52
|
Wang S, Qian Z, Li H, Lu K, Xu X, Weng S, He J, Li C. Identification and characterization of MKK7 as an upstream activator of JNK in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 48:285-294. [PMID: 26707780 DOI: 10.1016/j.fsi.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Mitogen-activated protein kinase kinase 7 (MKK7) is a key signal transduction regulator in c-Jun N-terminal kinase (JNK) signaling pathway, which is involved in a wide range of physiological and pathological processes. In this study, we described the molecular cloning of a new member of MKK7 group from Litopenaeus vannamei named as LvMKK7. The full-length cDNA of LvMKK7 was 3093 bp in length, with an open reading frame (ORF) of 1440bp encoding a putative protein of 479 amino acids. LvMKK7 contained a conserved kinase domain of 261 amino acids in which there was a characteristic S-K-A-K-T motif as a potential target site of phosphorylation by MKKK. Moreover, subcellular localization showed LvMKK7 was located in both the cytoplasm and the nucleus of Drosophila S2 cells. Real-time PCR indicated that LvMKK7 was universally expressed in all tested tissues and its expression in hepatopancreas was responsive to the challenge of LPS, Poly (I:C), Vibrio parahaemolyticus, Staphhylococcus aureus and white spot syndrome virus (WSSV). In addition, co-immunoprecipitation assay demonstrated that LvJNK was phosphorylated and activated by LvMKK7, which suggested LvMKK7 was the upper regulator of LvJNK. Furthermore, RNAi-mediated knockdown of LvMKK7 enhanced the sensitivity of shrimps to V. parahaemolyticus infection. Overall, our results suggested that LvMKK7 may play important roles in the shrimp innate immunity.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Kai Lu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Bio Control, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
53
|
Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 2015; 11:837. [PMID: 26538579 PMCID: PMC4670726 DOI: 10.15252/msb.20156269] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.
Collapse
Affiliation(s)
- András Zeke
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Tomas Bastys
- Max Planck Institute for Informatics, Saarbrücken, Germany Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anita Alexa
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Garai
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Mészáros
- Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Klára Kirsch
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Dosztányi
- MTA-ELTE Lendület Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Attila Reményi
- Lendület Protein Interaction Group, Institute of Enzymology Research Center for Natural Sciences Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
54
|
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015; 163:734-45. [PMID: 26456112 PMCID: PMC4622936 DOI: 10.1016/j.cell.2015.09.047] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 09/23/2015] [Indexed: 11/23/2022]
Abstract
The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs. Integrative structural biology reveals the basis of rapid nuclear transport Transient binding of disordered nucleoporins leaves their plasticity unaffected Multiple minimalistic low-affinity binding motifs create a polyvalent complex A highly reactive and dynamic surface permits an ultrafast binding mechanism
Collapse
|
55
|
Varadi M, Vranken W, Guharoy M, Tompa P. Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2015; 2:45. [PMID: 26301226 PMCID: PMC4525029 DOI: 10.3389/fmolb.2015.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and often implicated in human pathological conditions. The critical biological roles of these proteins, despite not adopting a well-defined fold, encouraged structural biologists to revisit their views on the protein structure-function paradigm. Unfortunately, investigating the characteristics and describing the structural behavior of IDPs is far from trivial, and inferring the function(s) of a disordered protein region remains a major challenge. Computational methods have proven particularly relevant for studying IDPs: on the sequence level their dependence on distinct characteristics determined by the local amino acid context makes sequence-based prediction algorithms viable and reliable tools for large scale analyses, while on the structure level the in silico integration of fundamentally different experimental data types is essential to describe the behavior of a flexible protein chain. Here, we offer an overview of the latest developments and computational techniques that aim to uncover how protein function is connected to intrinsic disorder.
Collapse
Affiliation(s)
- Mihaly Varadi
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Wim Vranken
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium ; ULB-VUB - Interuniversity Institute of Bioinformatics in Brussels (IB)2 Brussels, Belgium
| | - Mainak Guharoy
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Peter Tompa
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| |
Collapse
|