time points. RESULTS Exposing Lithobates sphenocephalus (southern leopard frog) adults to the biopesticidal bacteria Bacillus thuringiensis, followed by exposure to the fungal pathogen Bd, did not have long term impacts on the microbiome. After initial shifts, microbial communities recovered and returned to a state that resembled pre-disturbance. CONCLUSIONS Our results indicate microbial communities on L. sphenocephalus are robust and resistant to permanent shifts from some disturbances. This resiliency of microbial communities may explain why L. sphenocephalus is not experiencing the population declines from Bd that impacts many other species. Conservation efforts may benefit from studies outlining amphibian species-specific microbiome responses to disturbances (e.g. dysbiosis vs. recovery). If microbial communities on a threatened amphibian species are unlikely to recover following a disturbance, additional measures may be implemented to ameliorate the impacts of physical and chemical stressors on host-associated microbial communities.
Collapse
Affiliation(s)
- Denita M Weeks
- Department of Biology, Grand Junction, Colorado Mesa University, Grand Junction, CO, 81501, USA.
| | - Matthew J Parris
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
87
|
Preuss JF, Greenspan SE, Rossi EM, Lucas Gonsales EM, Neely WJ, Valiati VH, Woodhams DC, Becker CG, Tozetti AM. Widespread Pig Farming Practice Linked to Shifts in Skin Microbiomes and Disease in Pond-Breeding Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11301-11312. [PMID: 32845628 DOI: 10.1021/acs.est.0c03219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Farming practices may reshape the structure of watersheds, water quality, and the health of aquatic organisms. Nutrient enrichment from agricultural pollution increases disease pressure in many host-pathogen systems, but the mechanisms underlying this pattern are not always resolved. For example, nutrient enrichment should strongly influence pools of aquatic environmental bacteria, which has the potential to alter microbiome composition of aquatic animals and their vulnerability to disease. However, shifts in the host microbiome have received little attention as a link between nutrient enrichment and diseases of aquatic organisms. We examined nutrient enrichment through the widespread practice of integrated pig-fish farming and its effects on microbiome composition of Brazilian amphibians and prevalence of the globally distributed amphibian skin pathogen Batrachochytrium dendrobatidis (Bd). This farming system drove surges in fecal coliform bacteria, disturbing amphibian skin bacterial communities such that hosts recruited higher proportions of Bd-facilitative bacteria and carried higher Bd prevalence. Our results highlight previously overlooked connections between global trends in land use change, microbiome dysbiosis, and wildlife disease. These interactions may be particularly important for disease management in the tropics, a region with both high biodiversity and continually intensifying anthropogenic pressures on aquatic wildlife habitats.
Collapse
Affiliation(s)
- Jackson F Preuss
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eliandra M Rossi
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Elaine M Lucas Gonsales
- Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, RS 98300-000, Brazil
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Victor Hugo Valiati
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexandro M Tozetti
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| |
Collapse
|
88
|
Lemieux-Labonté V, Dorville NASY, Willis CKR, Lapointe FJ. Antifungal Potential of the Skin Microbiota of Hibernating Big Brown Bats ( Eptesicus fuscus) Infected With the Causal Agent of White-Nose Syndrome. Front Microbiol 2020; 11:1776. [PMID: 32793178 PMCID: PMC7390961 DOI: 10.3389/fmicb.2020.01776] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Little is known about skin microbiota in the context of the disease white-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), that has caused enormous declines of hibernating North American bats over the past decade. Interestingly, some hibernating species, such as the big brown bat (Eptesicus fuscus), appear resistant to the disease and their skin microbiota could play a role. However, a comprehensive analysis of the skin microbiota of E. fuscus in the context of Pd has not been done. In January 2017, we captured hibernating E. fuscus, sampled their skin microbiota, and inoculated them with Pd or sham inoculum. We allowed the bats to hibernate in the lab under controlled conditions for 11 weeks and then sampled their skin microbiota to test the following hypotheses: (1) Pd infection would not disrupt the skin microbiota of Pd-resistant E. fuscus; and (2) microbial taxa with antifungal properties would be abundant both before and after inoculation with Pd. Using high-throughput 16S rRNA gene sequencing, we discovered that beta diversity of Pd-inoculated bats changed more over time than that of sham-inoculated bats. Still, the most abundant taxa in the community were stable throughout the experiment. Among the most abundant taxa, Pseudomonas and Rhodococcus are known for antifungal potential against Pd and other fungi. Thus, in contrast to hypothesis 1, Pd infection destabilized the skin microbiota but consistent with hypothesis 2, bacteria with known antifungal properties remained abundant and stable on the skin. This study is the first to provide a comprehensive survey of skin microbiota of E. fuscus, suggesting potential associations between the bat skin microbiota and resistance to the Pd infection and WNS. These results set the stage for future studies to characterize microbiota gene expression, better understand mechanisms of resistance to WNS, and help develop conservation strategies.
Collapse
Affiliation(s)
| | - Nicole A. S.-Y. Dorville
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | - Craig K. R. Willis
- Department of Biology, Centre for Forest Interdisciplinary Research, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
89
|
Kruger A. Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Front Microbiol 2020; 11:1330. [PMID: 32670233 PMCID: PMC7328345 DOI: 10.3389/fmicb.2020.01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Describing the structure and function of the amphibian cutaneous microbiome has gained importance with the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen that can cause the skin disease chytridiomycosis. Sampling amphibian skin microbiota is needed to characterize current infection status and to help predict future susceptibility to Bd based on microbial composition since some skin microbes have antifungal capabilities that may confer disease resistance. Here, I use 16S rRNA sequencing to describe the composition and structure of the cutaneous microbiota of six species of amphibians. Frog skin samples were also tested for Bd, and I found 11.8% Bd prevalence among all individuals sampled (n = 76). Frog skin microbiota varied by host species and sampling site, but did not differ among Bd-positive and Bd-negative individuals. These results suggest that bacterial composition reflects host species and the environment, but does not reflect Bd infection among the species sampled here. Of the bacterial OTUs identified using an indicator species analysis as strongly associated with amphibians, significantly more indicator OTUs were putative anti-Bd taxa than would be expected based on the proportion of anti-Bd OTUs among all frog OTUs, suggesting strong associations between host species and anti-Bd OTUs. This relationship may partially explain why some of these frogs are asymptomatic carriers of Bd, but more work is needed to determine the other factors that contribute to interspecific variation in Bd susceptibility. This work provides important insights on inter- and intra-specific variation in microbial community composition, putative function, and disease dynamics in populations of amphibians that appear to be coexisting with Bd.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
90
|
Rebollar EA, Martínez-Ugalde E, Orta AH. The Amphibian Skin Microbiome and Its Protective Role Against Chytridiomycosis. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Emanuel Martínez-Ugalde
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Alberto H. Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
91
|
Susser AL, Harkai S, Kralj S, Rosenblatt C. Transition from escaped to decomposed nematic defects, and vice versa. SOFT MATTER 2020; 16:4814-4822. [PMID: 32409816 PMCID: PMC8083252 DOI: 10.1039/d0sm00218f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An escaped radial director profile in a nematic liquid crystal cell can be transformed into a pair of strength m = +1/2 surface defects (and their associated disclination lines) at a threshold electric field. Analogously, a half-integer defect pair can be transformed at a threshold electric field into a director profile that escapes into the third dimension. These transitions were demonstrated experimentally and numerically, and are discussed in terms of topologically discontinuous and continuous pathways that connect the two states. Additionally, we note that the pair of disclination lines associated with the m = +1/2 surface defects were observed to co-rotate around a common point for a sufficiently large electric field at a sufficiently low frequency.
Collapse
Affiliation(s)
- Adam L Susser
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
92
|
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental Factors and Host Microbiomes Shape Host-Pathogen Dynamics. Trends Parasitol 2020; 36:616-633. [PMID: 32402837 DOI: 10.1016/j.pt.2020.04.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
Abstract
Microorganisms are increasingly recognized as ecosystem-relevant components because they affect the population dynamics of hosts. Functioning at the interface of the host and pathogen, skin and gut microbiomes are vital components of immunity. Recent work reveals a strong influence of biotic and abiotic environmental factors (including the environmental microbiome) on disease dynamics, yet the importance of the host-host microbiome-pathogen-environment interaction has been poorly reflected in theory. We use amphibians and the disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis to show how interactions between host, host microbiome, pathogen, and the environment all affect disease outcome. Our review provides new perspectives that improve our understanding of disease dynamics and ecology by incorporating environmental factors and microbiomes into disease theory.
Collapse
Affiliation(s)
- Adriana P Bernardo-Cravo
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Permoserstrasse 15, 04318, Leipzig, Germany; Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Adeline Loyau
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, D-16775, Germany
| |
Collapse
|
93
|
DiRenzo GV, Chen R, Ibsen K, Toothman M, Miller AJ, Gershman A, Mitragotri S, Briggs CJ. Investigating the potential use of an ionic liquid (1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) as an anti-fungal treatment against the amphibian chytrid fungus, Batrachochytrium dendrobatidis. PLoS One 2020; 15:e0231811. [PMID: 32302369 PMCID: PMC7164615 DOI: 10.1371/journal.pone.0231811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
The disease chytridiomycosis, caused by the pathogenic chytrid fungus, Batrachochytrium dendrobatidis (Bd), has contributed to global amphibian declines. Bd infects the keratinized epidermal tissue in amphibians and causes hyperkeratosis and excessive skin shedding. In individuals of susceptible species, the regulatory function of the amphibian’s skin is disrupted resulting in an electrolyte depletion, osmotic imbalance, and eventually death. Safe and effective treatments for chytridiomycosis are urgently needed to control chytrid fungal infections and stabilize populations of endangered amphibian species in captivity and in the wild. Currently, the most widely used anti-Bd treatment is itraconazole. Preparations of itraconazole formulated for amphibian use has proved effective, but treatment involves short baths over seven to ten days, a process which is logistically challenging, stressful, and causes long-term health effects. Here, we explore a novel anti-fungal therapeutic using a single application of the ionic liquid, 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMP-NTf2), for the treatment of chytridiomycosis. BMP-NTf2 was found be effective at killing Bd in vitro at low concentrations (1:1000 dilution). We tested BMP-NTf2 in vivo on two amphibian species, one that is relatively tolerant of chytridiomycosis (Pseudacris regilla) and one that is highly susceptible (Dendrobates tinctorius). A toxicity trial revealed a surprising interaction between Bd infection status and the impact of BMP-NTf2 on D. tinctorius survival. Uninfected D. tinctorius tolerated BMP-NTf2 (mean ± SE; 96.01 ± 9.00 μl/g), such that only 1 out of 30 frogs died following treatment (at a dose of 156.95 μL/g), whereas, a lower dose (mean ± SE; 97.45 ± 3.52 μL/g) was not tolerated by Bd-infected D. tinctorius, where 15 of 23 frogs died shortly upon BMP-NTf2 application. Those that tolerated the BMP-NTf2 application did not exhibit Bd clearance. Thus, BMP-NTf2 application, under the conditions tested here, is not a suitable option for clearing Bd infection in D. tinctorius. However, different results were obtained for P. regilla. Two topical applications of BMP-NTf2 on Bd-infected P. regilla (using a lower BMP-NTf2 dose than on D. tinctorius, mean ± SE; 9.42 ± 1.43 μL/g) reduced Bd growth, although the effect was lower than that obtained by daily doses of itracanozole (50% frogs exhibited complete clearance on day 16 vs. 100% for itracanozole). Our findings suggest that BMP-NTf2 has the potential to treat Bd infection, however the effect depends on several parameters. Further optimization of dose and schedule are needed before BMP-NTf2 can be considered as a safe and effective alternative to more conventional antifungal agents, such as itraconazole.
Collapse
Affiliation(s)
- Graziella V. DiRenzo
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
- * E-mail:
| | - Renwei Chen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
| | - Kelly Ibsen
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Mary Toothman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Abigail J. Miller
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Ariel Gershman
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| | - Samir Mitragotri
- Center for Bioengineering, University of California, Santa Barbara, CA, United States of America
- Department of Chemical Engineering, University of California, Santa Barbara, CA, United States of America
- School of Engineering and Applied Sciences, Harvard University Cambridge, Cambridge, MA, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Cheryl J. Briggs
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
94
|
|
95
|
Harkai S, Murray BS, Rosenblatt C, Kralj S. Electric field-driven reconfigurable multistable topological defect patterns. PHYSICAL REVIEW RESEARCH 2020; 2:013176. [PMID: 33870201 PMCID: PMC8051152 DOI: 10.1103/physrevresearch.2.013176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a rich variety of technological applications. Here we report on robust theoretical and experimental investigations in which an external electric field is used to switch between pre-determined stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same surface. The different defect configurations are stabilised by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge value. Theoretically, we model disclination configurations using a Landau-de Gennes phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-house-developed Atomic Force Measurement scribing method, where NLC configurations are monitored via polarised optical microscopy. We show numerically and experimentally that an "alphabet" of up to 18 unique line defect configurations can be stabilised in a 4x4 lattice of alternating s=±1 surface defects, which can be "rewired" multistably using appropriate field manipulation. Our proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties. Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a sufficiently closely-spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or annihilation if defects are depinned.
Collapse
Affiliation(s)
- Saša Harkai
- Condensed Matter Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Bryce S. Murray
- Department of Physics, Case Western Reserve University Cleveland, Ohio 44106, USA
| | - Charles Rosenblatt
- Department of Physics, Case Western Reserve University Cleveland, Ohio 44106, USA
| | - Samo Kralj
- Condensed Matter Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
96
|
Weitzman CL, Kaestli M, Gibb K, Brown GP, Shine R, Christian K. Disease Exposure and Antifungal Bacteria on Skin of Invasive Cane Toads, Australia. Emerg Infect Dis 2020; 25:1770-1771. [PMID: 31441753 PMCID: PMC6711215 DOI: 10.3201/eid2509.190386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cane toads, an invasive species in Australia, are resistant to fungal pathogens affecting frogs worldwide (Batrachochytrium dendrobatidis). From toad skin swabs, we detected higher proportions of bacteria with antifungal properties in Queensland, where toad and pathogen distributions overlap, than in other sites. This finding suggests that site-specific pathogen pressures help shape skin microbial communities.
Collapse
|
97
|
Fountain-Jones NM, Clark NJ, Kinsley AC, Carstensen M, Forester J, Johnson TJ, Miller EA, Moore S, Wolf TM, Craft ME. Microbial associations and spatial proximity predict North American moose (Alces alces) gastrointestinal community composition. J Anim Ecol 2020; 89:817-828. [PMID: 31782152 DOI: 10.1111/1365-2656.13154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023]
Abstract
Microbial communities are increasingly recognized as crucial for animal health. However, our understanding of how microbial communities are structured across wildlife populations is poor. Mechanisms such as interspecific associations are important in structuring free-living communities, but we still lack an understanding of how important interspecific associations are in structuring gut microbial communities in comparison with other factors such as host characteristics or spatial proximity of hosts. Here, we ask how gut microbial communities are structured in a population of North American moose Alces alces. We identify key microbial interspecific associations within the moose gut and quantify how important they are relative to key host characteristics, such as body condition, for predicting microbial community composition. We sampled gut microbial communities from 55 moose in a population experiencing decline due to a myriad of factors, including pathogens and malnutrition. We examined microbial community dynamics in this population utilizing novel graphical network models that can explicitly incorporate spatial information. We found that interspecific associations were the most important mechanism structuring gut microbial communities in moose and detected both positive and negative associations. Models only accounting for associations between microbes had higher predictive value compared to models including moose sex, evidence of previous pathogen exposure or body condition. Adding spatial information on moose location further strengthened our model and allowed us to predict microbe occurrences with ~90% accuracy. Collectively, our results suggest that microbial interspecific associations coupled with host spatial proximity are vital in shaping gut microbial communities in a large herbivore. In this case, previous pathogen exposure and moose body condition were not as important in predicting gut microbial community composition. The approach applied here can be used to quantify interspecific associations and gain a more nuanced understanding of the spatial and host factors shaping microbial communities in non-model hosts.
Collapse
Affiliation(s)
| | - Nicholas J Clark
- UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Amy C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA.,Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Michelle Carstensen
- Minnesota Department of Natural Resources, Wildlife Health Program, Forest Lake, MN, USA
| | - James Forester
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN, USA
| | - Timothy J Johnson
- Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Elizabeth A Miller
- Center for Animal Health and Food Safety, University of Minnesota, St Paul, MN, USA
| | - Seth Moore
- Department of Biology and Environment, Grand Portage Band of Chippewa, Grand Portage, MN, USA
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
98
|
Ferris AJ, Afghah S, Selinger RLB, Selinger JV, Rosenblatt C. Electric field-induced crossover from 3D to 2D topological defects in a nematic liquid crystal: experimental verification. SOFT MATTER 2020; 16:642-650. [PMID: 31693053 PMCID: PMC6981022 DOI: 10.1039/c9sm01733j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A substrate was patterned with two pairs of half-integer strength topological defects, (+1/2, +1/2) and (+1/2, -1/2). In a sufficiently thick cell, a disclination line runs in an arch above the substrate connecting the two half integer defects within each pair. The director around the disclination line for the like-sign pair must rotate in 3D, whereas for the opposite-sign defect pair the director lies in the xy-plane parallel to the substrate. For a negative dielectric anisotropy nematic, an electric field applied normal to the substrate drives the director into the xy-plane, forcing the arch of the disclination line of the like-sign pair to become extended along the z-axis. For sufficiently large field the arch splits, resulting in two nearly parallel disclination lines traversing the cell from one substrate to the other. The opposite-sign defect pair is largely unaffected by the electric field as the director already lies in the xy-plane. Experimental results are presented, which are consistent with numerical simulations.
Collapse
Affiliation(s)
- Andrew J Ferris
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
99
|
Woodhams DC, Rollins-Smith LA, Reinert LK, Lam BA, Harris RN, Briggs CJ, Vredenburg VT, Patel BT, Caprioli RM, Chaurand P, Hunziker P, Bigler L. Probiotics Modulate a Novel Amphibian Skin Defense Peptide That Is Antifungal and Facilitates Growth of Antifungal Bacteria. MICROBIAL ECOLOGY 2020; 79:192-202. [PMID: 31093727 DOI: 10.1007/s00248-019-01385-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Probiotics can ameliorate diseases of humans and wildlife, but the mechanisms remain unclear. Host responses to interventions that change their microbiota are largely uncharacterized. We applied a consortium of four natural antifungal bacteria to the skin of endangered Sierra Nevada yellow-legged frogs, Rana sierrae, before experimental exposure to the pathogenic fungus Batrachochytrium dendrobatidis (Bd). The probiotic microbes did not persist, nor did they protect hosts, and skin peptide sampling indicated immune modulation. We characterized a novel skin defense peptide brevinin-1Ma (FLPILAGLAANLVPKLICSITKKC) that was downregulated by the probiotic treatment. Brevinin-1Ma was tested against a range of amphibian skin cultures and found to inhibit growth of fungal pathogens Bd and B. salamandrivorans, but enhanced the growth of probiotic bacteria including Janthinobacterium lividum, Chryseobacterium ureilyticum, Serratia grimesii, and Pseudomonas sp. While commonly thought of as antimicrobial peptides, here brevinin-1Ma showed promicrobial function, facilitating microbial growth. Thus, skin exposure to probiotic bacterial cultures induced a shift in skin defense peptide profiles that appeared to act as an immune response functioning to regulate the microbiome. In addition to direct microbial antagonism, probiotic-host interactions may be a critical mechanism affecting disease resistance.
Collapse
Affiliation(s)
- Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Biological Science, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Laura K Reinert
- Departments of Pathology, Microbiology and Immunology and Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Briana A Lam
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Cheryl J Briggs
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106-9610, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, 94132-1722, USA
| | - Bhumi T Patel
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232-8575, USA
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Peter Hunziker
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
100
|
Campbell LJ, Pawlik AH, Harrison XA. Amphibian ranaviruses in Europe: important directions for future research. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are an emerging group of pathogens capable of infecting all cold-blooded vertebrates. In Europe, ranaviruses pose a particularly potent threat to wild amphibian populations. Since the 1980s research on amphibian-infecting ranaviruses in Europe has been growing. The wide distribution of amphibian populations in Europe, the ease with which many are monitored, and the tractable nature of counterpart ex situ experimental systems have provided researchers with a unique opportunity to study many aspects of host–ranavirus interactions in the wild. These characteristics of European amphibian populations will also enable researchers to lead the way as the field of host–ranavirus interactions progresses. In this review, we provide a summary of the current key knowledge regarding amphibian infecting ranaviruses throughout Europe. We then outline important areas of further research and suggest practical ways each could be pursued. We address the study of potential interactions between the amphibian microbiome and ranaviruses, how pollution may exacerbate ranaviral disease either as direct stressors of amphibians or indirect modification of the amphibian microbiome. Finally, we discuss the need for continued surveillance of ranaviral emergence in the face of climate change.
Collapse
Affiliation(s)
- Lewis J. Campbell
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Alice H. Pawlik
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| |
Collapse
|