51
|
Morrison EA, Bowerman S, Sylvers KL, Wereszczynski J, Musselman CA. The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. eLife 2018; 7:31481. [PMID: 29648537 PMCID: PMC5953545 DOI: 10.7554/elife.31481] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Histone tails harbor a plethora of post-translational modifications that direct the function of chromatin regulators, which recognize them through effector domains. Effector domain/histone interactions have been broadly studied, but largely using peptide fragments of histone tails. Here, we extend these studies into the nucleosome context and find that the conformation adopted by the histone H3 tails is inhibitory to BPTF PHD finger binding. Using NMR spectroscopy and MD simulations, we show that the H3 tails interact robustly but dynamically with nucleosomal DNA, substantially reducing PHD finger association. Altering the electrostatics of the H3 tail via modification or mutation increases accessibility to the PHD finger, indicating that PTM crosstalk can regulate effector domain binding by altering nucleosome conformation. Together, our results demonstrate that the nucleosome context has a dramatic impact on signaling events at the histone tails, and highlights the importance of studying histone binding in the context of the nucleosome.
Collapse
Affiliation(s)
- Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Samuel Bowerman
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois.,Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Kelli L Sylvers
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Jeff Wereszczynski
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois.,Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, United States
| |
Collapse
|
52
|
Dhall A, Weller CE, Chu A, Shelton PMM, Chatterjee C. Chemically Sumoylated Histone H4 Stimulates Intranucleosomal Demethylation by the LSD1-CoREST Complex. ACS Chem Biol 2017; 12:2275-2280. [PMID: 28832116 DOI: 10.1021/acschembio.7b00716] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) downregulates eukaryotic gene activity by demethylating mono- and dimethylated Lys4 in histone H3. Elucidating the biochemical crosstalk of LSD1 with histone post-translational modifications (PTMs) is essential for developing LSD1-targeted therapeutics in human cancers. We interrogated the small ubiquitin-like modifier (SUMO)-driven regulation of LSD1 activity with semisynthetic nucleosomes containing site-specifically methylated and sumoylated histones. We discovered that nucleosomes containing sumoylated histone H4 (suH4), a modification associated with gene repression, stimulate LSD1 activity by a mechanism dependent upon the SUMO-interaction motif in CoREST. Furthermore, the stimulatory effect of suH4 was spatially limited and did not extend to the demethylation of adjacent nonsumoylated nucleosomes. Thus, we have identified histone modification by SUMO as the first PTM that stimulates intranucleosomal demethylation by the developmentally critical LSD1-CoREST complex.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Caroline E. Weller
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Aurea Chu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Patrick M. M. Shelton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
53
|
Probing the interaction of the p53 C-terminal domain to the histone demethylase LSD1. Arch Biochem Biophys 2017; 632:202-208. [PMID: 28784588 DOI: 10.1016/j.abb.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
The p53 transcription factor plays a central role in the regulation of the expression of several genes, and itself is post-translationally regulated through its different domains. Of particular relevance for p53 function is its intrinsically disordered C-terminal domain (CTD), representing a hotspot for post-translational modifications and a docking site for transcriptional regulators. For example, the histone H3 lysine demethylase 1 (LSD1) interacts with p53 via the p53-CTD for mutual regulation. To biochemically and functionally characterize this complex, we evaluated the in vitro interactions of LSD1 with several p53-CTD peptides differing in length and modifications. Binding was demonstrated through thermal shift, enzymatic and fluorescence polarization assays, but no enzymatic activity could be detected on methylated p53-CTD peptides in vitro. These experiments were performed using the wild-type enzyme and LSD1 variants that are mutated on three active-site residues. We found that LSD1 demethylase activity is inhibited by p53-CTD. We also noted that the association between the two proteins is mediated by mostly non-specific electrostatic interactions involving conserved active-site residues of LSD1 and a highly charged segment of the p53-CTD. We conclude that p53-CTD inhibits LSD1 activity and that the direct association between the two proteins can contribute to their functional cross-talk.
Collapse
|
54
|
Dubey A, Jeon J. Epigenetic regulation of development and pathogenesis in fungal plant pathogens. MOLECULAR PLANT PATHOLOGY 2017; 18:887-898. [PMID: 27749982 PMCID: PMC6638268 DOI: 10.1111/mpp.12499] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 05/08/2023]
Abstract
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.
Collapse
Affiliation(s)
- Akanksha Dubey
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| | - Junhyun Jeon
- Department of BiotechnologyCollege of Life and Applied Sciences, Yeungnam UniversityGyeongsanGyeongbuk38541South Korea
| |
Collapse
|
55
|
Mould DP, Bremberg U, Jordan AM, Geitmann M, Maiques-Diaz A, McGonagle AE, Small HF, Somervaille TCP, Ogilvie D. Development of 5-hydroxypyrazole derivatives as reversible inhibitors of lysine specific demethylase 1. Bioorg Med Chem Lett 2017; 27:3190-3195. [PMID: 28545974 DOI: 10.1016/j.bmcl.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/22/2022]
Abstract
A series of reversible inhibitors of lysine specific demethylase 1 (LSD1) with a 5-hydroxypyrazole scaffold have been developed from compound 7, which was identified from the patent literature. Surface plasmon resonance (SPR) and biochemical analysis showed it to be a reversible LSD1 inhibitor with an IC50 value of 0.23µM. Optimisation of this compound by rational design afforded compounds with Kd values of <10nM. In human THP-1 cells, these compounds were found to upregulate the expression of the surrogate cellular biomarker CD86. Compound 11p was found to have moderate oral bioavailability in mice suggesting its potential for use as an in vivo tool compound.
Collapse
Affiliation(s)
- Daniel P Mould
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | - Ulf Bremberg
- Beactica AB, Uppsala Business Park, Virdings allé 2, 75450, Uppsala, Sweden
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Matthis Geitmann
- Beactica AB, Uppsala Business Park, Virdings allé 2, 75450, Uppsala, Sweden
| | - Alba Maiques-Diaz
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Alison E McGonagle
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Helen F Small
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Tim C P Somervaille
- Leukaemia Biology Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
56
|
Morrison EA, Sanchez JC, Ronan JL, Farrell DP, Varzavand K, Johnson JK, Gu BX, Crabtree GR, Musselman CA. DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nat Commun 2017; 8:16080. [PMID: 28706277 PMCID: PMC5519978 DOI: 10.1038/ncomms16080] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/26/2017] [Indexed: 01/04/2023] Open
Abstract
BRG1 and BRM, central components of the BAF (mSWI/SNF) chromatin remodelling complex, are critical in chromatin structure regulation. Here, we show that the human BRM (hBRM) bromodomain (BRD) has moderate specificity for H3K14ac. Surprisingly, we also find that both BRG1 and hBRM BRDs have DNA-binding activity. We demonstrate that the BRDs associate with DNA through a surface basic patch and that the BRD and an adjacent AT-hook make multivalent contacts with DNA, leading to robust affinity and moderate specificity for AT-rich elements. Although we show that the BRDs can bind to both DNA and H3K14ac simultaneously, the histone-binding activity does not contribute substantially to nucleosome targeting in vitro. In addition, we find that neither BRD histone nor DNA binding contribute to the global chromatin affinity of BRG1 in mouse embryonic stem cells. Together, our results suggest that association of the BRG1/hBRM BRD with nucleosomes plays a regulatory rather than targeting role in BAF activity.
Collapse
Affiliation(s)
- Emma A. Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Julio C. Sanchez
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jehnna L. Ronan
- Program in Cancer Biology, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel P. Farrell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Katayoun Varzavand
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jenna K. Johnson
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Brian X. Gu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Gerald R. Crabtree
- Program in Cancer Biology, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Catherine A. Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
57
|
Wilson MD, Costa A. Cryo-electron microscopy of chromatin biology. Acta Crystallogr D Struct Biol 2017; 73:541-548. [PMID: 28580916 PMCID: PMC5458496 DOI: 10.1107/s2059798317004430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 11/17/2022] Open
Abstract
The basic unit of chromatin, the nucleosome core particle (NCP), controls how DNA in eukaryotic cells is compacted, replicated and read. Since its discovery, biochemists have sought to understand how this protein-DNA complex can help to control so many diverse tasks. Recent electron-microscopy (EM) studies on NCP-containing assemblies have helped to describe important chromatin transactions at a molecular level. With the implementation of recent technical advances in single-particle EM, our understanding of how nucleosomes are recognized and read looks to take a leap forward. In this review, the authors highlight recent advances in the architectural understanding of chromatin biology elucidated by EM.
Collapse
Affiliation(s)
- Marcus D. Wilson
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
58
|
Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B, Golas MM. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 2017; 26:997-1011. [PMID: 28218430 DOI: 10.1002/pro.3142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/15/2023]
Abstract
In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.
Collapse
Affiliation(s)
- Ken Inui
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zongpei Zhao
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juan Yuan
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Le T M Le
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
59
|
Marabelli C, Marrocco B, Mattevi A. The growing structural and functional complexity of the LSD1/KDM1A histone demethylase. Curr Opin Struct Biol 2016; 41:135-144. [DOI: 10.1016/j.sbi.2016.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
|
60
|
Speranzini V, Rotili D, Ciossani G, Pilotto S, Marrocco B, Forgione M, Lucidi A, Forneris F, Mehdipour P, Velankar S, Mai A, Mattevi A. Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features. SCIENCE ADVANCES 2016; 2:e1601017. [PMID: 27626075 PMCID: PMC5017823 DOI: 10.1126/sciadv.1601017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors.
Collapse
Affiliation(s)
- Valentina Speranzini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Giuseppe Ciossani
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Biagina Marrocco
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Mariantonietta Forgione
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
- Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alessia Lucidi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Parinaz Mehdipour
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, 20139 Milan, Italy
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire CB10 1SD, U.K
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
- Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
61
|
Hirschi A, Martin WJ, Luka Z, Loukachevitch LV, Reiter NJ. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme. RNA (NEW YORK, N.Y.) 2016; 22:1250-60. [PMID: 27277658 PMCID: PMC4931117 DOI: 10.1261/rna.057265.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 05/13/2023]
Abstract
Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.
Collapse
Affiliation(s)
- Alexander Hirschi
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - William J Martin
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| | - Lioudmila V Loukachevitch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | - Nicholas J Reiter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0146, USA
| |
Collapse
|
62
|
Pilotto S, Speranzini V, Marabelli C, Rusconi F, Toffolo E, Grillo B, Battaglioli E, Mattevi A. LSD1/KDM1A mutations associated to a newly described form of intellectual disability impair demethylase activity and binding to transcription factors. Hum Mol Genet 2016; 25:2578-2587. [PMID: 27094131 DOI: 10.1093/hmg/ddw120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic diseases often lead to rare and severe syndromes and the identification of the genetic and protein alterations responsible for the pathogenesis is essential to understand both the physiological and pathological role of the gene product. Recently, de novo variants have been mapped on the gene encoding for the lysine-specific histone demethylase 1 (LSD1)/lysine(K)-specific histone demethylase 1A in three patients characterized by a new genetic disorder. We have analyzed the effects of these pathological mutations on the structure, stability and activity of LSD1 using both in vitro and cellular approaches. The three mutations (Glu403Lys, Asp580Gly and Tyr785His) affect active-site residues and lead to a partial impairment of catalytic activity. They also differentially perturb the ability of LSD1 to engage transcription factors that orchestrate key developmental programs. Moreover, cellular data indicate a decrease in the protein cellular half-life. Taken together, these results demonstrate the relevance of LSD1 in gene regulation and how even moderate alterations in its stability, catalytic activity and binding properties can strongly affect organism development. This depicts a perturbed interplay of catalytic and non-catalytic processes at the origin of the pathology.
Collapse
Affiliation(s)
- Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Valentina Speranzini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Chiara Marabelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milano, Italy
| | - Emanuela Toffolo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milano, Italy
| | - Barbara Grillo
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milano, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milano, Italy .,CNR, Institute of Neuroscience, 20129 Milano, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
63
|
Abstract
Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.
Collapse
Affiliation(s)
- Wolfgang Fischle
- King Abdullah University of Science and Technology (KAUST), Environmental Epigenetics Program, Thuwal 23955-6900, Saudi Arabia
- Max Planck Institute for Biophysical Chemistry, Laboratory of Chromatin Biochemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Str.
4, 72076 Tübingen, Germany
| |
Collapse
|
64
|
Abstract
The lysine-specific demethylase (LSD1) is a flavin-dependent amine oxidase that selectively removes one or two methyl groups from histone H3 at the Lys4 position. Along with histone deacetylases 1 and 2, LSD1 is involved in epigenetically silencing gene expression. LSD1 has been implicated as a potential therapeutic target in cancer and other diseases. In this chapter, we discuss several approaches to measure LSD1 demethylase activity and their relative strengths and limitations for inhibitor discovery and mechanistic characterization. In addition, we review the principal established chemical functional groups derived from monoamine oxidase inhibitors that have been investigated in the context of LSD1 as demethylase inhibitors. Finally, we highlight a few examples of recently developed LSD1 mechanism-based inactivators and their biomedical applications.
Collapse
Affiliation(s)
- D Hayward
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - P A Cole
- Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
65
|
Burg JM, Gonzalez JJ, Maksimchuk KR, McCafferty DG. Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones. Biochemistry 2016; 55:1652-62. [PMID: 26673564 DOI: 10.1021/acs.biochem.5b01135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysine-specific demethylase 1A (KDM1A/LSD1) is a FAD-dependent enzyme that catalyzes the oxidative demethylation of histone H3K4me1/2 and H3K9me1/2 repressing and activating transcription, respectively. Although the active site is expanded compared to that of members of the greater amine oxidase superfamily, it is too sterically restricted to encompass the minimal 21-mer peptide substrate footprint. The remainder of the substrate/product is therefore expected to extend along the surface of KDM1A. We show that full-length histone H3, which lacks any posttranslational modifications, is a tight-binding, competitive inhibitor of KDM1A demethylation activity with a Ki of 18.9 ± 1.2 nM, a value that is approximately 100-fold higher than that of the 21-mer peptide product. The relative H3 affinity is independent of preincubation time, suggesting that H3 rapidly reaches equilibrium with KDM1A. Jump dilution experiments confirmed the increased binding affinity of full-length H3 was at least partially due to a slow off rate (koff) of 1.2 × 10(-3) s(-1), corresponding to a half-life (t1/2) of 9.63 min, and a residence time (τ) of 13.9 min. Independent affinity capture surface plasmon resonance experiments confirmed the tight-binding nature of the H3/KDM1A interaction, revealing a Kd of 9.02 ± 2.3 nM, a kon of (9.3 ± 1.5) × 10(4) M(-1) s(-1), and a koff of (8.4 ± 0.3) × 10(-4) s(-1). Additionally, no other core histones exhibited inhibition of KDM1A demethylation activity, which is consistent with H3 being the preferred histone substrate of KDM1A versus H2A, H2B, and H4. Together, these data suggest that KDM1A likely contains a histone H3 secondary specificity element on the enzyme surface that contributes significantly to its recognition of substrates and products.
Collapse
Affiliation(s)
- Jonathan M Burg
- Department of Chemistry, Duke University , B120 Levine Science Research Center, Box 90317, Durham, North Carolina 27708, United States
| | - Julie J Gonzalez
- Trinity College of Arts & Sciences, Duke University , Durham, North Carolina 27708, United States
| | - Kenneth R Maksimchuk
- Department of Biochemistry, Duke University Medical Center , 255 Nanaline H. Duke, Box 3711, Durham, North Carolina 27710, United States
| | - Dewey G McCafferty
- Department of Chemistry, Duke University , B120 Levine Science Research Center, Box 90317, Durham, North Carolina 27708, United States
| |
Collapse
|
66
|
DesJarlais R, Tummino PJ. Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology. Biochemistry 2016; 55:1584-99. [DOI: 10.1021/acs.biochem.5b01210] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Renee DesJarlais
- Lead Discovery, Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| | - Peter J. Tummino
- Lead Discovery, Janssen Research & Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
67
|
Speranzini V, Pilotto S, Sixma TK, Mattevi A. Touch, act and go: landing and operating on nucleosomes. EMBO J 2016; 35:376-88. [PMID: 26787641 DOI: 10.15252/embj.201593377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022] Open
Abstract
Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.
Collapse
Affiliation(s)
| | - Simona Pilotto
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
68
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
69
|
Dimitrova E, Turberfield AH, Klose RJ. Histone demethylases in chromatin biology and beyond. EMBO Rep 2015; 16:1620-39. [PMID: 26564907 PMCID: PMC4687429 DOI: 10.15252/embr.201541113] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023] Open
Abstract
Histone methylation plays fundamental roles in regulating chromatin-based processes. With the discovery of histone demethylases over a decade ago, it is now clear that histone methylation is dynamically regulated to shape the epigenome and regulate important nuclear processes including transcription, cell cycle control and DNA repair. In addition, recent observations suggest that these enzymes could also have functions beyond their originally proposed role as histone demethylases. In this review, we focus on recent advances in our understanding of the molecular mechanisms that underpin the role of histone demethylases in a wide variety of normal cellular processes.
Collapse
Affiliation(s)
| | | | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
70
|
Burg JM, Makhoul AT, Pemble CW, Link JE, Heller FJ, McCafferty DG. A rationally-designed chimeric KDM1A/KDM1B histone demethylase tower domain deletion mutant retaining enzymatic activity. FEBS Lett 2015; 589:2340-6. [PMID: 26226427 DOI: 10.1016/j.febslet.2015.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/23/2023]
Abstract
A target with therapeutic potential, lysine-specific demethylase 1A (KDM1A) is a regulator of gene expression whose tower domain is a protein-protein interaction motif. This domain facilitates the interaction of KDM1A with coregulators and multiprotein complexes that direct its activity to nucleosomes. We describe the design and characterization of a chimeric 'towerless' KDM1A, termed nΔ150 KDM1AΔTower KDM1B chimera (chKDM1AΔTower), which incorporates a region from the paralog lysine-specific demethylase 1B (KDM1B). This chimera copurifies with FAD and displays demethylase activity, but fails to bind the partner protein corepressor of the RE1-silencing transcription factor (CoREST). We conclude that KDM1A catalysis can be decoupled from tower-dependent interactions, lending chKDM1AΔTower useful for dissecting molecular contributions to KDM1A function.
Collapse
Affiliation(s)
| | - Alan T Makhoul
- Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Charles W Pemble
- Duke University Human Vaccine Institute Macromolecular Crystallography Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
71
|
Kim SA, Chatterjee N, Jennings MJ, Bartholomew B, Tan S. Extranucleosomal DNA enhances the activity of the LSD1/CoREST histone demethylase complex. Nucleic Acids Res 2015; 43:4868-80. [PMID: 25916846 PMCID: PMC4446439 DOI: 10.1093/nar/gkv388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/11/2015] [Indexed: 11/14/2022] Open
Abstract
The promoter regions of active genes in the eukaryotic genome typically contain nucleosomes post-translationally modified with a trimethyl mark on histone H3 lysine 4 (H3K4), while transcriptional enhancers are marked with monomethylated H3K4. The flavin-dependent monoamine oxidase LSD1 (lysine-specific demethylase 1, also known as KDM1) demethylates mono- and dimethylated H3K4 in peptide substrates, but requires the corepressor protein, CoREST, to demethylate nucleosome substrates. The molecular basis for how the LSD1/CoREST complex interacts with its physiological nucleosome substrate remains largely unknown. We examine here the role of extranucleosomal DNA beyond the nucleosome core particle for LSD1/CoREST function. Our studies of LSD1/CoREST's enzyme activity and nucleosome binding show that extranucleosomal DNA dramatically enhances the activity of LSD1/CoREST, and that LSD1/CoREST binds to the nucleosome as a 1:1 complex. Our photocrosslinking experiments further indicate both LSD1 and CoREST subunits are in close contact with DNA around the nucleosome dyad as well as extranucleosomal DNA. Our results suggest that the LSD1/CoREST interacts with extranucleosomal DNA when it productively engages its nucleosome substrate.
Collapse
Affiliation(s)
- Sang-Ah Kim
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, 108 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802-1014, USA
| | - Nilanjana Chatterjee
- UT MD Anderson Cancer Center, Department of Epigenetics and Molecular Carcinogenesis, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Matthew J Jennings
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, 108 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802-1014, USA
| | - Blaine Bartholomew
- UT MD Anderson Cancer Center, Department of Epigenetics and Molecular Carcinogenesis, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, 108 Althouse Laboratory, The Pennsylvania State University, University Park, PA 16802-1014, USA
| |
Collapse
|