51
|
Sarkany RPE, Canfield M, Morgan M, Foster L, Johnstone K, Sainsbury K, Araujo-Soares V, Wulf HC, Weinman J, Walburn J, Norton S. Ultraviolet exposure to the face in patients with xeroderma pigmentosum and healthy controls: applying a novel methodology to define photoprotection behaviour. Br J Dermatol 2021; 186:713-720. [PMID: 34783007 PMCID: PMC9306996 DOI: 10.1111/bjd.20899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND In Xeroderma Pigmentosum (XP), the main means of preventing skin and eye cancers is extreme protection against ultraviolet radiation (UVR). Protection is most important for the face. OBJECTIVES We aimed to assess how well patients with XP adhere to medical advice to protect against UVR by objectively estimating the mean daily dose of UVR to the face. METHODS We objectively estimated the UVR dose to the face in 36 XP patients and 25 healthy individuals over 3 weeks in the summer. We used a new methodology which combined UVR dose measurements from a wrist-worn dosimeter with an activity diary record of face photoprotection behaviour for each 15 minute period spent outside. A protection factor was associated with each behaviour, and the data analysed using a negative binomial mixed-effects model. RESULTS The mean daily UVR dose (weighted for DNA damage capacity) to the face in the XP patients was 0.13 Standard Erythemal Doses (SED) (mean in healthy individuals = 0.51 SED). There was wide variation between patients (range <0.01 - 0.48 SED/day). Self-caring adult patients had a very similar UV dose to the face to cared-for patients (0.13 vs 0.12 SED/day) despite photoprotecting much more poorly when outside, because the self-caring adults were outside in daylight much less. CONCLUSIONS Photoprotection behaviour varies widely within the XP group indicating that non-adherence to photoprotection advice is a significant issue. Timing and duration of going outside are as important as photoprotective measures taken when outside, to determine the UVR exposure to the face. This new methodology will be of value in identifying the sources of UVR exposure in other conditions where facial UV exposure is a key outcome, particularly in patients with multiple non-melanoma skin cancers.
Collapse
Affiliation(s)
- R P E Sarkany
- Xeroderma Pigmentosum Unit, Guys and St Thomas' NHS Foundation Trust, UK
| | - M Canfield
- Health Psychology Section, Institute of Psychiatry, King's College London, Psychology & Neuroscience, UK
| | - M Morgan
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - L Foster
- Xeroderma Pigmentosum Unit, Guys and St Thomas' NHS Foundation Trust, UK
| | - K Johnstone
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - K Sainsbury
- Population Health Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - V Araujo-Soares
- Population Health Institute, Faculty of Medical Sciences, Newcastle University, UK.,Health Technology and Services Research, Technical Medical Centre, University of Twente, The Netherlands
| | - H C Wulf
- Department of Dermatology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - J Weinman
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - J Walburn
- School of Cancer and Pharmaceutical Sciences, King's College London, UK
| | - S Norton
- Health Psychology Section, Institute of Psychiatry, King's College London, Psychology & Neuroscience, UK
| |
Collapse
|
52
|
Lawrence KP, Delinasios GJ, Premi S, Young AR, Cooke MS. Perspectives on Cyclobutane Pyrimidine Dimers-Rise of the Dark Dimers †. Photochem Photobiol 2021; 98:609-616. [PMID: 34706095 DOI: 10.1111/php.13551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Some early reports demonstrate that levels of cyclobutane pyrimidine dimers (CPD) may increase after UVR exposure had ended, although these observations were treated as artifacts. More recently, it has been shown unequivocally that CPD formation does occur post-irradiation, with maximal levels occurring after about 2-3 h. These lesions have been termed "dark CPD" (dCPD). Subsequent studies have confirmed their presence in vitro, in mouse models and in human skin in vivo. Melanin carbonyls have a role in the formation of dCPD, but they have also been observed in amelanotic systems, indicating other, unknown process(es) exist. In both cases, the formation of dCPD can be prevented by the presence of certain antioxidants. We lack data on the spectral dependence of dCPD, but it is unlikely to be the same as for incident CPD (iCPD), which are formed only during irradiation. There is evidence that iCPD and dCPD may have different repair kinetics, although this remains to be elucidated. It is also unknown whether iCPD and dCPD have different biological properties. The formation of dCPD in human skin in vivo has implications for post solar exposure photoprotection, and skin carcinogenesis, with a need for this to be investigated further.
Collapse
Affiliation(s)
- Karl P Lawrence
- St. John's Institute of Dermatology, King's College London, London, UK
| | | | - Sanjay Premi
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antony R Young
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
53
|
Abiona A, Cordeiro N, Fawcett H, Tamura D, Khan SG, DiGiovanna JJ, Lehmann AR, Fassihi H. Metronidazole-Induced Hepatitis in a Teenager With Xeroderma Pigmentosum and Trichothiodystrophy Overlap. Pediatrics 2021; 148:peds.2021-050360. [PMID: 34593652 DOI: 10.1542/peds.2021-050360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors. This reveals that the metronidazole sensitivity was an intrinsic property of her cells. It is well recognized that patients with Cockayne syndrome, another NER disorder, are at high risk of metronidazole-induced hepatotoxicity, but this had not been reported in individuals with other NER disorders. We would urge extreme caution in the use of metronidazole in the management of individuals with the xeroderma pigmentosum and trichothiodystrophy overlap or trichothiodystrophy phenotypes.
Collapse
Affiliation(s)
- Adesoji Abiona
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Nuno Cordeiro
- Paediatric Neurodisability Service, Rainbow House, Ayrshire Central Hospital, Irvine, NHS Ayrshire and Arran, Scotland, United Kingdom
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sikandar G Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - John J DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
54
|
Martens MC, Emmert S, Boeckmann L. Xeroderma Pigmentosum: Gene Variants and Splice Variants. Genes (Basel) 2021; 12:1173. [PMID: 34440347 PMCID: PMC8391564 DOI: 10.3390/genes12081173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
The nucleotide excision repair (NER) is essential for the repair of ultraviolet (UV)-induced DNA damage, such as cyclobutane pyrimidine dimers (CPDs) and 6,4-pyrimidine-pyrimidone dimers (6,4-PPs). Alterations in genes of the NER can lead to DNA damage repair disorders such as Xeroderma pigmentosum (XP). XP is a rare autosomal recessive genetic disorder associated with UV-sensitivity and early onset of skin cancer. Recently, extensive research has been conducted on the functional relevance of splice variants and their relation to cancer. Here, we focus on the functional relevance of alternative splice variants of XP genes.
Collapse
Affiliation(s)
| | | | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venerology, University Medical Center Rostock, 18057 Rostock, Germany; (M.C.M.); (S.E.)
| |
Collapse
|
55
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
56
|
Wang H, Lautrup S, Caponio D, Zhang J, Fang EF. DNA Damage-Induced Neurodegeneration in Accelerated Ageing and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136748. [PMID: 34201700 PMCID: PMC8268089 DOI: 10.3390/ijms22136748] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
DNA repair ensures genomic stability to achieve healthy ageing, including cognitive maintenance. Mutations on genes encoding key DNA repair proteins can lead to diseases with accelerated ageing phenotypes. Some of these diseases are xeroderma pigmentosum group A (XPA, caused by mutation of XPA), Cockayne syndrome group A and group B (CSA, CSB, and are caused by mutations of CSA and CSB, respectively), ataxia-telangiectasia (A-T, caused by mutation of ATM), and Werner syndrome (WS, with most cases caused by mutations in WRN). Except for WS, a common trait of the aforementioned progerias is neurodegeneration. Evidence from studies using animal models and patient tissues suggests that the associated DNA repair deficiencies lead to depletion of cellular nicotinamide adenine dinucleotide (NAD+), resulting in impaired mitophagy, accumulation of damaged mitochondria, metabolic derailment, energy deprivation, and finally leading to neuronal dysfunction and loss. Intriguingly, these features are also observed in Alzheimer’s disease (AD), the most common type of dementia affecting more than 50 million individuals worldwide. Further studies on the mechanisms of the DNA repair deficient premature ageing diseases will help to unveil the mystery of ageing and may provide novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Heling Wang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Domenica Caponio
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
| | - Jianying Zhang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, Akershus University Hospital, University of Oslo, 1478 Lørenskog, Norway; (H.W.); (S.L.); (D.C.); (J.Z.)
- The Norwegian Centre on Healthy Ageing (NO-Age), 0010 Oslo, Norway
- Correspondence:
| |
Collapse
|
57
|
Reduced levels of prostaglandin I 2 synthase: a distinctive feature of the cancer-free trichothiodystrophy. Proc Natl Acad Sci U S A 2021; 118:2024502118. [PMID: 34155103 DOI: 10.1073/pnas.2024502118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.
Collapse
|
58
|
Krasikova Y, Rechkunova N, Lavrik O. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities. Int J Mol Sci 2021; 22:ijms22126220. [PMID: 34207557 PMCID: PMC8228863 DOI: 10.3390/ijms22126220] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway, which can remove diverse bulky DNA lesions destabilizing a DNA duplex. NER defects cause several autosomal recessive genetic disorders. Xeroderma pigmentosum (XP) is one of the NER-associated syndromes characterized by low efficiency of the removal of bulky DNA adducts generated by ultraviolet radiation. XP patients have extremely high ultraviolet-light sensitivity of sun-exposed tissues, often resulting in multiple skin and eye cancers. Some XP patients develop characteristic neurodegeneration that is believed to derive from their inability to repair neuronal DNA damaged by endogenous metabolites. A specific class of oxidatively induced DNA lesions, 8,5′-cyclopurine-2′-deoxynucleosides, is considered endogenous DNA lesions mainly responsible for neurological problems in XP. Growing evidence suggests that XP is accompanied by defective mitophagy, as in primary mitochondrial disorders. Moreover, NER pathway is absent in mitochondria, implying that the mitochondrial dysfunction is secondary to nuclear NER defects. In this review, we discuss the current understanding of the NER molecular mechanism and focuses on the NER linkage with the neurological degeneration in patients with XP. We also present recent research advances regarding NER involvement in oxidative DNA lesion repair. Finally, we highlight how mitochondrial dysfunction may be associated with XP.
Collapse
Affiliation(s)
- Yuliya Krasikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Nadejda Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
| | - Olga Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Y.K.); (N.R.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
59
|
Pereira TDSF, Castro LP, Menck CFM, Maia MHT, Souza LLD, Fonseca FP, Pontes HAR, Pontes FSC, Gomez RS. Xeroderma pigmentosum variant: squamous cell carcinoma of the lower lip harboring exon 11 mutation of POLH. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:e97-e105. [PMID: 34030998 DOI: 10.1016/j.oooo.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare inherited disease caused by deficiencies in DNA damage repair, which mainly results from the failure of nucleotide excision repair or defects in translesion DNA synthesis. The development of multiple malignancies is one of the most prominent features of this condition, which is clinically characterized by the occurrence of hyperpigmentation and lesions associated with sunlight exposure. Lip squamous cell carcinoma in patients with XP has rarely been reported, and information regarding the genetic analysis of these patients is limited. In this report, a case of a 20-year-old patient who developed squamous cell carcinoma in the lower lip is described. Although the tumor was surgically excised, the patient presented with recurrence a few months later. Targeted sequencing using a customized panel of DNA repair genes revealed a mutation in POLH, the gene encoding DNA polymerase eta. Therefore, molecular characterization is important to further improve the understanding of possible phenotype-genotype correlations and mechanisms involved in the pathogenesis of XP.
Collapse
Affiliation(s)
| | - Ligia Pereira Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Helena Thomaz Maia
- Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Lucas Lacerda de Souza
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helder Antônio Rebelo Pontes
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Flavia Sirotheau Correa Pontes
- Department of Oral Pathology, University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
60
|
Rayinda T, van Steensel M, Danarti R. Inherited skin disorders presenting with poikiloderma. Int J Dermatol 2021; 60:1343-1353. [PMID: 33739439 DOI: 10.1111/ijd.15498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
Poikiloderma is a skin condition that combines atrophy, telangiectasia, and macular pigment changes (hypo- as well as hyperpigmentation). It is often mistaken for mottled pigmentation by general practitioners or nondermatology specialists. Poikiloderma can be a key presenting symptom of Rothmund-Thomson syndrome (RTS), dyskeratosis congenita (DC), hereditary sclerosing poikiloderma (HSP), hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP), xeroderma pigmentosum (XP), Bloom syndrome (BS), Kindler syndrome (KS), and Clericuzio-type poikiloderma with neutropenia (PN). In these conditions, poikiloderma starts early in life, usually before the second or third year. They may also be associated with photosensitivity and other significant multi-organ manifestation developed later in life. Poikiloderma could indicate the presence of a genetic disorder with potentially serious consequences. Poikiloderma almost always precedes more severe manifestations of these genodermatoses. Prompt diagnosis at the time of presentation could help to prevent complications and mitigate the course of the disease. This review discusses these to help the practicing clinician manage patients presenting with the symptom. To further facilitate early recognition, this paper also proposes a simple diagnostic algorithm.
Collapse
Affiliation(s)
- Tuntas Rayinda
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maurice van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,National Skin Center, Singapore, Singapore
| | - Retno Danarti
- Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
61
|
Baykal C, Atcı T, Yılmaz Z, Büyükbabani N. Skin tumors in xeroderma pigmentosum: Evaluation of a large series and a literature review. J Cutan Pathol 2021; 48:884-895. [PMID: 33569789 DOI: 10.1111/cup.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 02/02/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare genodermatosis with a lifelong propensity to develop malignant skin tumors. METHODS In this retrospective study, 24 XP patients were evaluated with regard to frequency and clinicopathological features of benign and malignant skin tumors. RESULTS Seventeen patients had at least one malignant skin tumor diagnosed: basal cell carcinoma (BCC) in 13 patients (n = 72), basosquamous carcinoma in three patients (n = 4), squamous cell carcinoma in six patients (n = 13), keratoacanthoma in three patients (n = 15), and melanoma in six patients (n = 18). Most melanomas (n = 15) were in situ lesions. Several benign skin tumors were noted such as tricholemmoma (n = 1), trichoepithelioma (n = 1), trichoblastoma (n = 1), follicular infundibulum tumor (n = 1), keratoacanthoma-like follicular lesion (n = 1), adnexal tumors with folliculosebaceous (n = 1) and tricholemmal differentiation (n = 1), and neurofibroma (n = 1). Benign vascular proliferations including pyogenic granulomas (n = 8), widespread telangiectasias, and senile angioma-like lesions were also observed in 3, 5, and 5 patients, respectively. CONCLUSIONS Similar to many reports, BCC was found to be the most common malignant skin tumor. The high prevalence of benign adnexal tumors of follicular differentiation, some of them showing mixed histopathological features and various vascular proliferations in our series raises the question of whether they indicate a formerly undescribed association with XP.
Collapse
Affiliation(s)
- Can Baykal
- Department of Dermatology and Venereology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuğba Atcı
- Department of Dermatology and Venereology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Zeynep Yılmaz
- Department of Dermatology and Venereology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nesimi Büyükbabani
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
62
|
In Silico Drug Repurposing by Structural Alteration after Induced Fit: Discovery of a Candidate Agent for Recovery of Nucleotide Excision Repair in Xeroderma Pigmentosum Group D Mutant (R683W). Biomedicines 2021; 9:biomedicines9030249. [PMID: 33802476 PMCID: PMC7999925 DOI: 10.3390/biomedicines9030249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Xeroderma pigmentosum complementation group D (XPD) is a UV-sensitive syndrome and a rare incurable genetic disease which is caused by the genetic mutation of the excision repair cross-complementation group 2 gene (ERCC2). Patients who harbor only XPD R683W mutant protein develop severe photosensitivity and progressive neurological symptoms. Cultured cells derived from patients with XPD (XPD R683W cells) demonstrate a reduced nucleotide excision repair (NER) ability. We hope to ameliorate clinical symptoms if we can identify candidate agents that would aid recovery of the cells' NER ability. To investigate such candidates, we created in silico methods of drug repurposing (in silico DR), a strategy that utilizes the recovery of ATP-binding in the XPD R683W protein after the induced fit. We chose 4E1RCat and aprepitant as the candidates for our in silico DR, and evaluated them by using the UV-induced unscheduled DNA synthesis (UDS) assay to verify the recovery of NER in XPD R683W cells. UDS values of the cells improved about 1.4-1.7 times after 4E1RCat treatment compared with solvent-only controls; aprepitant showed no positive effect. In this study, therefore, we succeeded in finding the candidate agent 4E1RCat for XPD R683W. We also demonstrated that our in silico DR method is a cost-effective approach for drug candidate discovery.
Collapse
|
63
|
Clinical and Mutational Spectrum of Xeroderma Pigmentosum in Egypt: Identification of Six Novel Mutations and Implications for Ancestral Origins. Genes (Basel) 2021; 12:genes12020295. [PMID: 33672602 PMCID: PMC7924063 DOI: 10.3390/genes12020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Xeroderma pigmentosum is a rare autosomal recessive skin disorder characterized by freckle-like dry pigmented skin, photosensitivity, and photophobia. Skin and ocular symptoms are confined to sun exposed areas of the body. Patients have markedly increased risk for UV-induced skin, ocular, and oral cancers. Some patients develop neurodegenerative symptoms, including diminished tendon reflexes and microcephaly. In this study, we describe clinical and genetic findings of 36 XP patients from Egypt, a highly consanguineous population from North Africa. Thorough clinical evaluation followed by Sanger sequencing of XPA and XPC genes were done. Six novel and seven previously reported mutations were identified. Phenotype-genotype correlation was investigated. We report clinical and molecular findings consistent with previous reports of countries sharing common population structure, and geographical and historical backgrounds with implications on common ancestral origins and historical migration flows. Clinical and genetic profiling improves diagnosis, management, counselling, and implementation of future targeted therapies.
Collapse
|
64
|
Fajuyigbe D, Douki T, Dijk A, Sarkany RPE, Young AR. Dark cyclobutane pyrimidine dimers are formed in the epidermis of Fitzpatrick skin types I/II and VI in vivo after exposure to solar‐simulated radiation. Pigment Cell Melanoma Res 2021; 34:575-584. [DOI: 10.1111/pcmr.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Antony R. Young
- St John’s Institute of Dermatology King’s College London London UK
| |
Collapse
|
65
|
Reunert J, van den Heuvel A, Rust S, Marquardt T. Cerebro-oculo-facio-skeletal syndrome caused by the homozygous pathogenic variant Gly47Arg in ERCC2. Am J Med Genet A 2020; 185:930-936. [PMID: 33369099 DOI: 10.1002/ajmg.a.62048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022]
Abstract
DNA damage repair is a pivotal mechanism in life. The nucleotide excision repair pathway protects the cells against DNA damage and involves XPD, an ATP dependent helicase that is part of the multisubunit protein complex TFIIH. XPD is encoded by the excision repair cross-complementation group 2 gene (ERCC2). Only three patients with cerebro-oculo-facio-skeletal syndrome (COFS), caused by mutations in ERCC2, have been published so far. This report describes a boy with the homozygous amino acid change p.Gly47Arg in XPD. He presented with profound microcephaly, psychomotor retardation, failure to thrive, cutaneous photosensitivity, a bilateral hearing deficit and optic atrophy, thrombocytopenia, and recurrent episodes of pneumonia. We report the first homozygous occurrence of the pathogenic variant Gly47Arg in the ERCC2 gene. Occurring homozygous, this variant was associated with COFS syndrome, leading to early death of the patient at the age of 21 months.
Collapse
Affiliation(s)
- Janine Reunert
- Universitätsklinikum Münster, Klinik für Kinder und Jugendmedizin, Münster, Germany
| | | | - Stephan Rust
- Universitätsklinikum Münster, Klinik für Kinder und Jugendmedizin, Münster, Germany
| | - Thorsten Marquardt
- Universitätsklinikum Münster, Klinik für Kinder und Jugendmedizin, Münster, Germany
| |
Collapse
|
66
|
Greig A, Aloni K, Orchard G, Shams M, Craythorne E, Fassihi H. Treatment of multiple facial basal cell carcinomas in a child with xeroderma pigmentosum complementation group C with Mohs micrographic surgery. Br J Dermatol 2020; 184:e4. [PMID: 33325539 DOI: 10.1111/bjd.19323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A Greig
- Department of Plastic Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - K Aloni
- Department of Plastic Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - G Orchard
- Viapath, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - M Shams
- Viapath, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - E Craythorne
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - H Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| |
Collapse
|
67
|
Paul D, Mu H, Tavakoli A, Dai Q, Chen X, Chakraborty S, He C, Ansari A, Broyde S, Min JH. Tethering-facilitated DNA 'opening' and complementary roles of β-hairpin motifs in the Rad4/XPC DNA damage sensor protein. Nucleic Acids Res 2020; 48:12348-12364. [PMID: 33119737 PMCID: PMC7708039 DOI: 10.1093/nar/gkaa909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023] Open
Abstract
XPC/Rad4 initiates eukaryotic nucleotide excision repair on structurally diverse helix-destabilizing/distorting DNA lesions by selectively 'opening' these sites while rapidly diffusing along undamaged DNA. Previous structural studies showed that Rad4, when tethered to DNA, could also open undamaged DNA, suggesting a 'kinetic gating' mechanism whereby lesion discrimination relied on efficient opening versus diffusion. However, solution studies in support of such a mechanism were lacking and how 'opening' is brought about remained unclear. Here, we present crystal structures and fluorescence-based conformational analyses on tethered complexes, showing that Rad4 can indeed 'open' undamaged DNA in solution and that such 'opening' can largely occur without one or the other of the β-hairpin motifs in the BHD2 or BHD3 domains. Notably, the Rad4-bound 'open' DNA adopts multiple conformations in solution notwithstanding the DNA's original structure or the β-hairpins. Molecular dynamics simulations reveal compensatory roles of the β-hairpins, which may render robustness in dealing with and opening diverse lesions. Our study showcases how fluorescence-based studies can be used to obtain information complementary to ensemble structural studies. The tethering-facilitated DNA 'opening' of undamaged sites and the dynamic nature of 'open' DNA may shed light on how the protein functions within and beyond nucleotide excision repair in cells.
Collapse
Affiliation(s)
- Debamita Paul
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Amirrasoul Tavakoli
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Qing Dai
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
68
|
Fayyad N, Kobaisi F, Beal D, Mahfouf W, Ged C, Morice-Picard F, Fayyad-Kazan M, Fayyad-Kazan H, Badran B, Rezvani HR, Rachidi W. Xeroderma Pigmentosum C (XPC) Mutations in Primary Fibroblasts Impair Base Excision Repair Pathway and Increase Oxidative DNA Damage. Front Genet 2020; 11:561687. [PMID: 33329698 PMCID: PMC7728722 DOI: 10.3389/fgene.2020.561687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Xeroderma Pigmentosum C (XPC) is a multi-functional protein that is involved not only in the repair of bulky lesions, post-irradiation, via nucleotide excision repair (NER) per se but also in oxidative DNA damage mending. Since base excision repair (BER) is the primary regulator of oxidative DNA damage, we characterized, post-Ultraviolet B-rays (UVB)-irradiation, the detailed effect of three different XPC mutations in primary fibroblasts derived from XP-C patients on mRNA, protein expression and activity of different BER factors. We found that XP-C fibroblasts are characterized by downregulated expression of different BER factors including OGG1, MYH, APE1, LIG3, XRCC1, and Polβ. Such a downregulation was also observed at OGG1, MYH, and APE1 protein levels. This was accompanied with an increase in DNA oxidative lesions, as evidenced by 8-oxoguanine levels, immediately post-UVB-irradiation. Unlike in normal control cells, these oxidative lesions persisted over time in XP-C cells having lower excision repair capacities. Taken together, our results indicated that an impaired BER pathway in XP-C fibroblasts leads to longer persistence and delayed repair of oxidative DNA damage. This might explain the diverse clinical phenotypes in XP-C patients suffering from cancer in both photo-protected and photo-exposed areas. Therapeutic strategies based on reinforcement of BER pathway might therefore represent an innovative path for limiting the drawbacks of NER-based diseases, as in XP-C case.
Collapse
Affiliation(s)
- Nour Fayyad
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Farah Kobaisi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| | - David Beal
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France
| | - Walid Mahfouf
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France
| | - Cécile Ged
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Mohammad Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Hamid R Rezvani
- Université de Bordeaux, Inserm, BMGIC, U1035, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Walid Rachidi
- University Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, Grenoble, France.,University Grenoble Alpes, CEA, Inserm, BIG-BGE U1038, Grenoble, France
| |
Collapse
|
69
|
Chen L, Bellone RR, Wang Y, Singer-Berk M, Sugasawa K, Ford JM, Artandi SE. A novel DDB2 mutation causes defective recognition of UV-induced DNA damages and prevalent equine squamous cell carcinoma. DNA Repair (Amst) 2020; 97:103022. [PMID: 33276309 DOI: 10.1016/j.dnarep.2020.103022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Squamous cell carcinoma (SCC) occurs frequently in the human Xeroderma Pigmentosum (XP) syndrome and is characterized by deficient UV-damage repair. SCC is the most common equine ocular cancer and the only associated genetic risk factor is a UV-damage repair protein. Specifically, a missense mutation in horse DDB2 (T338M) was strongly associated with both limbal SCC and third eyelid SCC in three breeds of horses (Halflinger, Belgian, and Rocky Mountain Horses) and was hypothesized to impair binding to UV-damaged DNA. Here, we investigate DDB2-T338M mutant's capacity to recognize UV lesions in vitro and in vivo, together with human XP mutants DDB2-R273H and -K244E. We show that the recombinant DDB2-T338M assembles with DDB1, but fails to show any detectable binding to DNA substrates with or without UV lesions, due to a potential structural disruption of the rigid DNA recognition β-loop. Consistently, we demonstrate that the cellular DDB2-T338M is defective in its recruitment to focally radiated DNA damages, and in its access to chromatin. Thus, we provide direct functional evidence indicating the DDB2-T338M recapitulates molecular defects of human XP mutants, and is the causal loss-of-function allele that gives rise to equine ocular SCCs. Our findings shed new light on the mechanism of DNA recognition by UV-DDB and on the initiation of ocular malignancy.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Moriel Singer-Berk
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA; Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA
| | - Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - James M Ford
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
70
|
González-Corrochano R, Ruiz FM, Taylor NMI, Huecas S, Drakulic S, Spínola-Amilibia M, Fernández-Tornero C. The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair. Nucleic Acids Res 2020; 48:9943-9958. [PMID: 32821917 PMCID: PMC7515719 DOI: 10.1093/nar/gkaa688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
Nucleotide excision repair (NER) is an essential pathway to remove bulky lesions affecting one strand of DNA. Defects in components of this repair system are at the ground of genetic diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). The XP complementation group G (XPG) endonuclease cleaves the damaged DNA strand on the 3′ side of the lesion coordinated with DNA re-synthesis. Here, we determined crystal structures of the XPG nuclease domain in the absence and presence of DNA. The overall fold exhibits similarities to other flap endonucleases but XPG harbors a dynamic helical arch that is uniquely oriented and defines a gateway. DNA binding through a helix-2-turn-helix motif, assisted by one flanking α-helix on each side, shows high plasticity, which is likely relevant for DNA scanning. A positively-charged canyon defined by the hydrophobic wedge and β-pin motifs provides an additional DNA-binding surface. Mutational analysis identifies helical arch residues that play critical roles in XPG function. A model for XPG participation in NER is proposed. Our structures and biochemical data represent a valuable tool to understand the atomic ground of XP and CS, and constitute a starting point for potential therapeutic applications.
Collapse
Affiliation(s)
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Nicholas M I Taylor
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Srdja Drakulic
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Carlos Fernández-Tornero
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
71
|
Walburn J, Sainsbury K, Foster L, Weinman J, Morgan M, Norton S, Canfield M, Chadwick P, Sarkany B, Araújo-Soares V. Why? What? How? Using an Intervention Mapping approach to develop a personalised intervention to improve adherence to photoprotection in patients with Xeroderma Pigmentosum. Health Psychol Behav Med 2020; 8:475-500. [PMID: 34040882 PMCID: PMC8114411 DOI: 10.1080/21642850.2020.1819287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background: Intervention Mapping (IM) is a systematic approach for developing theory-based interventions across a variety of contexts and settings. This paper describes the development of a complex intervention designed to reduce the dose of ultraviolet radiation (UVR) reaching the face of adults with Xeroderma Pigmentosum (XP), by improving photoprotection. XP is a genetic condition that without extreme UVR photoprotection, leads to high risk of developing skin cancer. Methods: The IM protocol of 6 steps was applied, involving comprehensive mixed-methods formative research. Key stakeholders (XP clinical staff and Patient and Public Involvement Panel), were instrumental at every step. Behaviour change methods were informed by the IM taxonomy, therapeutic approaches (e.g. ACT, CBT) and coded according to the taxonomy of behaviour change techniques (version 1). Results: We designed a personalised modular intervention to target psychosocial determinants of photoprotective activities that influence the amount of UVR reaching the face. Content was developed to target determinants of motivation to protect and factors preventing the enactment of behaviours. Participants received personalised content addressing determinants/barriers most relevant to them, as well as core ‘behaviour-change’ material, considered important for all (e.g. SMART goals). Core and personalised content was delivered via 7 one-to-one sessions with a trained facilitator using a manual and purpose designed materials: Magazine; text messages; sunscreen application video; goal-setting tools (e.g. UVR dial and face protection guide); activity sheets. Novel features included use of ACT-based values to enhance intrinsic motivation, targeting of emotional barriers to photoprotection, addressing appearance concerns and facilitating habit formation. Conclusion: IM was an effective approach for complex intervention design. The structure (e.g. use of matrices) tethered the intervention tightly to theory and evidence-based approaches. The significant amount of time required needs to be considered and may hinder translation of IM into clinical and non-academic settings.
Collapse
Affiliation(s)
- Jessica Walburn
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Kirby Sainsbury
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Lesley Foster
- National Xeroderma Pigmentosum Service, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - John Weinman
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Myfanwy Morgan
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Sam Norton
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Martha Canfield
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paul Chadwick
- Centre for Behaviour Change, University College London, London, UK
| | - Bob Sarkany
- National Xeroderma Pigmentosum Service, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
| | - Vera Araújo-Soares
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
72
|
Zhang N, Fu X, Chen X, Chen L, Wang M. Variant subtype of xeroderma pigmentosum with multiple basal cell carcinomas diagnosed in a Chinese woman. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 37:161-164. [PMID: 33095961 PMCID: PMC8048588 DOI: 10.1111/phpp.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Na Zhang
- Department of Dermatology, Jinhua Municipal Central Hospital (Affiliated Jinhua Hospital, Zhejiang University School of Medicine), JinHua, China
| | - Xuefeng Fu
- Department of Dermatology, Jinhua Municipal Central Hospital (Affiliated Jinhua Hospital, Zhejiang University School of Medicine), JinHua, China
| | - Xiaoxiao Chen
- Department of Dermatology, Jinhua Municipal Central Hospital (Affiliated Jinhua Hospital, Zhejiang University School of Medicine), JinHua, China
| | - Lin Chen
- Department of Intensive Care Unit, Jinhua Municipal Central Hospital (Affiliated Jinhua Hospital, Zhejiang University School of Medicine), JinHua, China
| | - Meiyan Wang
- Department of Dermatology, Jinhua Municipal Central Hospital (Affiliated Jinhua Hospital, Zhejiang University School of Medicine), JinHua, China
| |
Collapse
|
73
|
Sharma R, Lewis S, Wlodarski MW. DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Front Pediatr 2020; 8:570084. [PMID: 33194896 PMCID: PMC7644847 DOI: 10.3389/fped.2020.570084] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage response is essential to human physiology. A broad spectrum of pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance of essential DNA damage response pathways manifest early in life with multi-systemic involvement and a high propensity for hematologic and solid cancers, as well as bone marrow failure. In this review, we describe classic biallelic DNA repair cancer syndromes arising from faulty single- and double-strand DNA break repair, as well as dysfunctional DNA helicases. These clinical entities include xeroderma pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2, as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth understanding of these disorders, we provide historical overview and discuss the interplay between complex biology and heterogeneous clinical manifestations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sara Lewis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
74
|
Lehmann AR, Fassihi H. Molecular analysis directs the prognosis, management and treatment of patients with xeroderma pigmentosum. DNA Repair (Amst) 2020; 93:102907. [PMID: 33087273 DOI: 10.1016/j.dnarep.2020.102907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xeroderma pigmentosum (XP) is a well-studied disorder of (in most cases) nucleotide excision repair. The establishment in 2010 of a multidisciplinary XP clinic in the UK has enabled us to make a detailed analysis of genotype-phenotype relationships in XP patients and in several instances to make confident prognostic predictions. Splicing mutations in XPA and XPD and a specific amino acid change in XPD are associated with mild phenotypes, and individuals assigned to the XP-F group appear to have reduced pigmentation changes and a lower susceptibility to skin cancer than XPs in other groups. In an XP-C patient with advanced metastatic cancer arising from an angiosarcoma, molecular analysis of the tumour DNA suggested that immunotherapy, not normally recommended for angiosarcomas, might in this case be successful, and indeed the patient showed a dramatic recovery following immunotherapy treatment. These studies show that molecular analyses can improve the management, prognoses and therapy for individuals with XP.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, Guy's and St Thomas' Foundation Trust, London SE1 9RT, UK
| |
Collapse
|
75
|
Vekinis J, Morley AMS. Ocular surface biopsies of patients with xeroderma pigmentosum in the United Kingdom: a retrospective observational case series. Br J Ophthalmol 2020; 105:1222-1230. [PMID: 32892165 DOI: 10.1136/bjophthalmol-2020-316125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/13/2020] [Accepted: 08/01/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS To describe the results of all ocular surface biopsies performed on patients with xeroderma pigmentosum (XP) under the care of the UK Nationally Commissioned XP Service as well as the treatment of any subsequent ocular surface conditions diagnosed. METHODS Retrospective analysis of medical records. All patients with XP seen by the service from 2010 to 2019 were included and those with ocular surface biopsies were identified. Data was collected on demographics, complementation subgroup (A-G and V), biopsy details, histopathological analysis and subsequent management. RESULTS Of 108 patients seen in our service, 17 underwent at least one ocular surface biopsy. 45 biopsy samples were available from 13 patients of which 65% were performed on patients from complementation subgroup C (XP-C). Biopsies were categorised as either non-mapping (clinically abnormal ocular surface tissue) or mapping (multiple sites including clinically normal tissue). 67 percent of non-mapping biopsies had a mass as their indication and 46% showed ocular surface squamous neoplasia. General non-dysplastic damage was seen in 67% of non-mapping biopsies and melanocytic changes were seen in 25% of non-mapping and 81% of mapping biopsies. 47 percent of biopsy outcomes required no additional treatment but, of those that did, 50% received mitomycin C. CONCLUSIONS This is the largest reported series of ocular surface biopsies in patients with XP. It identifies a background of ocular surface melanocytic, degenerative and inflammatory changes, with patients with XP-C showing the most severe effects. We highlight challenges faced in interpreting their histopathology and in planning subsequent treatments.
Collapse
Affiliation(s)
- John Vekinis
- The Nationally Commissioned Xeroderma Pigmentosum Service, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK .,Department of Ophthalmology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - Ana M Susana Morley
- The Nationally Commissioned Xeroderma Pigmentosum Service, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK.,Department of Ophthalmology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
76
|
Macke EL, Morales-Rosado JA, Gupta A, Schmitz CT, Kruisselbrink T, Lanpher B, Klee EW. A novel missense variant and multiexon deletion causing a delayed presentation of xeroderma pigmentosum, group C. Cold Spring Harb Mol Case Stud 2020; 6:a005165. [PMID: 32843428 PMCID: PMC7476405 DOI: 10.1101/mcs.a005165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 12/02/2022] Open
Abstract
Pathogenic variants in the XPC complex subunit, DNA damage recognition, and repair factor (XPC) are the cause of xeroderma pigmentosum, group C (MIM: 278720). Xeroderma pigmentosum is an inherited condition characterized by hypersensitivity to ultraviolet (UV) irradiation and increased risk of skin cancer due to a defect in nucleotide excision repair (NER). Here we describe an individual with a novel missense variant and deletion of exons 14-15 in XPC presenting with a history of recurrent melanomas. The proband is a 39-yr-old female evaluated through the Mayo Clinic Department of Clinical Genomics. Prior to age 36, she had more than 60 skin biopsies that showed dysplastic nevi, many of which had atypia. At age 36 she presented with her first melanoma in situ, and since then has had more than 10 melanomas. The proband underwent research whole-exome sequencing (WES) through the Mayo Clinic's Center for Individualized Medicine and a novel heterozygous variant of uncertain significance (VUS) in XPC (c.1709T > G, p.Val570Gly) was identified. Clinical confirmation pursued via XPC gene sequencing and deletion/duplication analysis of XPC revealed a pathogenic heterozygous deletion of ∼1 kb within XPC, including exons 14 and 15. Research studies determined the alterations to be in trans Although variants in XPC generally result in early-onset skin cancer in childhood, the proband is atypical in that she did not present with her first melanoma until age 36. Review of the patient's clinical, pathological, and genetic findings points to a diagnosis of delayed presentation of xeroderma pigmentosum.
Collapse
Affiliation(s)
- Erica L Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Joel A Morales-Rosado
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Aditi Gupta
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | - Brendan Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
77
|
Anderson R, Walburn J, Morgan M. Approaches to Photoprotection and Normalization in Highly Adherent Families of Children With Xeroderma Pigmentosum in the United Kingdom. QUALITATIVE HEALTH RESEARCH 2020; 30:1275-1286. [PMID: 30741094 DOI: 10.1177/1049732319826561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we examine photoprotection for children with Xeroderma pigmentosum (XP), a rare genetic skin disease requiring rigorous photoprotection, to reduce risks of severe burning and skin cancers from exposure to ultraviolet radiation (UVR). We elicit the views and experiences of both children and their parents to inform the care and support provided. Qualitative semistructured interviews were undertaken with 12 child-parent dyads recruited from the National XP Specialist service in London. We employed a framework approach to analysis. This identified a high level of photoprotection based either on "protection" to facilitate normal activities or "avoidance" of outdoor activity with priority given to normality in the future. These approaches were shaped by perceptions of clinical risk, the emphasis given to a normal family life and families' circumstances and resources. The findings contribute to notions of normalization and coping with demanding care regimens and inform approaches to working with families.
Collapse
|
78
|
Karagün E, Eroz R, Gamsızkan M, Baysak S, Eyup Y, Ozcan Y. Novel mutation identified in the DDB2 gene in patients with xeroderma pigmentosum group-E. Int J Dermatol 2020; 59:989-996. [PMID: 32530099 DOI: 10.1111/ijd.14957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare photosensitive syndrome, which is divided into eight complementation groups (XP-A to XP-G and XPV) and characterized by skin cancers diagnosed at early age. A family of seven members (age range between 5 and 47 years) with carriers of the novel nonsense mutation that causes XP-E type were included in the current study. METHODS DNA was isolated from peripheral blood samples of the proband, and cancer predisposition genes were sequenced with next-generation sequencing. The demographic features and the laboratory, clinical, and histopathological findings of patients were evaluated. RESULTS In the proband, squamous cell carcinoma was first diagnosed in the right-eye cornea at the age of 13 years and then in the left-eye cornea at the age of 15 years. Later, the patient was diagnosed with basosquamous cell carcinoma on the dorsum of the nose at the age of 18 years. After genetic analysis, a novel nonsense c.1063C>T(p.Arg355Ter) pathogenic variation that causes XP-E type was detected as homozygous in the DDB2 gene of the proband and her siblings, 11 and 5 years of age, and as heterozygous in her parents and a 22-year-old brother. CONCLUSION Because of the occurrence of early termination codon, truncated nonfunctional proteins or proteins with deleterious loss or gain-of-function activities are synthesized in nonsense mutation. Thus, to avoid the development of pathological lesions, it is important that such patients with nonsense mutation stay away from agents that might cause DNA damage and develop an appropriate lifestyle according to this condition.
Collapse
Affiliation(s)
| | - Recep Eroz
- Duzce University Medical School, Duzce, Turkey
| | | | | | - Yavuz Eyup
- Duzce University Medical School, Duzce, Turkey
| | - Yunus Ozcan
- Duzce University Medical School, Duzce, Turkey
| |
Collapse
|
79
|
Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci U S A 2020; 117:14127-14138. [PMID: 32522879 PMCID: PMC7321962 DOI: 10.1073/pnas.1921311117] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA repair is essential to life and to avoidance of genome instability and cancer. Xeroderma pigmentosum group G (XPG) protein acts in multiple DNA repair pathways, both as an active enzyme and as a scaffold for coordinating with other repair proteins. We present here the structure of the catalytic domain responsible for its DNA binding and nuclease activity. Our analysis provides structure-based hypotheses for how XPG recognizes its bubble DNA substrate and predictions of the structural impacts of XPG disease mutations associated with two phenotypically distinct diseases: xeroderma pigmentosum (XP, skin cancer prone) or Cockayne syndrome (XP/CS, severe progressive developmental defects). Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG’s role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.
Collapse
|
80
|
Santiago KM, Castro LP, Neto JPD, de Nóbrega AF, Pinto CAL, Ashton-Prolla P, Pinto E Vairo F, de Medeiros PFV, Ribeiro EM, Ribeiro BFR, do Valle FF, Doriqui MJR, Leite CHB, Rocha RM, Moura LMS, Munford V, Galante PAF, Menck CFM, Rogatto SR, Achatz MI. Comprehensive germline mutation analysis and clinical profile in a large cohort of Brazilian xeroderma pigmentosum patients. J Eur Acad Dermatol Venereol 2020; 34:2392-2401. [PMID: 32239545 DOI: 10.1111/jdv.16405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Xeroderma pigmentosum (XP) patients present a high risk of developing skin cancer and other complications at an early age. This disease is characterized by mutations in the genes related to the DNA repair system. OBJECTIVES To describe the clinical and molecular findings in a cohort of 32 Brazilian individuals who received a clinical diagnosis of XP. METHODS Twenty-seven families were screened for germline variants in eight XP-related genes. RESULTS All patients (N = 32) were diagnosed with bi-allelic germline pathogenic or potentially pathogenic variants, including nine variants previously undescribed. The c.2251-1G>C XPC pathogenic variant, reported as the founder mutation in Comorian and Pakistani patients, was observed in 15 cases in homozygous or compound heterozygous. Seven homozygous patients for POLH/XPV variants developed their symptoms by an average age of 7.7 years. ERCC2/XPD, DDB2/XPE and ERCC5/XPG variants were found in a few patients. Aside from melanoma and non-melanoma skin tumours, a set of patients developed skin sebaceous carcinoma, leiomyosarcoma, angiosarcoma, mucoepidermoid carcinoma, gastric adenocarcinoma and serous ovarian carcinoma. CONCLUSIONS We reported a high frequency of XPC variants in 32 XP Brazilian patients. Nine new variants in XP-related genes, unexpected non-skin cancer lesions and an anticipation of the clinical manifestation in POLH/XPV cases were also described.
Collapse
Affiliation(s)
- K M Santiago
- Department of Oncogenetics, A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil.,International Research Center (CIPE), A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - L P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - J P D Neto
- Department of Skin Cancer, A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - A F de Nóbrega
- Department of Oncogenetics, A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil.,International Research Center (CIPE), A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - C A L Pinto
- Department of Pathology, A.C.Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - P Ashton-Prolla
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - F Pinto E Vairo
- Center for Individualized Medicine and Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - P F V de Medeiros
- University Hospital Alcides Carneiro, Federal University of Campina Grande, Campina Grande, Paraíba, Brazil
| | - E M Ribeiro
- Associação Cearense de Doenças Genéticas, Fortaleza, Ceará, Brazil
| | - B F R Ribeiro
- Children's Hospital, Secretaria de Estado de Saúde do Acre, Rio Branco, Acre, Brazil
| | - F F do Valle
- Amazonas Federal University, Manaus, Amazonas, Brazil
| | - M J R Doriqui
- Hospital Infantil Dr Juvêncio Mattos, São Luís, Maranhão, Brazil
| | - C H B Leite
- Department of Radiation Oncology, Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | - R M Rocha
- Gynecology Department, Paulista Medicine School, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - L M S Moura
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - V Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - P A F Galante
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - S R Rogatto
- Department of Clinical Genetics, University Hospital, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - M I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, São Paulo, São Paulo, Brazil
| |
Collapse
|
81
|
Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. DNA Repair (Amst) 2020; 94:102860. [PMID: 32739133 DOI: 10.1016/j.dnarep.2020.102860] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023]
Abstract
UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.
Collapse
Affiliation(s)
- Maria Beecher
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sunbok Jang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
82
|
Yang R, Kong Q, Duan Y, Li W, Sang H. Identification of a novel DDB2 mutation in a Chinese Han family with Xeroderma pigmentosum group E:a case report and literature review. BMC MEDICAL GENETICS 2020; 21:67. [PMID: 32228487 PMCID: PMC7106656 DOI: 10.1186/s12881-020-00997-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Background Xeroderma pigmentosum (XP) is a rare autosomal recessive genodermatosis. There are eight complementation groups of XP (XP-A to G and a variant form). XP-E is one of the least common forms, and XP-E patients are generally not diagnosed until they are adults due to a later onset of skin alterations. Case presentation We report a case of a 28-year-old Chinese woman with freckle-like hyperpigmented macules in a sun-exposed area who is prone to develop basal cell carcinomas. A genetic study revealed a novel homozygous c.111_112del deletion in exon 1 of the DDB2 gene. Western blotting analysis revealed that the patient lacked the expression of the wild-type mature DDB2 protein. The proband was first diagnosed with XPE on the basis of clinical findings and genetic testing. Sun protection was recommended, and the patient did not develop any skin cancers during the one-year follow-up. Conclusions We identified a novel homozygous deletion in DDB2 gene in Chinese XP-E patients having unique clinical features.
Collapse
Affiliation(s)
- Rui Yang
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China
| | - Yuanyuan Duan
- Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Weiwei Li
- Department of Reproduction and Genetics, Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, 210002, China.
| |
Collapse
|
83
|
Abstract
OBJECTIVE To assess the age at menarche and menopause of women with xeroderma pigmentosum, a DNA repair disease with premature aging, in a longitudinal natural history study. METHODS We conducted a natural history study that reviewed medical records for gynecologic and reproductive health of all female patients with xeroderma pigmentosum aged older than 9 years examined at the National Institutes of Health (NIH). We performed gynecologic and laboratory examinations on a subset of the patients. Women in a second subset, who could not be examined, were interviewed using a questionnaire. Women who were deceased or lost to follow-up formed a third subset. RESULTS Sixty females with xeroderma pigmentosum aged older than 9 years (median 29 years, range 10-61 years) were evaluated at the NIH from 1971 to 2018. Of these 60, 31 had history, questionnaire, record review, and gynecologic evaluation; 14 had record review and questionnaire interview by telephone; and 15 had only NIH record review. Menarche in females with xeroderma pigmentosum occurred at a median age of 12.0 years (range 9-17 years), which was comparable with the U.S. general population. Among the 18 patients with menopause, the median age at menopause of 29.5 years (range 18-49.5 years) was more than 20 years younger than in the U.S. general population (52.9 years). Premature menopause (before age 40 years) occurred in 14 of the 45 (31%) women aged 18 years or older, and primary ovarian insufficiency was documented in nine of them. There were 32 live births among 21 of the women, five of whom subsequently developed premature menopause. CONCLUSION Females with xeroderma pigmentosum in our study had a normal age at menarche and were fertile but had increased incidence of premature menopause. Premature menopause, a symptom of premature aging, should be considered for gynecologic and reproductive health as well as implicating DNA repair in maintaining normal ovarian function. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT00001813.
Collapse
|
84
|
Castro LP, Sahbatou M, Kehdy FSG, Farias AA, Yurchenko AA, de Souza TA, Rosa RCA, Mendes-Junior CT, Borda V, Munford V, Zanardo ÉA, Chehimi SN, Kulikowski LD, Aquino MM, Leal TP, Tarazona-Santos E, Chaibub SC, Gener B, Calmels N, Laugel V, Sarasin A, Menck CFM. The Iberian legacy into a young genetic xeroderma pigmentosum cluster in central Brazil. Mutat Res 2020; 852:503164. [PMID: 32265042 DOI: 10.1016/j.mrgentox.2020.503164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
In central Brazil, in the municipality of Faina (state of Goiás), the small and isolated village of Araras comprises a genetic cluster of xeroderma pigmentosum (XP) patients. The high level of consanguinity and the geographical isolation gave rise to a high frequency of XP patients. Recently, two founder events were identified affecting that community, with two independent mutations at the POLH gene, c.764 + 1 G > A (intron 6) and c.907 C > T; p.Arg303* (exon 8). These deleterious mutations lead to the xeroderma pigmentosum variant syndrome (XP-V). Previous reports identified both mutations in other countries: the intron 6 mutation in six patients (four families) from Northern Spain (Basque Country and Cantabria) and the exon 8 mutation in two patients from different families in Europe, one of them from Kosovo. In order to investigate the ancestry of the XP patients and the age for these mutations at Araras, we generated genotyping information for 22 XP-V patients from Brazil (16), Spain (6) and Kosovo (1). The local genomic ancestry and the shared haplotype segments among the patients showed that the intron 6 mutation at Araras is associated with an Iberian genetic legacy. All patients from Goiás, homozygotes for intron 6 mutation, share with the Spanish patients identical-by-descent (IBD) genomic segments comprising the mutation. The entrance date for the Iberian haplotype at the village was calculated to be approximately 200 years old. This result is in agreement with the historical arrival of Iberian individuals at the Goiás state (BR). Patients from Goiás and the three families from Spain share 1.8 cM (family 14), 1.7 cM (family 15), and a more significant segment of 4.7 cM within family 13. On the other hand, the patients carrying the exon 8 mutation do not share any specific genetic segment, indicating an old genetic distance between them or even no common ancestry.
Collapse
Affiliation(s)
- L P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Sahbatou
- Foundation Jean Dausset - CEPH, Paris, France
| | - F S G Kehdy
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A A Farias
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo (USP), Sao Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - A A Yurchenko
- Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - T A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - R C A Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C T Mendes-Junior
- Department of Chemistry, Forensic and Genomics Research Laboratory, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | - V Borda
- National Laboratory for Scientific Computation (LNCC), Petropolis, Rio de Janeiro, Brazil
| | - V Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - É A Zanardo
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - S N Chehimi
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - L D Kulikowski
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - M M Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - T P Leal
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - E Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - S C Chaibub
- General Hospital of Goiania, Goiania, Brazil
| | - B Gener
- Osakidetza Basque Health Service, Cruces University Hospital. Department of Genetics, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - N Calmels
- Laboratory of Medical Genetics, Institute of Medical Genetics of Alsace (IGMA), Strasbourg, France
| | - V Laugel
- Laboratory of Medical Genetics, Institute of Medical Genetics of Alsace (IGMA), Strasbourg, France
| | - A Sarasin
- UMR8200 CNRS, Gustave Roussy Institute, University Paris-Saclay, Villejuif, France
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
85
|
New structural insights into the recognition of undamaged splayed-arm DNA with a single pair of non-complementary nucleotides by human nucleotide excision repair protein XPA. Int J Biol Macromol 2020; 148:466-474. [PMID: 31962067 DOI: 10.1016/j.ijbiomac.2020.01.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
XPA (Xeroderma pigmentosum complementation group A) is a core scaffold protein that plays significant roles in DNA damage verification and recruiting downstream endonucleases in the nucleotide excision repair (NER) pathway. Here, we present the 2.81 Å resolution crystal structure of the DNA-binding domain (DBD) of human XPA in complex with an undamaged splayed-arm DNA substrate with a single pair of non-complementary nucleotides. The structure reveals that two XPA molecules bind to one splayed-arm DNA with a 10-bp duplex recognition motif in a non-sequence-specific manner. XPA molecules bind to both ends of the DNA duplex region with a characteristic β-hairpin. A conserved tryptophan residue Trp175 packs against the last base pair of DNA duplex and stabilizes the conformation of the characteristic β-hairpin. Upon DNA binding, the C-terminal last helix of XPA would shift towards the minor groove of the DNA substrate for better interaction. Notably, human XPA is able to bind to the undamaged DNA duplex without any kinks, and XPA-DNA binding does not bend the DNA substrate obviously. This study provides structural basis for the binding mechanism of XPA to the undamaged splayed-arm DNA with a single pair of non-complementary nucleotides.
Collapse
|
86
|
Ali MZ, Blatterer J, Khan MA, Schaflinger E, Petek E, Ahmad S, Khan E, Windpassinger C. Identification of a novel protein truncating mutation p.Asp98* in XPC associated with xeroderma pigmentosum in a consanguineous Pakistani family. Mol Genet Genomic Med 2020; 8:e1060. [PMID: 31923348 PMCID: PMC7005610 DOI: 10.1002/mgg3.1060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/12/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Xeroderma pigmentosum (XP) is a rare genetic disorder, which is characterized by hyper-sensitivity to solar ultraviolet (UV) radiation. Clinical consequences of sun exposure are skin lesions and an increased risk of developing skin cancer. Genetic studies have identified eight genes associated with xeroderma pigmentosum. The proteins encoded by these genes are mainly involved in DNA repair mechanisms. METHODS Molecular genetic characterization of patients with xeroderma pigmentosum involved positional cloning methods such as homozygosity mapping and subsequent candidate gene analysis. Mutation screening was performed through Sanger DNA sequencing. RESULTS AND DISCUSSION In this case study, we report a novel protein truncating mutation in XPC associated with autosomal recessive xeroderma pigmentosum in a consanguineous Pakistani family. Genetic mapping revealed a novel single base insertion of a thymine nucleotide NM_004628.4: c.291dupT (c.291_292insT) in the second exon of XPC. The identified mutation leads to a premature stop codon (TGA) at amino acid position 98 (p.Asp98*) and thus presumably results in a truncated protein. The Xeroderma pigmentosum, complementation group C (XPC) is located on 3p25.1 and encodes a protein involved in nucleotide excision repair. The identified mutation presumably truncates all functional domains of the XPC protein, which likely results in the loss of protein function. CONCLUSION The study expands the knowledge of the mutational spectrum of XPC and is valuable for genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Muhammad Z Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jasmin Blatterer
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Muzammil A Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Erich Schaflinger
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Erwin Petek
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Safeer Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ejazullah Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Christian Windpassinger
- Diagnostic & Research Institute of Human Genetics, Medical University of Graz, Graz, Austria
| |
Collapse
|
87
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
88
|
Ferlazzo M, Berthel E, Granzotto A, Devic C, Sonzogni L, Bachelet JT, Pereira S, Bourguignon M, Sarasin A, Mezzina M, Foray N. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int J Radiat Biol 2019; 96:394-410. [PMID: 31738647 DOI: 10.1080/09553002.2020.1694189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: Xeroderma Pigmentosum (XP) is a rare, recessive genetic disease associated with photosensitivity, skin cancer proneness, neurological abnormalities and impaired nucleotide excision repair of the UV-induced DNA damage. Less frequently, XP can be associated with sensitivity to ionizing radiation (IR). Here, a complete radiobiological characterization was performed on a panel of fibroblasts derived from XP-group D patients (XPD).Materials and methods: Cellular radiosensitivity and the functionality of the recognition and repair of chromosome breaks and DNA double-strand breaks (DSB) was evaluated by different techniques including clonogenic cell survival, micronuclei, premature chromosome condensation, pulsed-field gel electrophoresis, chromatin decondensation and immunofluorescence assays. Quantitative correlations between each endpoint were analyzed systematically.Results: Among the seven fibroblast cell lines tested, those derived from three non-relative patients holding the p.[Arg683Trp];[Arg616Pro] XPD mutations showed significant cellular radiosensitivity, high yield of residual micronuclei, incomplete DSB recognition, DSB and chromosome repair defects, impaired ATM, MRE11 relocalization, significant chromatin decondensation. Interestingly, XPD transduction and treatment with statins and bisphosphonates known to accelerate the radiation-induced ATM nucleoshuttling led to significant complementation of these impairments.Conclusions: Our findings suggest that some subsets of XPD patients may be at risk of radiosensitivity reactions and treatment with statins and bisphosphonates may be an interesting approach of radioprotection countermeasure. Different mechanistic models were discussed to better understand the potential specificity of the p.[Arg683Trp];[Arg616Pro] XPD mutations.
Collapse
Affiliation(s)
- Mélanie Ferlazzo
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Elise Berthel
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Adeline Granzotto
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Clément Devic
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France.,Fibermetrix, Entzheim, France
| | - Laurène Sonzogni
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Jean-Thomas Bachelet
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Sandrine Pereira
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| | - Michel Bourguignon
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France.,Faculté de Médecine Simone-Veil, Université Paris-Saclay, Versailles, France
| | - Alain Sarasin
- Centre National de la Recherche Scientifique, UMR 8200, Institut Gustave-Roussy, Villejuif, France
| | - Mauro Mezzina
- European Association for Scientific Career Orientation, Paray-Vieille-Poste, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, UA8 Unit, "Radiations: Defense, Health and Environment" Centre Léon-Bérard, Lyon, France
| |
Collapse
|
89
|
Xeroderma Pigmentosum: Ocular Findings in an Isolated Brazilian Group with an Identified Genetic Cluster. J Ophthalmol 2019; 2019:4818162. [PMID: 31781376 PMCID: PMC6875256 DOI: 10.1155/2019/4818162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/19/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose Xeroderma pigmentosum (XP) is a rare autosomal recessive genetic disorder characterized by increased susceptibility to UV radiation- (UVR-) induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Eight different genes are affected, and the prevalence of the disease differs across the world. The present study describes the main ophthalmologic features and symptoms in patients with XP in this case series. Methods Patients were examined consecutively at the University Hospital of the Federal University of Goias between January 2016 and June 2018. All patients underwent ophthalmologic examination and were asked about their ophthalmological history and the presence of ocular symptoms. Results Twenty-one patients with genetic confirmation were evaluated. The genetic variants XPV and XPC were detected in the patients. The most prevalent findings include eyelid changes, observed in 80.9% of the patients, and ocular surface changes as punctate keratopathy, occurring in 16 patients (76.2%), corneal neovascularization, and corneal opacities. Six patients (28.5%) presented corneoconjunctival tumor. More than half of patients had previous history of treatment of ocular neoplasia. Ocular burning was the most reported symptom. Conclusions The ocular characteristics identified in this study corroborate the existing literature, mainly related to the surface. Concerning the XP variant and the gravity of ocular signs, XPC has earlier and more severe symptoms than XPV. Due to their relative rarity, publications of XP cases are important to understand the possible damages caused by the disease in the eyes and surrounding area.
Collapse
|
90
|
Pugh J, Khan SG, Tamura D, Goldstein AM, Landi MT, DiGiovanna JJ, Kraemer KH. Use of Big Data to Estimate Prevalence of Defective DNA Repair Variants in the US Population. JAMA Dermatol 2019; 155:72-78. [PMID: 30516811 DOI: 10.1001/jamadermatol.2018.4473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Importance Wide use of genomic sequencing to diagnose disease has raised concern about the extent of genotype-phenotype correlations. Objective To correlate disease-associated allele frequencies with expected and reported prevalence of clinical disease. Design, Setting, and Participants Xeroderma pigmentosum (XP), a recessive, cancer-prone, neurocutaneous disorder, was used as a model for this study. From January 1, 2017, to May 4, 2018, the Human Gene Mutation Database and a cohort of patients at the National Institutes of Health were searched and screened to identify reported mutations associated with XP. The clinical phenotype of these patients was confirmed from reports in the literature and National Institutes of Health medical records. The genetically predicted prevalence of disease based on frequency of known pathogenic mutations was compared with the prevalence of patients clinically diagnosed with phenotypic XP. Exome sequencing of more than 200 000 alleles from the Genome Aggregation Database, the National Cancer Institute Division of Cancer Epidemiology and Genetics database of healthy controls, and an Inova Hospital Study database was used to investigate the frequencies of these mutations in the general population. Main Outcomes and Measures Listing of all reported mutations associated with XP, their frequencies in 3 large exome sequence databases, determination of the number of patients in the United States with XP using modeling equations, and comparison of the observed and reported numbers of patients with XP with specific mutations. Results A total of 156 pathogenic missense and nonsense mutations associated with XP were identified in the National Institutes of Health cohort and the Human Gene Mutation Database. The Genome Aggregation Database provided frequency data for 65 of these mutations, with a total allele frequency of 1.13%. The XPF (ERCC4) mutation, p.P379S, had an allele frequency of 0.4%, and the XPC mutation, p.P334H, had an allele frequency of 0.3%. With the Hardy-Weinberg equation, it was determined that there should be more than 8000 patients who are homozygous for these mutations in the United States. In contrast, only 3 patients with XP were reported as having the XPF mutation, and 1 patient was reported as having the XPC mutation. Conclusions and Relevance The findings from this study suggest that clinicians should approach large genomic databases with caution when trying to correlate the clinical implications of genetic variants with the prevalence of disease risk. Unsuspected mutations in known genes with a predisposition for skin cancer may be responsible for some of the high frequency of skin cancers in the general population.
Collapse
Affiliation(s)
- Jennifer Pugh
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Academy Enrichment Program Scholar, Office of Intramural Training & Education, Office of the Director, National Institutes of Health, Bethesda, Maryland
| | - Sikandar G Khan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah Tamura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Alisa M Goldstein
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Maria Teresa Landi
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - John J DiGiovanna
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kenneth H Kraemer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
91
|
Zebian A, Shaito A, Mazurier F, Rezvani HR, Zibara K. XPC beyond nucleotide excision repair and skin cancers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108286. [DOI: 10.1016/j.mrrev.2019.108286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
|
92
|
Momen S, Fassihi H, Davies HR, Nikolaou C, Degasperi A, Stefanato CM, Dias JML, Dasgupta D, Craythorne E, Sarkany R, Papa S, Nik-Zainal S. Dramatic response of metastatic cutaneous angiosarcoma to an immune checkpoint inhibitor in a patient with xeroderma pigmentosum: whole-genome sequencing aids treatment decision in end-stage disease. Cold Spring Harb Mol Case Stud 2019; 5:a004408. [PMID: 31645345 PMCID: PMC6824248 DOI: 10.1101/mcs.a004408] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
"Mutational signatures" are patterns of mutations that report DNA damage and subsequent repair processes that have occurred. Whole-genome sequencing (WGS) can provide additional information to standard diagnostic techniques and can identify therapeutic targets. A 32-yr-old male with xeroderma pigmentosum developed metastatic angiosarcoma that was unresponsive to three lines of conventional sarcoma therapies. WGS was performed on his primary cancer revealing a hypermutated tumor, including clonal ultraviolet radiation-induced mutational patterns (Signature 7) and subclonal signatures of mutated DNA polymerase epsilon (POLE) (Signature 10). These signatures are associated with response to immune checkpoint blockade. Immunohistochemistry confirmed high PD-L1 expression in metastatic deposits. The anti-PD-1 monoclonal antibody pembrolizumab was commenced off-label given the POLE mutation and high mutational load. After four cycles, there was a significant reduction in his disease with almost complete resolution of the metastatic deposits. This case highlights the importance of WGS in the analysis, interpretation, and treatment of cancers. We anticipate that as WGS becomes integral to the cancer diagnostic pathway, treatments will be stratified to the individual based on their unique genomic and/or transcriptomic profile, enhancing classical approaches of histologically driven treatment decisions.
Collapse
Affiliation(s)
- Sophie Momen
- Department of Medical Genetics, Addenbrooke's Treatment Centre, The Clinical School, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, United Kingdom
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, United Kingdom
| | - Helen R Davies
- Department of Medical Genetics, Addenbrooke's Treatment Centre, The Clinical School, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Christos Nikolaou
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Andrea Degasperi
- Department of Medical Genetics, Addenbrooke's Treatment Centre, The Clinical School, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Catherine M Stefanato
- Department of Dermatopathology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, United Kingdom
| | - Joao M L Dias
- Department of Medical Genetics, Addenbrooke's Treatment Centre, The Clinical School, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| | - Dhruba Dasgupta
- Department of Nuclear Medicine, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Emma Craythorne
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, United Kingdom
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, Department of Photodermatology, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, United Kingdom
- School of Cancer and Pharmaceutical Studies, King's College London, Guy's Campus, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Serena Nik-Zainal
- Department of Medical Genetics, Addenbrooke's Treatment Centre, The Clinical School, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
93
|
Kgokolo M, Morice-Picard F, Rezvani HR, Austerlitz F, Cartault F, Sarasin A, Sathekge M, Taieb A, Ged C. Xeroderma pigmentosum in South Africa: Evidence for a prevalent founder effect. Br J Dermatol 2019; 181:1070-1072. [PMID: 31017654 DOI: 10.1111/bjd.18030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- M Kgokolo
- University of Pretoria, Private Bag X169, Pretoria, 0001, South Africa
| | - F Morice-Picard
- National Reference Center for Rare Skin Disorders, CHU de Bordeaux, Bordeaux, France
| | - H R Rezvani
- National Reference Center for Rare Skin Disorders, CHU de Bordeaux, Bordeaux, France.,Université de Bordeaux, INSERM, BMGIC, U1035, F-33076, Bordeaux, France
| | - F Austerlitz
- Université Paris-Diderot, Musée de l'Homme, CNRS/MNHN UMR7206, F-75116, Paris, France
| | - F Cartault
- CHU Felix Guyon, Génétique Moléculaire, Saint-Denis, F-97405, La Réunion, France
| | - A Sarasin
- Université Paris-Sud, Institut Gustave Roussy, UMR8200 CNRS, F-94805, Villejuif, France
| | - M Sathekge
- University of Pretoria, Private Bag X169, Pretoria, 0001, South Africa
| | - A Taieb
- National Reference Center for Rare Skin Disorders, CHU de Bordeaux, Bordeaux, France.,Université de Bordeaux, INSERM, BMGIC, U1035, F-33076, Bordeaux, France
| | - C Ged
- National Reference Center for Rare Skin Disorders, CHU de Bordeaux, Bordeaux, France.,Université de Bordeaux, INSERM, BMGIC, U1035, F-33076, Bordeaux, France
| |
Collapse
|
94
|
Walburn J, Norton S, Sarkany R, Sainsbury K, Araújo-Soares V, Morgan M, Canfield M, Foster L, Heydenreich J, McCrone P, Mander A, Sniehotta FF, Wulf HC, Weinman J. Evaluation of a personalised adherence intervention to improve photoprotection in adults with Xeroderma Pigmentosum (XP): protocol for the trial of XPAND. BMJ Open 2019; 9:e028577. [PMID: 31320353 PMCID: PMC6661555 DOI: 10.1136/bmjopen-2018-028577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Poor adherence to photoprotection for people with xeroderma pigmentosum (XP) can be life-threatening. A randomised controlled trial (RCT) is being conducted to test the efficacy of a personalised adherence intervention (XPAND) to reduce the level of ultraviolet radiation (UVR) reaching the face, by improving photoprotection activities in adults with XP. METHODS AND ANALYSIS A two-armed parallel groups RCT, where we randomised 24 patients with suboptimal adherence to either an intervention group who received XPAND in 2018 or a delayed intervention group who will receive XPAND in 2019. XPAND involves seven sessions, one-to-one with a facilitator, using behaviour change techniques and specially designed materials to target barriers to photoprotection. Following baseline assessment in April 2018 (t0) and intervention, the primary outcome will be measured across 21 consecutive days in June and July 2018 (t1). The primary outcome is the average daily UVR dose to the face (D-to-F), calculated by combining objective UVR exposure at the wrist (measured by a dosimeter) with face photoprotection activities recorded on a daily UVR protection diary. Secondary outcomes include average daily UVR D-to-F across 21 days in August (t2); psychosocial process variables measured by daily questions (t0, t1, t2) and self-report questionnaires (t0, t1, t2, December 2018 (t3)). Intervention cost-utility is assessed by service use and personal cost questionnaires (t0, t3). The delayed intervention control arm participants will complete three further assessments in April 2019 (t4) and June-July 2019 (t5), and December 2019 (t6) with dosimetry and UVR protection diary completed for 21 days at t4 and t5. A process evaluation will be conducted using mixed methods. ETHICS AND DISSEMINATION Ethical approval has been received from West London & GTAC REC 17/LO/2110. Results will be disseminated in peer-reviewed journals and at conferences. This study tests a novel intervention, which, if successful, will be integrated into routine care. TRIAL REGISTRATION NUMBER NCT03445052; Pre-results.
Collapse
Affiliation(s)
- Jessica Walburn
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Sam Norton
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Department of Inflammation Biology, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, Guy’s and St Thomas' NHS Foundation Trust, London, UK
| | - Kirby Sainsbury
- Faculty of Medical Sciences, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Vera Araújo-Soares
- Faculty of Medical Sciences, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Myfanwy Morgan
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Martha Canfield
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Lesley Foster
- National Xeroderma Pigmentosum Service, Guy’s and St Thomas' NHS Foundation Trust, London, UK
| | | | - Paul McCrone
- Health Service & Population Research Department, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
| | - Adrian Mander
- MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Falko F Sniehotta
- Faculty of Medical Sciences, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
- Institute of Health & Society, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - John Weinman
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
95
|
Fassihi H. Translational research in disorders of DNA repair: the challenges in the application of therapeutic discoveries to the treatment of human disease. Br J Dermatol 2019; 181:236-237. [PMID: 31281978 DOI: 10.1111/bjd.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H Fassihi
- National XP Service, St John's Institute of Dermatology, Guy's and St Thomas' NHS Trust, London, U.K
| |
Collapse
|
96
|
Structural characterization of the redefined DNA-binding domain of human XPA. Biochem Biophys Res Commun 2019; 514:985-990. [DOI: 10.1016/j.bbrc.2019.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
|
97
|
Yan C, Dodd T, He Y, Tainer JA, Tsutakawa SE, Ivanov I. Transcription preinitiation complex structure and dynamics provide insight into genetic diseases. Nat Struct Mol Biol 2019; 26:397-406. [PMID: 31110295 PMCID: PMC6642811 DOI: 10.1038/s41594-019-0220-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Transcription preinitiation complexes (PICs) are vital assemblies whose function underlies the expression of protein-encoding genes. Cryo-EM advances have begun to uncover their structural organization. Nevertheless, functional analyses are hindered by incompletely modeled regions. Here we integrate all available cryo-EM data to build a practically complete human PIC structural model. This enables simulations that reveal the assembly's global motions, define PIC partitioning into dynamic communities and delineate how structural modules function together to remodel DNA. We identify key TFIIE-p62 interactions that link core-PIC to TFIIH. p62 rigging interlaces p34, p44 and XPD while capping the DNA-binding and ATP-binding sites of XPD. PIC kinks and locks substrate DNA, creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping disease mutations associated with xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome onto defined communities reveals clustering into three mechanistic classes that affect TFIIH helicase functions, protein interactions and interface dynamics.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Susan E Tsutakawa
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
98
|
Ferri D, Orioli D, Botta E. Heterogeneity and overlaps in nucleotide excision repair disorders. Clin Genet 2019; 97:12-24. [PMID: 30919937 DOI: 10.1111/cge.13545] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Nucleotide excision repair (NER) is an essential DNA repair pathway devoted to the removal of bulky lesions such as photoproducts induced by the ultraviolet (UV) component of solar radiation. Deficiencies in NER typically result in a group of heterogeneous distinct disorders ranging from the mild UV sensitive syndrome to the cancer-prone xeroderma pigmentosum and the neurodevelopmental/progeroid conditions trichothiodystrophy, Cockayne syndrome and cerebro-oculo-facio-skeletal-syndrome. A complicated genetic scenario underlines these disorders with the same gene linked to different clinical entities as well as different genes associated with the same disease. Overlap syndromes with combined hallmark features of different NER disorders can occur and sporadic presentations showing extra features of the hematological disorder Fanconi Anemia or neurological manifestations mimicking Hungtinton disease-like syndromes have been described. Here, we discuss the multiple functions of the five major pleiotropic NER genes (ERCC3/XPB, ERCC2/XPD, ERCC5/XPG, ERCC1 and ERCC4/XPF) and their relevance in phenotypic complexity. We provide an update of mutational spectra and examine genotype-phenotype relationships. Finally, the molecular defects that could explain the puzzling overlap syndromes are discussed.
Collapse
Affiliation(s)
- Debora Ferri
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Donata Orioli
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Elena Botta
- Istituto di Genetica Molecolare (IGM), Consiglio Nazionale delle Ricerche, Pavia, Italy
| |
Collapse
|
99
|
Morgan M, Anderson R, Walburn J, Weinman J, Sarkany R. The influence of perceived medical risks and psychosocial concerns on photoprotection behaviours among adults with xeroderma pigmentosum: a qualitative interview study in the UK. BMJ Open 2019; 9:e024445. [PMID: 30782905 PMCID: PMC6377541 DOI: 10.1136/bmjopen-2018-024445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A high level of photoprotection is required by people with xeroderma pigmentosum (XP), a rare skin disease, to reduce skin cancer and other risks. However poor photoprotection is thought to be widespread. PURPOSE This study examines the influences on photoprotection behaviours in adults with XP. DESIGN Inductive qualitative study with semistructured interviews. Analysis employed a framework approach. SETTING National sample recruited through a specialist XP centre in London. METHODS Semistructured interviews at patients' homes. All transcripts were coded and themes charted for each participant. Comparisons within and across cases identified common themes and differing motivations and approaches to photoprotection. Credibility of interpretations assessed through patient/carer input and clinic adherence scores. PARTICIPANTS 25 adults (17 male, eight female) aged 16-63 years with diagnosed XP attending a specialist centre. 18 lived outside London. RESULTS Awareness of risks of ultraviolet radiation (UVR) and photoprotection was high. However, photoprotection behaviours varied according to perceived necessity and concerns. Three behavioural responses were identified: (1) 'dominated' by planning and routines to achieve a high level of photoprotection with significant activity restrictions and psychosocial impacts. (2) 'resistant' to photoprotection with priority given to avoiding an illness identity and enjoying a normal life. (3) Photoprotection' integrated' with an individual's life with little psychosocial impact. These responses were influenced by illness, personal and contextual factors including age, life stage and social support. Only the 'integrated' group achieved an equilibrium between perceived 'necessity' and 'concerns'. CONCLUSIONS The personal balance between perceived risks of UVR and social/psychological 'concerns' led to differing behavioural responses and contributes to an understanding of adaptation and normalisation in chronic illness. The study will also inform a series of individualised behavioural interventions to reduce measured UVR exposure among people with XP that are potentially applicable to other conditions with high risks of skin cancer.
Collapse
Affiliation(s)
- Myfanwy Morgan
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Rebecca Anderson
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Jessica Walburn
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - John Weinman
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, Guy’s and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
100
|
Chikhaoui A, Elouej S, Nabouli I, Jones M, Lagarde A, Ben Rekaya M, Messaoud O, Hamdi Y, Zghal M, Delague V, Levy N, De Sandre-Giovannoli A, Abdelhak S, Yacoub-Youssef H. Identification of a ERCC5 c.2333T>C (L778P) Variant in Two Tunisian Siblings With Mild Xeroderma Pigmentosum Phenotype. Front Genet 2019; 10:111. [PMID: 30838033 PMCID: PMC6383105 DOI: 10.3389/fgene.2019.00111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022] Open
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder due to a defect in the nucleotide excision repair (NER) DNA repair pathway, characterized by severe sunburn development of freckles, premature skin aging, and susceptibility to develop cancers at an average age of eight. XP is an example of accelerated photo-aging. It is a genetically and clinically heterogeneous disease. Eight complementation groups have been described worldwide. In Tunisia, five groups have been already identified. In this work, we investigated the genetic etiology in a family with an atypically mild XP phenotype. Two Tunisian siblings born from first-degree consanguineous parents underwent clinical examination in the dermatology department of the Charles Nicolle Hospital on the basis of acute sunburn reaction and mild neurological disorders. Blood samples were collected from two affected siblings after written informed consent. As all mutations reported in Tunisia have been excluded using Sanger sequencing, we carried out mutational analysis through a targeted panel of gene sequencing using the Agilent HaloPlex target enrichment system. Our clinical study shows, in both patients, the presence of achromic macula in sun exposed area with dermatological feature suggestive of Xeroderma pigmentosum disease. No developmental and neurological disorders were observed except mild intellectual disability. Genetic investigation shows that both patients were carriers of an homozygous T to C transition at the nucleotide position c.2333, causing the leucine to proline amino acid change at the position 778 (p.Leu778Pro) of the ERCC5 gene, and resulting in an XP-G phenotype. The same variation was previously reported at the heterozygous state in a patient cell line in Europe, for which no clinical data were available and was suggested to confer an XP/CS phenotype based on functional tests. This study contributes to further characterization of the mutation spectrum of XP in consanguineous Tunisian families and is potentially helpful for early diagnosis. It also indicates that the genotype-phenotype correlation is not always coherent for patients with mild clinical features. These data therefore suggest that targeted NGS is a highly informative diagnostic strategy, which can be used for XP molecular etiology determination.
Collapse
Affiliation(s)
- Asma Chikhaoui
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Sahar Elouej
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Imen Nabouli
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Meriem Jones
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Service de Dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Arnaud Lagarde
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Meriem Ben Rekaya
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mohamed Zghal
- Service de Dermatologie, Hôpital Charles Nicolle, Tunis, Tunisia
| | | | - Nicolas Levy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France.,Département de Génétique Médicale, AP-HM, Hôpital la Timone, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France.,Département de Génétique Médicale, AP-HM, Hôpital la Timone, Marseille, France
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Houda Yacoub-Youssef
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|