51
|
Rivero-Rodríguez F, Díaz-Quintana A, Velázquez-Cruz A, González-Arzola K, Gavilan MP, Velázquez-Campoy A, Ríos RM, De la Rosa MA, Díaz-Moreno I. Inhibition of the PP2A activity by the histone chaperone ANP32B is long-range allosterically regulated by respiratory cytochrome c. Redox Biol 2021; 43:101967. [PMID: 33882408 PMCID: PMC8082267 DOI: 10.1016/j.redox.2021.101967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B—so-called ANP32B—and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iβ (SET/TAF-Iβ), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B. Respiratory cytochrome c interacts with ANP32B under DNA damage in the nucleus. Cytochrome c binding to ANP32B LCAR restores ANP32B-mediated PP2A inhibition. Cytochrome c emerges as a DNA Damage Response regulator.
Collapse
Affiliation(s)
- Francisco Rivero-Rodríguez
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Antonio Díaz-Quintana
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Alejandro Velázquez-Cruz
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Katiuska González-Arzola
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSICBIFI,and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragon), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain; Fundación ARAID, Gobierno de Aragón, 50018, Zaragoza, Spain
| | - Rosa M Ríos
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, University of Seville, CSIC, University Pablo de Olavide, Avda. Américo Vespucio 24, Seville, 41092, Spain
| | - Miguel A De la Rosa
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain
| | - Irene Díaz-Moreno
- Institute for Chemical Research (IIQ), Scientific Research Centre "Isla de La Cartuja" (cicCartuja), University of Seville, CSIC, Avda. Américo Vespucio 49, Seville, 41092, Spain.
| |
Collapse
|
52
|
Bazylianska V, Kalpage HA, Wan J, Vaishnav A, Mahapatra G, Turner AA, Chowdhury DD, Kim K, Morse PT, Lee I, Brunzelle JS, Polin L, Subedi P, Heath EI, Podgorski I, Marcus K, Edwards BF, Hüttemann M. Lysine 53 Acetylation of Cytochrome c in Prostate Cancer: Warburg Metabolism and Evasion of Apoptosis. Cells 2021; 10:802. [PMID: 33916826 PMCID: PMC8066186 DOI: 10.3390/cells10040802] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the functional effects of K53 modification in vitro, K53 was mutated to acetylmimetic glutamine (K53Q), and to arginine (K53R) and isoleucine (K53I) as controls. Cytochrome c oxidase (COX) activity analyzed with purified Cytc variants showed reduced oxygen consumption with acetylmimetic Cytc compared to the non-acetylated Cytc (WT), supporting the Warburg effect. In contrast to WT, K53Q Cytc had significantly lower caspase-3 activity, suggesting that modification of Cytc K53 helps cancer cells evade apoptosis. Cardiolipin peroxidase activity, which is another proapoptotic function of the protein, was lower in acetylmimetic Cytc. Acetylmimetic Cytc also had a higher capacity to scavenge reactive oxygen species (ROS), another pro-survival feature. We discuss our experimental results in light of structural features of K53Q Cytc, which we crystallized at a resolution of 1.31 Å, together with molecular dynamics simulations. In conclusion, we propose that K53 acetylation of Cytc affects two hallmarks of cancer by regulating respiration and apoptosis in prostate cancer xenografts.
Collapse
Affiliation(s)
- Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Gargi Mahapatra
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Alice A. Turner
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Katherine Kim
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
| | - Icksoo Lee
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Korea
| | - Joseph S. Brunzelle
- Life Sciences Collaborative Access Team, Center for Synchrotron Research, Northwestern University, Argonne, IL 60439, USA;
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (L.P.); (E.I.H.)
| | - Prabal Subedi
- Medical Proteomics/Bioanalytics-Center, Ruhr-University Bochum, 44789 Bochum, Germany; (P.S.); (K.M.)
| | - Elisabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (L.P.); (E.I.H.)
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA;
| | - Katrin Marcus
- Medical Proteomics/Bioanalytics-Center, Ruhr-University Bochum, 44789 Bochum, Germany; (P.S.); (K.M.)
| | - Brian F.P. Edwards
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (V.B.); (H.A.K.); (J.W.); (G.M.); (A.A.T.); (K.K.); (P.T.M.); (I.L.)
- Department of Biochemistry, Microbiology, and Immunology, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.V.); (D.D.C.); (B.F.P.E.)
| |
Collapse
|
53
|
Elena-Real CA, González-Arzola K, Pérez-Mejías G, Díaz-Quintana A, Velázquez-Campoy A, Desvoyes B, Gutiérrez C, De la Rosa MA, Díaz-Moreno I. Proposed mechanism for regulation of H 2 O 2 -induced programmed cell death in plants by binding of cytochrome c to 14-3-3 proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:74-85. [PMID: 33354856 DOI: 10.1111/tpj.15146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2 O2 -induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2 O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Adrián Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, 50018, Spain
- Department of Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, Zaragoza, 50009, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
- Biomedical Research Networking Centre for Liver and Digestive Diseases (CIBERehd), Madrid, 28029, Spain
- Fundacion ARAID, Government of Aragon, Zaragoza, 50018, Spain
| | - Bénédicte Desvoyes
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Crisanto Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) e Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Americo Vespucio 49, Sevilla, 41092, Spain
| |
Collapse
|
54
|
Kotrasová V, Keresztesová B, Ondrovičová G, Bauer JA, Havalová H, Pevala V, Kutejová E, Kunová N. Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease. Life (Basel) 2021; 11:life11020082. [PMID: 33498615 PMCID: PMC7912454 DOI: 10.3390/life11020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Barbora Keresztesová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
| | - Gabriela Ondrovičová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Henrieta Havalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- Correspondence: (E.K.); (N.K.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia; (V.K.); (B.K.); (G.O.); (J.A.B.); (H.H.); (V.P.)
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, 128 00 Prague, Czech Republic
- Correspondence: (E.K.); (N.K.)
| |
Collapse
|
55
|
Zhao Q, Sun X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Construction of homologous cancer cell membrane camouflage in a nano-drug delivery system for the treatment of lymphoma. J Nanobiotechnology 2021; 19:8. [PMID: 33407527 PMCID: PMC7789287 DOI: 10.1186/s12951-020-00738-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-Hodgkin's lymphoma (NHL) possesses great heterogeneity in cytogenetics, immunophenotype and clinical features, and chemotherapy currently serves as the main treatment modality. Although employing monoclonal antibody targeted drugs has significantly improved its overall efficacy, various patients continue to suffer from drug resistance or recurrence. Chinese medicine has long been used in the treatment of malignant tumors. Therefore, we constructed a low pH value sensitivity drug delivery system based on the cancer cell membrane modified mesoporous silica nanoparticles loaded with traditional Chinese medicine, which can reduce systemic toxicity and improve the therapeutic effect for the targeted drug delivery of tumor cells. RESULTS Accordingly, this study put forward the construction of a nano-platform based on mesoporous silica nanoparticles (MSNs) loaded with the traditional Chinese medicine isoimperatorin (ISOIM), which was camouflaged by the cancer cell membrane (CCM) called CCM@MSNs-ISOIM. The proposed nano-platform has characteristics of immune escape, anti-phagocytosis, high drug loading rate, low pH value sensitivity, good biocompatibility and active targeting of the tumor site, blocking the lymphoma cell cycle and promoting mitochondrial-mediated apoptosis. CONCLUSIONS Furthermore, this study provides a theoretical basis in finding novel clinical treatments for lymphoma.
Collapse
Affiliation(s)
- Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Xiaoying Sun
- School of Nursing, Medical College, Soochow University, Suzhou, 215006, People's Republic of China
- Department of Emergency, The Qinghai Provincial People's Hospital, Xining, 810007, People's Republic of China
| | - Bin Wu
- Department of Transfusion Medicine, Tongji Medical College, Wuhan Hospital of Traditional Chinese and Western Medicine, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China.
| |
Collapse
|
56
|
Timón-Gómez A, Bartley-Dier EL, Fontanesi F, Barrientos A. HIGD-Driven Regulation of Cytochrome c Oxidase Biogenesis and Function. Cells 2020; 9:cells9122620. [PMID: 33291261 PMCID: PMC7762129 DOI: 10.3390/cells9122620] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
The biogenesis and function of eukaryotic cytochrome c oxidase or mitochondrial respiratory chain complex IV (CIV) undergo several levels of regulation to adapt to changing environmental conditions. Adaptation to hypoxia and oxidative stress involves CIV subunit isoform switch, changes in phosphorylation status, and modulation of CIV assembly and enzymatic activity by interacting factors. The latter include the Hypoxia Inducible Gene Domain (HIGD) family yeast respiratory supercomplex factors 1 and 2 (Rcf1 and Rcf2) and two mammalian homologs of Rcf1, the proteins HIGD1A and HIGD2A. Whereas Rcf1 and Rcf2 are expressed constitutively, expression of HIGD1A and HIGD2A is induced under stress conditions, such as hypoxia and/or low glucose levels. In both systems, the HIGD proteins localize in the mitochondrial inner membrane and play a role in the biogenesis of CIV as a free unit or as part as respiratory supercomplexes. Notably, they remain bound to assembled CIV and, by modulating its activity, regulate cellular respiration. Here, we will describe the current knowledge regarding the specific and overlapping roles of the several HIGD proteins in physiological and stress conditions.
Collapse
Affiliation(s)
- Alba Timón-Gómez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Emma L. Bartley-Dier
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.L.B.-D.); (F.F.)
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.L.B.-D.); (F.F.)
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.L.B.-D.); (F.F.)
- Correspondence:
| |
Collapse
|
57
|
Pérez-Mejías G, Olloqui-Sariego JL, Guerra-Castellano A, Díaz-Quintana A, Calvente JJ, Andreu R, De la Rosa MA, Díaz-Moreno I. Physical contact between cytochrome c1 and cytochrome c increases the driving force for electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148277. [DOI: 10.1016/j.bbabio.2020.148277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023]
|
58
|
Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochim Biophys Acta Rev Cancer 2020; 1874:188442. [DOI: 10.1016/j.bbcan.2020.188442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
|
59
|
Fang Y, Gu Y, Li L, Zhu L, Qian J, Zhao C, Xu L, Wei W, Du Y, Yuan N, Zhang S, Yuan Y, Xu Y, Jiang C, Wang J. Loss of Atg7 causes chaotic nucleosome assembly of mouse bone marrow CD11b +Ly6G - myeloid cells. Aging (Albany NY) 2020; 12:25673-25683. [PMID: 33232280 PMCID: PMC7803583 DOI: 10.18632/aging.104176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Atg7, a critical component of autophagy machinery, is essential for counteracting hematopoietic aging. However, the non-autophagic role of Atg7 on hematopoietic cells remains fundamentally unclear. In this study, we found that loss of Atg7, but not Atg5, another autophagy-essential gene, in the hematopoietic system reduces CD11b myeloid cellularity including CD11b+Ly6G+ and CD11b+Ly6G- populations in mouse bone marrow. Surprisingly, Atg7 deletion causes abnormally accumulated histone H3.1 to be overwhelmingly trapped in the cytoplasm in the CD11b+Ly6G-, but not the CD11b+Ly6G+ compartment. RNA profiling revealed extensively chaotic expression of the genes required in nucleosome assembly. Functional assays further indicated upregulated aging markers in the CD11b+Ly6G- population. Therefore, our study suggests that Atg7 is essential for maintaining proper nucleosome assembly and limiting aging in the bone marrow CD11b+Ly6G- population.
Collapse
Affiliation(s)
- Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Yue Gu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lingjiang Zhu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiawei Qian
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yanhua Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Ye Yuan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Osteoporosis Institute of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Osteoporosis Institute of Soochow University, Suzhou 215004, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
60
|
Ye S, Zhou HB, Chen Y, Li KQ, Jiang SS, Hao K. Crizotinib changes the metabolic pattern and inhibits ATP production in A549 non-small cell lung cancer cells. Oncol Lett 2020; 21:61. [PMID: 33281972 PMCID: PMC7709560 DOI: 10.3892/ol.2020.12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
Crizotinib, an inhibitor of the hepatocyte growth factor receptor oncogene, has been studied extensively regarding its antitumor and clinically beneficial effects in non-small cell lung cancer (NSCLC). However, crizotinib's effects on cancer cell energy metabolism, which is linked with tumor proliferation and migration, in NSCLC are unclear. Therefore, the present study focused on crizotinib's effect on NSCLC glucose metabolism. Crizotinib's effects on glucose metabolism, proliferation, migration and apoptosis in A549 cells were explored. Several other inhibitors, including 2-DG, rotenone and MG132, were used to define the mechanism of action in further detail. Data showed that crizotinib treatment reduced A549 cell viability, increased glucose consumption and lactate production, while decreased mitochondrial transmembrane potential (Δψm) and ATP production. Crizotinib treatment, combined with rotenone and MG132 treatment, further inhibited ATP production and Δψm and increased reactive oxygen species content. However, crizotinib did not suppress cell proliferation, migration, ATP production, Δψm or mitochondrial-related apoptosis signals further following 2-DG-mediated inhibition of glycolysis. These results indicated that crizotinib induced low mitochondrial function and compensatory high anaerobic metabolism, but failed to maintain sufficient ATP levels. The alternation of metabolic pattern and insufficient ATP supply may serve important roles in the metabolic antitumor mechanism of crizotinib in A549 cells.
Collapse
Affiliation(s)
- Sa Ye
- Department of Nutrition, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hong-Bin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Kai-Qiang Li
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shan-Shan Jiang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
61
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 533] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
62
|
Guerra-Castellano A, Márquez I, Pérez-Mejías G, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-Translational Modifications of Cytochrome c in Cell Life and Disease. Int J Mol Sci 2020; 21:E8483. [PMID: 33187249 PMCID: PMC7697256 DOI: 10.3390/ijms21228483] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the powerhouses of the cell, whilst their malfunction is related to several human pathologies, including neurodegenerative diseases, cardiovascular diseases, and various types of cancer. In mitochondrial metabolism, cytochrome c is a small soluble heme protein that acts as an essential redox carrier in the respiratory electron transport chain. However, cytochrome c is likewise an essential protein in the cytoplasm acting as an activator of programmed cell death. Such a dual role of cytochrome c in cell life and death is indeed fine-regulated by a wide variety of protein post-translational modifications. In this work, we show how these modifications can alter cytochrome c structure and functionality, thus emerging as a control mechanism of cell metabolism but also as a key element in development and prevention of pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Sevilla, Spain; (A.G.-C.); (I.M.); (G.P.-M.); (A.D.-Q.); (M.A.D.l.R.)
| |
Collapse
|
63
|
Alissafi T, Kalafati L, Lazari M, Filia A, Kloukina I, Manifava M, Lim JH, Alexaki VI, Ktistakis NT, Doskas T, Garinis GA, Chavakis T, Boumpas DT, Verginis P. Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity. Cell Metab 2020; 32:591-604.e7. [PMID: 32738205 PMCID: PMC7611060 DOI: 10.1016/j.cmet.2020.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/14/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.
Collapse
Affiliation(s)
- Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece.
| | - Lydia Kalafati
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maria Lazari
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Anastasia Filia
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Maria Manifava
- Babraham Institute, Signaling Programme, Cambridge CB22 3AT, UK
| | - Jong-Hyung Lim
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | | | | | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Crete, Heraklion 70013, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 12462, Greece
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany.
| |
Collapse
|
64
|
Pérez-Mejías G, Velázquez-Cruz A, Guerra-Castellano A, Baños-Jaime B, Díaz-Quintana A, González-Arzola K, Ángel De la Rosa M, Díaz-Moreno I. Exploring protein phosphorylation by combining computational approaches and biochemical methods. Comput Struct Biotechnol J 2020; 18:1852-1863. [PMID: 32728408 PMCID: PMC7369424 DOI: 10.1016/j.csbj.2020.06.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications of proteins expand their functional diversity, regulating the response of cells to a variety of stimuli. Among these modifications, phosphorylation is the most ubiquitous and plays a prominent role in cell signaling. The addition of a phosphate often affects the function of a protein by altering its structure and dynamics. However, these alterations are often difficult to study and the functional and structural implications remain unresolved. New approaches are emerging to overcome common obstacles related to the production and manipulation of these samples. Here, we summarize the available methods for phosphoprotein purification and phosphomimetic engineering, highlighting the advantages and disadvantages of each. We propose a general workflow for protein phosphorylation analysis combining computational and biochemical approaches, building on recent advances that enable user-friendly and easy-to-access Molecular Dynamics simulations. We hope this innovative workflow will inform the best experimental approach to explore such post-translational modifications. We have applied this workflow to two different human protein models: the hemeprotein cytochrome c and the RNA binding protein HuR. Our results illustrate the usefulness of Molecular Dynamics as a decision-making tool to design the most appropriate phosphomimetic variant.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Katiuska González-Arzola
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel Ángel De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Avda., Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
65
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
66
|
Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 2020; 121:105704. [PMID: 32023432 DOI: 10.1016/j.biocel.2020.105704] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.
Collapse
|
67
|
Li X, Lu C, Xia W, Quan G, Huang Y, Bai X, Yu F, Xu Q, Qin W, Liu D, Pan X. Poly(L-Glutamic Acid)-Based Brush Copolymers: Fabrication, Self-assembly, and Evaluation as Efficient Nanocarriers for Cationic Protein Drug Delivery. AAPS PharmSciTech 2020; 21:78. [PMID: 31970547 DOI: 10.1208/s12249-020-1624-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 02/05/2023] Open
Abstract
Protein drugs were considered to be the first choice to treat many human diseases, but their clinical application was usually limited by their short half-life and lack of validated targeted therapy. Here, a series of folate-functionalized poly(ethylene glycol)-b-(poly(2-aminoethyl-L-glutamate)-g-poly(L-glutamic acid))s (FA-PEG-b-(PELG-g-PLGA)s) were designed as tumor-targeted carriers for cationic protein delivery. Compared with traditional copolymers consisting of PEG and linear charged hydrophilic blocks, FA-PEG-b-(PELG-g-PLGA) with brush-like polyelectrolyte segments were beneficial to improving their electrostatic interactions with loading protein molecules, thus increasing drug-loading stability and protecting encapsulated proteins from degradation. The designed polymer brushes could efficiently encapsulate cytochrome C (CytC), a cationic model protein, to form polyion complex (PIC) micelles with an average particle size of approximately 200 nm. An in vitro drug release study showed that the drug-loading stability of the formed PIC micelles was largely improved. The functionalization of the block copolymer carriers with a targeting folate group enhanced the tumor cell growth inhibition and total apoptotic rates induced by CytC. Our results shed light on the unique advantages of brush-like polymer carriers in delivering cationic proteins, and the poly(L-glutamic acid)-based linear-brush diblock copolymers could be applied as a versatile delivery platform for molecular targeting in cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wenquan Xia
- Shantou University Medical College, Shantou, 515041, China
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuequn Bai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feiyuan Yu
- Shantou University Medical College, Shantou, 515041, China
| | - Qian Xu
- Shantou University Medical College, Shantou, 515041, China
| | - Wanbing Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Daojun Liu
- Shantou University Medical College, Shantou, 515041, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
68
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
69
|
Raghushaker CR, Chandra S, Chakrabarty S, Kabekkodu SP, Satyamoorthy K, Mahato KK. Detection of mitochondrial dysfunction in vitro by laser-induced autofluorescence. JOURNAL OF BIOPHOTONICS 2019; 12:e201900056. [PMID: 31251452 DOI: 10.1002/jbio.201900056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Mitochondrion plays a significant role in a variety of biological functions. Because of their diverse character and location in the cellular systems, mitochondria commonly get exposed to various extrinsic and intrinsic cellular stresses. The present study reports a novel approach to detection of mitochondrial dysfunction based on tryptophan autofluorescence of its proteins in mouse liver, using laser-induced fluorescence (LIF) as a tool. Mitochondria, isolated from the mouse liver, were initially tested for purity and integrity using lactate dehydrogenase and succinate dehydrogenase (SDH) assays. Mitochondrial stress was induced by treating the isolated mitochondria with heavy metals at 10 and 0.01 mM for sodium arsenite and mercuric chloride, respectively. Upon treatment with the heavy metal, tryptophan autofluorescence quenching was recorded at 281 nm excitation. The functional integrity of the mitochondria treated with heavy metals was evaluated by measuring SDH and cytochrome c oxidase activities at various concentrations of mitochondria, which showed impaired activity as compared to control upto a concentration of 6.25 μg. A significant shift was also observed in the autofluorescence of proteins upto the level below 1 μg, suggesting their conformational change and hence altered structural integrity of mitochondria. Circular dichroism spectroscopy data of the mitochondrial proteins treated with heavy metals further validates their conformational change as compared to untreated control. The present study clearly shows that the LIF can be a novel detection tool to detect altered structural integrity of cellular mitochondria upon stress, and it also possesses the potentiality to combine with other interdisciplinary modalities.
Collapse
Affiliation(s)
- Chandavalli R Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subhash Chandra
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Krishna K Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
70
|
Xie L, Feng X, Huang M, Zhang K, Liu Q. Sonodynamic Therapy Combined to 2-Deoxyglucose Potentiate Cell Metastasis Inhibition of Breast Cancer. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2984-2992. [PMID: 31405605 DOI: 10.1016/j.ultrasmedbio.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Metastasis is a major dilemma of cancer therapy. It frequently occurs in breast cancer, which is the leading form of malignant tumor among females worldwide. Although there are therapies that provide a possible method for this challenge, such as chemotherapy, the tumoral metabolic pathway is unconventional and favors metastasis and proliferation. This magnifies the difficulty of treating breast cancer. In this study, we identified 2-deoxyglucose (2 DG) as an important glycolysis suppressor that can potentiate sonodynamic therapy (SDT) to inhibit migration and invasion. In addition, disruptions of the cell membrane microstructure were captured by a scanning electron microscope in cells treated with the co-therapy. Similarly, we detected blockages of the cell cycle process, using flow cytometry. Of note, we observed that hexokinase II (HK2), the rate-limiting enzyme of glycolysis, was notably uncoupled from the mitochondria in SDT + 2 DG co-therapy group. Furthermore, there was altered expression of HK2 and Glut1, which control glycolysis. Simultaneously, the in vivo results revealed that pulmonary metastasis was also seriously suppressed by SDT + 2 DG co-therapy. These results demonstrate this co-therapy is a promising strategy for breast cancer inhibition through metastasis and proliferation.
Collapse
Affiliation(s)
- Lifen Xie
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Minying Huang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
71
|
Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function. Int J Biol Macromol 2019; 138:29-36. [PMID: 31302123 DOI: 10.1016/j.ijbiomac.2019.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022]
Abstract
In this study, we employed multiple spectroscopic methods to analyze the effects of carbon nanoparticles (CNPs) on structure of cytochrome c (Cyt c) and mitochondrial function in plant cells. The tertiary structures of aromatic amino acid in Cyt c were not changed after addition of CNPs. Cyt c was found to be absorbed on the surfaces of CNPs in a non-linear manner and only bound Cyt c can be reduced. In addition, the binding of Cyt c was found to increase the diameter of CNPs at lower concentrations. The redox potential of Cyt c was almost not affected after treatment with CNPs. There were no obvious differences in cellular ATP after exposure to CNPs, and the mitochondrial membrane potential (MMP) was significantly decreased once the CNPs concentration exceeded 31.25 μg/mL. The levels of reactive oxygen species (ROS) also were increased in BY-2 cells. Taken together, these findings provide basis for the interactions between CNPs and Cyt c, as well as the effect of CNPs treatment on the mitochondria function in plant cells.
Collapse
|
72
|
Pérez-Mejías G, Guerra-Castellano A, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Cytochrome c: Surfing Off of the Mitochondrial Membrane on the Tops of Complexes III and IV. Comput Struct Biotechnol J 2019; 17:654-660. [PMID: 31193759 PMCID: PMC6542325 DOI: 10.1016/j.csbj.2019.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/30/2022] Open
Abstract
The proper arrangement of protein components within the respiratory electron transport chain is nowadays a matter of intense debate, since altering it leads to cell aging and other related pathologies. Here, we discuss three current views—the so-called solid, fluid and plasticity models—which describe the organization of the main membrane-embedded mitochondrial protein complexes and the key elements that regulate and/or facilitate supercomplex assembly. The soluble electron carrier cytochrome c has recently emerged as an essential factor in the assembly and function of respiratory supercomplexes. In fact, a ‘restricted diffusion pathway’ mechanism for electron transfer between complexes III and IV has been proposed based on the secondary, distal binding sites for cytochrome c at its two membrane partners recently discovered. This channeling pathway facilitates the surfing of cytochrome c on both respiratory complexes, thereby tuning the efficiency of oxidative phosphorylation and diminishing the production of reactive oxygen species. The well-documented post-translational modifications of cytochrome c could further contribute to the rapid adjustment of electron flow in response to changing cellular conditions.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Alejandra Guerra-Castellano
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
73
|
Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019; 33:1540-1553. [PMID: 30222078 PMCID: PMC6338631 DOI: 10.1096/fj.201801417r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Maurice A. Recanati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Nikhil Mantena
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Elizabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Brian F. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Emergency Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
74
|
Qi G, Li H, Zhang Y, Li C, Xu S, Wang M, Jin Y. Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Anal Chem 2018; 91:1408-1415. [PMID: 30457829 DOI: 10.1021/acs.analchem.8b04027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome c (Cyt c) release and cellular pH change are two important mediators of apoptosis. Effective methods to regulate or monitor such two events are therefore highly desired for apoptosis research and cancer cell therapy. Herein, we exploited electrostimulation to regulate cellular Cyt c release and apoptosis process, and by designing and preparing a smart and efficient plasmonic nanorobot (with surface-modified Cyt c-specific aptamer and 4-mercaptobenzoic acid) that is capable of Cyt c capture and self-sensing, we achieved real-time SERS monitoring of dynamic Cyt c release and simultaneous cell acidification in apoptosis during electrostimulation. Distinctly different molecular stress responses in the two events for cancerous MCF-7 and HeLa cells and normal L929 cells were identified and revealed. The method and results are valuable and promising for apoptosis and Cyt c-mediated biology studies.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , 2699 Qianjin Avenue , Changchun 130012 , P. R. China
| | - Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , Jilin P. R. China
| |
Collapse
|
75
|
Zhou PK, Huang RX. Targeting of the respiratory chain by toxicants: beyond the toxicities to mitochondrial morphology. Toxicol Res (Camb) 2018; 7:1008-1011. [PMID: 30542598 PMCID: PMC6249626 DOI: 10.1039/c8tx00207j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The mitochondrion is an important subcellular target of environmental toxicants. With environmental stress, a series of toxic effects on mitochondria are induced, which originate from the dynamic changes of mitochondrial fusion and fission, structure/membrane damage, and respiratory chain dysfunction. The toxic effects of various toxicants on mitochondrial morphology and intact membranes, and their determination of cell fate, have already been broadly studied and reported on. However, their effects on the integrity and function of the mitochondrial respiratory chain (RC) remain incompletely understood. Recently, Fan et al. and Yu et al. approached this topic by closely examining the mitochondrial toxicities, including the effect on the respiratory chain, induced by organic arsenical chemical 2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol and thiourea gold(i) complexes (AuTuCl). Obviously, toxicant-induced dysfunction of the respiratory chain can hinder ATP production, and may elevate ROS generation. The increased ROS can further damage mtDNA, and consequently leads to inactivation of some RC protein-encoding mtDNA, generating a vicious circle of amplifying mitochondrial damage. We hope that these studies focused on RC structure and activity will broaden our view of mitochondrial toxicology and draw forth more profound mechanistic studies on the respiratory chain toxicity of environmental toxicants and their application in risk assessment.
Collapse
Affiliation(s)
- P K Zhou
- Department of Radiation Biology , Beijing Key Laboratory for Radiobiology , Beijing Institute of Radiation Medicine , AMMS , Beijing 100850 , P. R. China .
| | - R X Huang
- Department of Occupational and Environmental Health , Central south University , Changsha , 410078 , China .
| |
Collapse
|