51
|
Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, Puchkov D, Rödiger M, Wilhelmi I, Daumke O, Schmoranzer J, Schürmann A, Krauss M. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci 2019; 132:132/3/jcs225557. [PMID: 30709970 PMCID: PMC6382012 DOI: 10.1242/jcs.225557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Compartmentalization of membrane transport and signaling processes is of pivotal importance to eukaryotic cell function. While plasma membrane compartmentalization and dynamics are well known to depend on the scaffolding function of septin GTPases, the roles of septins at intracellular membranes have remained largely elusive. Here, we show that the structural and functional integrity of the Golgi depends on its association with a septin 1 (SEPT1)-based scaffold, which promotes local microtubule nucleation and positioning of the Golgi. SEPT1 function depends on the Golgi matrix protein GM130 (also known as GOLGA2) and on centrosomal proteins, including CEP170 and components of γ-tubulin ring complex (γ-Turc), to facilitate the perinuclear concentration of Golgi membranes. Accordingly, SEPT1 depletion triggers a massive fragmentation of the Golgi ribbon, thereby compromising anterograde membrane traffic at the level of the Golgi.
Collapse
Affiliation(s)
- Kyungyeun Song
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Gras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Gabrielle Capin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Niclas Gimber
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Saif Mohd
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Maria Rödiger
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Oliver Daumke
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Jan Schmoranzer
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Annette Schürmann
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| |
Collapse
|
52
|
Unc13: a multifunctional synaptic marvel. Curr Opin Neurobiol 2019; 57:17-25. [PMID: 30690332 DOI: 10.1016/j.conb.2018.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022]
Abstract
Nervous systems are built on synaptic connections, and our understanding of these complex compartments has deepened over the past quarter century as the diverse fields of genetics, molecular biology, physiology, and biochemistry each made significant in-roads into synaptic function. On the presynaptic side, an evolutionarily conserved core fusion apparatus constructed from a handful of proteins has emerged, with Unc13 serving as a hub that coordinates nearly every aspect of synaptic transmission. This review briefly highlights recent studies on diverse aspects of Unc13 function including roles in SNARE assembly and quality control, release site building, calcium channel proximity, and short-term synaptic plasticity.
Collapse
|
53
|
Bornschein G, Schmidt H. Synaptotagmin Ca 2+ Sensors and Their Spatial Coupling to Presynaptic Ca v Channels in Central Cortical Synapses. Front Mol Neurosci 2019; 11:494. [PMID: 30697148 PMCID: PMC6341215 DOI: 10.3389/fnmol.2018.00494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
Ca2+ concentrations drop rapidly over a distance of a few tens of nanometers from an open voltage-gated Ca2+ channel (Cav), thereby, generating a spatially steep and temporally short-lived Ca2+ gradient that triggers exocytosis of a neurotransmitter filled synaptic vesicle. These non-steady state conditions make the Ca2+-binding kinetics of the Ca2+ sensors for release and their spatial coupling to the Cavs important parameters of synaptic efficacy. In the mammalian central nervous system, the main release sensors linking action potential mediated Ca2+ influx to synchronous release are Synaptotagmin (Syt) 1 and 2. We review here quantitative work focusing on the Ca2+ kinetics of Syt2-mediated release. At present similar quantitative detail is lacking for Syt1-mediated release. In addition to triggering release, Ca2+ remaining bound to Syt after the first of two successive high-frequency activations was found to be capable of facilitating release during the second activation. More recently, the Ca2+ sensor Syt7 was identified as additional facilitation sensor. We further review how several recent functional studies provided quantitative insights into the spatial topographical relationships between Syts and Cavs and identified mechanisms regulating the sensor-to-channel coupling distances at presynaptic active zones. Most synapses analyzed in matured cortical structures were found to operate at tight, nanodomain coupling. For fast signaling synapses a developmental switch from loose, microdomain to tight, nanodomain coupling was found. The protein Septin5 has been known for some time as a developmentally down-regulated “inhibitor” of tight coupling, while Munc13-3 was found only recently to function as a developmentally up-regulated mediator of tight coupling. On the other hand, a highly plastic synapse was found to operate at loose coupling in the matured hippocampus. Together these findings suggest that the coupling topography and its regulation is a specificity of the type of synapse. However, to definitely draw such conclusion our knowledge of functional active zone topographies of different types of synapses in different areas of the mammalian brain is too incomplete.
Collapse
Affiliation(s)
- Grit Bornschein
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig Institute for Physiology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
54
|
|
55
|
Pangrsic T, Singer JH, Koschak A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol Rev 2019; 98:2063-2096. [PMID: 30067155 DOI: 10.1152/physrev.00030.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcium influx through voltage-gated Ca (CaV) channels is the first step in synaptic transmission. This review concerns CaV channels at ribbon synapses in primary sense organs and their specialization for efficient coding of stimuli in the physical environment. Specifically, we describe molecular, biochemical, and biophysical properties of the CaV channels in sensory receptor cells of the retina, cochlea, and vestibular apparatus, and we consider how such properties might change over the course of development and contribute to synaptic plasticity. We pay particular attention to factors affecting the spatial arrangement of CaV channels at presynaptic, ribbon-type active zones, because the spatial relationship between CaV channels and release sites has been shown to affect synapse function critically in a number of systems. Finally, we review identified synaptopathies affecting sensory systems and arising from dysfunction of L-type, CaV1.3, and CaV1.4 channels or their protein modulatory elements.
Collapse
Affiliation(s)
- Tina Pangrsic
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Joshua H Singer
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| | - Alexandra Koschak
- Synaptic Physiology of Mammalian Vestibular Hair Cells Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen and Auditory Neuroscience Group, Max Planck Institute of Experimental Medicine , Göttingen, Germany ; Department of Biology, University of Maryland , College Park, Maryland ; and Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
56
|
Ghelani T, Sigrist SJ. Coupling the Structural and Functional Assembly of Synaptic Release Sites. Front Neuroanat 2018; 12:81. [PMID: 30386217 PMCID: PMC6198076 DOI: 10.3389/fnana.2018.00081] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Information processing in our brains depends on the exact timing of calcium (Ca2+)-activated exocytosis of synaptic vesicles (SVs) from unique release sites embedded within the presynaptic active zones (AZs). While AZ scaffolding proteins obviously provide an efficient environment for release site function, the molecular design creating such release sites had remained unknown for a long time. Recent advances in visualizing the ultrastructure and topology of presynaptic protein architectures have started to elucidate how scaffold proteins establish “nanodomains” that connect voltage-gated Ca2+ channels (VGCCs) physically and functionally with release-ready SVs. Scaffold proteins here seem to operate as “molecular rulers or spacers,” regulating SV-VGCC physical distances within tens of nanometers and, thus, influence the probability and plasticity of SV release. A number of recent studies at Drosophila and mammalian synapses show that the stable positioning of discrete clusters of obligate release factor (M)Unc13 defines the position of SV release sites, and the differential expression of (M)Unc13 isoforms at synapses can regulate SV-VGCC coupling. We here review the organization of matured AZ scaffolds concerning their intrinsic organization and role for release site formation. Moreover, we also discuss insights into the developmental sequence of AZ assembly, which often entails a tightening between VGCCs and SV release sites. The findings discussed here are retrieved from vertebrate and invertebrate preparations and include a spectrum of methods ranging from cell biology, super-resolution light and electron microscopy to biophysical and electrophysiological analysis. Our understanding of how the structural and functional organization of presynaptic AZs are coupled has matured, as these processes are crucial for the understanding of synapse maturation and plasticity, and, thus, accurate information transfer and storage at chemical synapses.
Collapse
Affiliation(s)
- Tina Ghelani
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
57
|
α-Neurexins Together with α2δ-1 Auxiliary Subunits Regulate Ca 2+ Influx through Ca v2.1 Channels. J Neurosci 2018; 38:8277-8294. [PMID: 30104341 DOI: 10.1523/jneurosci.0511-18.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
Action potential-evoked neurotransmitter release is impaired in knock-out neurons lacking synaptic cell-adhesion molecules α-neurexins (αNrxns), the extracellularly longer variants of the three vertebrate Nrxn genes. Ca2+ influx through presynaptic high-voltage gated calcium channels like the ubiquitous P/Q-type (CaV2.1) triggers release of fusion-ready vesicles at many boutons. α2δ Auxiliary subunits regulate trafficking and kinetic properties of CaV2.1 pore-forming subunits but it has remained unclear if this involves αNrxns. Using live cell imaging with Ca2+ indicators, we report here that the total presynaptic Ca2+ influx in primary hippocampal neurons of αNrxn triple knock-out mice of both sexes is reduced and involved lower CaV2.1-mediated transients. This defect is accompanied by lower vesicle release, reduced synaptic abundance of CaV2.1 pore-forming subunits, and elevated surface mobility of α2δ-1 on axons. Overexpression of Nrxn1α in αNrxn triple knock-out neurons is sufficient to restore normal presynaptic Ca2+ influx and synaptic vesicle release. Moreover, coexpression of Nrxn1α together with α2δ-1 subunits facilitates Ca2+ influx further but causes little augmentation together with a different subunit, α2δ-3, suggesting remarkable specificity. Expression of defined recombinant CaV2.1 channels in heterologous cells validates and extends the findings from neurons. Whole-cell patch-clamp recordings show that Nrxn1α in combination with α2δ-1, but not with α2δ-3, facilitates Ca2+ currents of recombinant CaV2.1 without altering channel kinetics. These results suggest that presynaptic Nrxn1α acts as a positive regulator of Ca2+ influx through CaV2.1 channels containing α2δ-1 subunits. We propose that this regulation represents an important way for neurons to adjust synaptic strength.SIGNIFICANCE STATEMENT Synaptic transmission between neurons depends on the fusion of neurotransmitter-filled vesicles with the presynaptic membrane, which subsequently activates postsynaptic receptors. Influx of calcium ions into the presynaptic terminal is the key step to trigger vesicle release and involves different subtypes of voltage-gated calcium channels. We study the regulation of calcium channels by neurexins, a family of synaptic cell-adhesion molecules that are essential for many synapse properties. Using optical measurements of calcium influx in cultured neurons and electrophysiological recordings of calcium currents from recombinant channels, we show that a major neurexin variant facilitates calcium influx through P/Q-type channels by interacting with their α2δ-1 auxiliary subunits. These results propose a novel way how neurons can modulate the strength of distinct synapses.
Collapse
|
58
|
Chen H, Tang AH, Blanpied TA. Subsynaptic spatial organization as a regulator of synaptic strength and plasticity. Curr Opin Neurobiol 2018; 51:147-153. [PMID: 29902592 PMCID: PMC6295321 DOI: 10.1016/j.conb.2018.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/03/2023]
Abstract
Synapses differ markedly in their performance, even amongst those on a single neuron. The mechanisms that drive this functional diversification are of great interest because they enable adaptive behaviors and are targets of pathology. Considerable effort has focused on elucidating mechanisms of plasticity that involve changes to presynaptic release probability and the number of postsynaptic receptors. However, recent work is clarifying that nanoscale organization of the proteins within glutamatergic synapses impacts synapse function. Specifically, active zone scaffold proteins form nanoclusters that define sites of neurotransmitter release, and these sites align transsynaptically with clustered postsynaptic receptors. These nanostructural characteristics raise numerous possibilities for how synaptic plasticity could be expressed.
Collapse
Affiliation(s)
- Haiwen Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA; Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
59
|
Böhme MA, Grasskamp AT, Walter AM. Regulation of synaptic release-site Ca 2+ channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 2018; 592:3516-3531. [PMID: 29993122 DOI: 10.1002/1873-3468.13188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Synaptic transmission relies on the rapid fusion of neurotransmitter-containing synaptic vesicles (SVs), which happens in response to action potential (AP)-induced Ca2+ influx at active zones (AZs). A highly conserved molecular machinery cooperates at SV-release sites to mediate SV plasma membrane attachment and maturation, Ca2+ sensing, and membrane fusion. Despite this high degree of conservation, synapses - even within the same organism, organ or neuron - are highly diverse regarding the probability of APs to trigger SV fusion. Additionally, repetitive activation can lead to either strengthening or weakening of transmission. In this review, we discuss mechanisms controlling release probability and this short-term plasticity. We argue that an important layer of control is exerted by evolutionarily conserved AZ scaffolding proteins, which determine the coupling distance between SV fusion sites and voltage-gated Ca2+ channels (VGCC) and, thereby, shape synapse-specific input/output behaviors. We propose that AZ-scaffold modifications may occur to adapt the coupling distance during synapse maturation and plastic regulation of synapse strength.
Collapse
Affiliation(s)
- Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
60
|
Sclip A, Acuna C, Luo F, Südhof TC. RIM-binding proteins recruit BK-channels to presynaptic release sites adjacent to voltage-gated Ca 2+-channels. EMBO J 2018; 37:embj.201798637. [PMID: 29967030 PMCID: PMC6092624 DOI: 10.15252/embj.201798637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The active zone of presynaptic nerve terminals organizes the neurotransmitter release machinery, thereby enabling fast Ca2+-triggered synaptic vesicle exocytosis. BK-channels are Ca2+-activated large-conductance K+-channels that require close proximity to Ca2+-channels for activation and control Ca2+-triggered neurotransmitter release by accelerating membrane repolarization during action potential firing. How BK-channels are recruited to presynaptic Ca2+-channels, however, is unknown. Here, we show that RBPs (for RIM-binding proteins), which are evolutionarily conserved active zone proteins containing SH3- and FN3-domains, directly bind to BK-channels. We find that RBPs interact with RIMs and Ca2+-channels via their SH3-domains, but to BK-channels via their FN3-domains. Deletion of RBPs in calyx of Held synapses decreased and decelerated presynaptic BK-currents and depleted BK-channels from active zones. Our data suggest that RBPs recruit BK-channels into a RIM-based macromolecular active zone complex that includes Ca2+-channels, synaptic vesicles, and the membrane fusion machinery, thereby enabling tight spatio-temporal coupling of Ca2+-influx to Ca2+-triggered neurotransmitter release in a presynaptic terminal.
Collapse
Affiliation(s)
- Alessandra Sclip
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Claudio Acuna
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.,CH Schaller Foundation and Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Fujun Luo
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.,School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Thomas C Südhof
- Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
61
|
Liprin-α3 controls vesicle docking and exocytosis at the active zone of hippocampal synapses. Proc Natl Acad Sci U S A 2018; 115:2234-2239. [PMID: 29439199 DOI: 10.1073/pnas.1719012115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The presynaptic active zone provides sites for vesicle docking and release at central nervous synapses and is essential for speed and accuracy of synaptic transmission. Liprin-α binds to several active zone proteins, and loss-of-function studies in invertebrates established important roles for Liprin-α in neurodevelopment and active zone assembly. However, Liprin-α localization and functions in vertebrates have remained unclear. We used stimulated emission depletion superresolution microscopy to systematically determine the localization of Liprin-α2 and Liprin-α3, the two predominant Liprin-α proteins in the vertebrate brain, relative to other active-zone proteins. Both proteins were widely distributed in hippocampal nerve terminals, and Liprin-α3, but not Liprin-α2, had a prominent component that colocalized with the active-zone proteins Bassoon, RIM, Munc13, RIM-BP, and ELKS. To assess Liprin-α3 functions, we generated Liprin-α3-KO mice by using CRISPR/Cas9 gene editing. We found reduced synaptic vesicle tethering and docking in hippocampal neurons of Liprin-α3-KO mice, and synaptic vesicle exocytosis was impaired. Liprin-α3 KO also led to mild alterations in active zone structure, accompanied by translocation of Liprin-α2 to active zones. These findings establish important roles for Liprin-α3 in active-zone assembly and function, and suggest that interplay between various Liprin-α proteins controls their active-zone localization.
Collapse
|
62
|
Walter AM, Böhme MA, Sigrist SJ. Vesicle release site organization at synaptic active zones. Neurosci Res 2017; 127:3-13. [PMID: 29275162 DOI: 10.1016/j.neures.2017.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Information transfer between nerve cells (neurons) forms the basis of behavior, emotion, and survival. Signal transduction from one neuron to another occurs at synapses, and relies on both electrical and chemical signal propagation. At chemical synapses, incoming electrical action potentials trigger the release of chemical neurotransmitters that are sensed by the connected cell and here reconverted to an electrical signal. The presynaptic conversion of an electrical to a chemical signal is an energy demanding, highly regulated process that relies on a complex, evolutionarily conserved molecular machinery. Here, we review the biophysical characteristics of this process, the current knowledge of the molecules operating in this reaction and genetic specializations that may have evolved to shape inter-neuronal signaling.
Collapse
Affiliation(s)
- Alexander M Walter
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.
| | - Mathias A Böhme
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustraße 6, 14195 Berlin, Germany; NeuroCure, Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
63
|
Heller JP, Rusakov DA. The Nanoworld of the Tripartite Synapse: Insights from Super-Resolution Microscopy. Front Cell Neurosci 2017; 11:374. [PMID: 29225567 PMCID: PMC5705901 DOI: 10.3389/fncel.2017.00374] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Synaptic connections between individual nerve cells are fundamental to the process of information transfer and storage in the brain. Over the past decades a third key partner of the synaptic machinery has been unveiled: ultrathin processes of electrically passive astroglia which often surround pre- and postsynaptic structures. The recent advent of super-resolution (SR) microscopy has begun to uncover the dynamic nanoworld of synapses and their astroglial environment. Here we overview and discuss the current progress in our understanding of the synaptic nanoenvironment, as gleaned from the imaging methods that go beyond the diffraction limit of conventional light microscopy. We argue that such methods are essential to achieve a new level of comprehension pertinent to the principles of signal integration in the brain.
Collapse
Affiliation(s)
- Janosch P Heller
- UCL Institute of Neurology, University College London, London, United Kingdom
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, London, United Kingdom.,Institute of Neuroscience, University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
64
|
Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA, Doherty P, Ewers H, Burrone J. Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function. Cell Rep 2017; 18:2715-2728. [PMID: 28297674 PMCID: PMC5368346 DOI: 10.1016/j.celrep.2017.02.064] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 12/10/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix.
Collapse
Affiliation(s)
- Oleg O Glebov
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| | - Rachel E Jackson
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Christian M Winterflood
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK
| | - Dylan M Owen
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Department of Physics, Faculty of Natural and Mathematical Sciences, King's College London, London WC2R 2LS, UK
| | - Ellen A Barker
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Helge Ewers
- Randall Division of Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, UK; Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Juan Burrone
- Centre For Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
65
|
Szoboszlay M, Kirizs T, Nusser Z. Objective quantification of nanoscale protein distributions. Sci Rep 2017; 7:15240. [PMID: 29127366 PMCID: PMC5681686 DOI: 10.1038/s41598-017-15695-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/01/2017] [Indexed: 01/13/2023] Open
Abstract
Nanoscale distribution of molecules within small subcellular compartments of neurons critically influences their functional roles. Although, numerous ways of analyzing the spatial arrangement of proteins have been described, a thorough comparison of their effectiveness is missing. Here we present an open source software, GoldExt, with a plethora of measures for quantification of the nanoscale distribution of proteins in subcellular compartments (e.g. synapses) of nerve cells. First, we compared the ability of five different measures to distinguish artificial uniform and clustered patterns from random point patterns. Then, the performance of a set of clustering algorithms was evaluated on simulated datasets with predefined number of clusters. Finally, we applied the best performing methods to experimental data, and analyzed the nanoscale distribution of different pre- and postsynaptic proteins, revealing random, uniform and clustered sub-synaptic distribution patterns. Our results reveal that application of a single measure is sufficient to distinguish between different distributions.
Collapse
Affiliation(s)
- Miklos Szoboszlay
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tekla Kirizs
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
66
|
Krinner S, Butola T, Jung S, Wichmann C, Moser T. RIM-Binding Protein 2 Promotes a Large Number of Ca V1.3 Ca 2+-Channels and Contributes to Fast Synaptic Vesicle Replenishment at Hair Cell Active Zones. Front Cell Neurosci 2017; 11:334. [PMID: 29163046 PMCID: PMC5673845 DOI: 10.3389/fncel.2017.00334] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
Ribbon synapses of inner hair cells (IHCs) mediate high rates of synchronous exocytosis to indefatigably track the stimulating sound with sub-millisecond precision. The sophisticated molecular machinery of the inner hair cell active zone realizes this impressive performance by enabling a large number of synaptic voltage-gated CaV1.3 Ca2+-channels, their tight coupling to synaptic vesicles (SVs) and fast replenishment of fusion competent SVs. Here we studied the role of RIM-binding protein 2 (RIM-BP2)—a multidomain cytomatrix protein known to directly interact with Rab3 interacting molecules (RIMs), bassoon and CaV1.3—that is present at the inner hair cell active zones. We combined confocal and stimulated emission depletion (STED) immunofluorescence microscopy, electron tomography, patch-clamp and confocal Ca2+-imaging, as well as auditory systems physiology to explore the morphological and functional effects of genetic RIM-BP2 disruption in constitutive RIM-BP2 knockout mice. We found that RIM-BP2 (1) positively regulates the number of synaptic CaV1.3 channels and thereby facilitates synaptic vesicle release and (2) supports fast synaptic vesicle recruitment after readily releasable pool (RRP) depletion. However, Ca2+-influx—exocytosis coupling seemed unaltered for readily releasable SVs. Recordings of auditory brainstem responses (ABR) and of single auditory nerve fiber firing showed that RIM-BP2 disruption results in a mild deficit of synaptic sound encoding.
Collapse
Affiliation(s)
- Stefanie Krinner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,IMPRS Neuroscience, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - SangYong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.,Neuromodulation and Neurocircuitry Group, Singapore Bioimaging Consortium (SBIC), Biomedical Sciences Institutes (BMSI), Agency for Science Technology and Research (A∗STAR), Singapore, Singapore
| | - Carolin Wichmann
- Collaborative Research Center, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center, University of Göttingen, Göttingen, Germany.,IMPRS Molecular Biology, Göttingen Graduate School for Neuroscience and Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
67
|
Scott MB, Kammermeier PJ. Ca V2 channel subtype expression in rat sympathetic neurons is selectively regulated by α 2δ subunits. Channels (Austin) 2017; 11:555-573. [PMID: 28837380 DOI: 10.1080/19336950.2017.1356954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Type two voltage gated calcium (CaV2) channels are the primary mediators of neurotransmission at neuronal presynapses, but their function at neural soma is also important in regulating excitability. 1 Mechanisms that regulate CaV2 channel expression at synapses have been studied extensively, which motivated us to perform similar studies in the soma. Rat sympathetic neurons from the superior cervical ganglion (SCG) natively express CaV2.2 and CaV2.3. 2 We noted previously that heterologous expression of CaV2.1 but not CaV2.2 results in increased calcium current in SCG neurons. 3 In the present study, we extended these observations to show that both CaV2.1 and CaV2.3 expression resulted in increased calcium currents while CaV2.2 expression did not. Further, CaV2.1 could displace native CaV2.2 channels, but CaV2.3 expression could not. Heterologous expression of the individual accessory subunits α2δ-1, α2δ-2, α2δ-3, or β4 alone failed to increase current density, suggesting that the calcium current ceiling when CaV2.2 was over-expressed was not due to lack of these subunits. Interestingly, introduction of recombinant α2δ subunits produced surprising effects on displacement of native CaV2.2 by recombinant channels. Both α2δ-1 and α2δ-2 seemed to promote CaV2.2 displacement by recombinant channel expression, while α2δ-3 appeared to protect CaV2.2 from displacement. Thus, we observe a selective prioritization of CaV channel functional expression in neurons by specific α2δ subunits. These data highlight a new function for α2δ subtypes that could shed light on subtype selectivity of CaV2 membrane expression.
Collapse
Affiliation(s)
- Mallory B Scott
- a Departments of Biochemistry and Biophysics , University of Rochester Medical Center , Rochester , NY , USA
| | - Paul J Kammermeier
- b Departments of Pharmacology and Physiology , University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
68
|
Efficient stimulus-secretion coupling at ribbon synapses requires RIM-binding protein tethering of L-type Ca 2+ channels. Proc Natl Acad Sci U S A 2017; 114:E8081-E8090. [PMID: 28874522 DOI: 10.1073/pnas.1702991114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast neurotransmitter release from ribbon synapses via Ca2+-triggered exocytosis requires tight coupling of L-type Ca2+ channels to release-ready synaptic vesicles at the presynaptic active zone, which is localized at the base of the ribbon. Here, we used genetic, electrophysiological, and ultrastructural analyses to probe the architecture of ribbon synapses by perturbing the function of RIM-binding proteins (RBPs) as central active-zone scaffolding molecules. We found that genetic deletion of RBP1 and RBP2 did not impair synapse ultrastructure of ribbon-type synapses formed between rod bipolar cells (RBCs) and amacrine type-2 (AII) cells in the mouse retina but dramatically reduced the density of presynaptic Ca2+ channels, decreased and desynchronized evoked neurotransmitter release, and rendered evoked and spontaneous neurotransmitter release sensitive to the slow Ca2+ buffer EGTA. These findings suggest that RBPs tether L-type Ca2+ channels to the active zones of ribbon synapses, thereby synchronizing vesicle exocytosis and promoting high-fidelity information transfer in retinal circuits.
Collapse
|
69
|
Reddy-Alla S, Böhme MA, Reynolds E, Beis C, Grasskamp AT, Mampell MM, Maglione M, Jusyte M, Rey U, Babikir H, McCarthy AW, Quentin C, Matkovic T, Bergeron DD, Mushtaq Z, Göttfert F, Owald D, Mielke T, Hell SW, Sigrist SJ, Walter AM. Stable Positioning of Unc13 Restricts Synaptic Vesicle Fusion to Defined Release Sites to Promote Synchronous Neurotransmission. Neuron 2017; 95:1350-1364.e12. [DOI: 10.1016/j.neuron.2017.08.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 08/09/2017] [Indexed: 12/24/2022]
|
70
|
Torres VI, Inestrosa NC. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol Neurobiol 2017; 55:4513-4528. [PMID: 28685386 DOI: 10.1007/s12035-017-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Collapse
Affiliation(s)
- Viviana I Torres
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
71
|
Determining the Roles of Inositol Trisphosphate Receptors in Neurodegeneration: Interdisciplinary Perspectives on a Complex Topic. Mol Neurobiol 2016; 54:6870-6884. [PMID: 27771899 DOI: 10.1007/s12035-016-0205-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023]
Abstract
It is well known that calcium (Ca2+) is involved in the triggering of neuronal death. Ca2+ cytosolic levels are regulated by Ca2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
|