51
|
A bridge between cerebellar long-term depression and discrete motor learning: Studies on gene knockout mice. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Cellular mechanisms of long-term depression: From consensus to open questions. Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
53
|
How can the cerebellum match “error signal” and “error correction”? Behav Brain Sci 1996. [DOI: 10.1017/s0140525x00081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
54
|
Abstract
Certain types of neuronal ions channels have been demonstrated to be the major target sites of insecticides. The insecticide-channel interactions that have been studied most extensively are pyrethroid actions on the voltage-gated sodium channel and cyclodiene/lindane actions on the GABAA receptor chloride channel complex. With the exception of organophosphate and carbamate insecticides which inhibit acetylcholinesterases, most insecticide commercially developed act on the sodium channel and the GABA system. Pyrethroids show the kinetics of both activation and inactivation gates of sodium channels resulting in prolonged openings of individual channels. This causes membrane depolarization, repetitive discharges and synaptic disturbances leading to hyperexcitatory symptoms of poisoning in animals. Only a very small fraction (approximately 1%) of sodium channel population is required to be modified by pyrethroids to produce severe hyperexcitatory symptoms. This toxicity amplification theory applies to pharmacological and toxicological action of other drugs that go through a threshold phenomenon. Selective toxicity of pyrethroids between invertebrates and mammals can be explained based largely on the responses of sodium channels and partly on metabolic degradation. The pyrethroid-sodium channel interaction is also supported by Na+ uptake and batrachotoxin binding experiments. Cyclodienes and lindane exert a dual action on the GABAA system, the initial transient stimulation being followed by a suppression. The stimulation requires the presence of the gamma 2 subunit. The suppression of the GABA system is also documented by Cl- flux and ligand binding experiments. It appears that the sodium channel and the GABA system merit continuing efforts for development of newer and better insecticides. Nitromethylene heterocycles including imidacloprid act on nicotinic acetylcholine receptors. Insect receptors are more sensitive to these compounds than mammalian receptors. Single-channel analyses of the nicotinic acetylcholine receptor of PC12 cells have shown that imidacloprid increases the activity of subconductance state currents and decreases that of main conductance state currents. This may explain the imidacloprid suppression of acetylcholine responses.
Collapse
Affiliation(s)
- T Narahashi
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611-3008, USA
| |
Collapse
|
55
|
Tiger G, Lundin D, Fowler CJ. Veratrine-stimulated phosphoinositide breakdown as an assay for local anesthetic actions at Na+ channels. Anesth Analg 1995; 81:480-5. [PMID: 7653808 DOI: 10.1097/00000539-199509000-00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The blockade of veratrine-stimulated phosphoinositide breakdown in rat cerebral cortical miniprisms as a model of local anesthetic actions on voltage-dependent sodium channels was assessed. Veratrine stimulated phosphoinositide breakdown with an EC50 value of 5 microM. The stimulation produced by 20 microM veratrine was blocked completely by (+)-bupivacaine (IC50 7.6 microM [mean of three separate experimental series]), (-)-bupivacaine (IC50 7.3 microM), lidocaine (IC50 34 microM), etidocaine (IC50 3.4 microM), tetracaine (IC50 approximately 2 microM), and prilocaine (IC50 110 microM). Phosphoinositide breakdown responses to ouabain (100-1000 microM) and K+ (50 mM) were only partially blocked by (+)-bupivacaine, and the responses to monensin (100 and 1000 microM) and noradrenaline (30 microM) were not blocked at all by this drug. Nifedipine produced no significant effects on the phosphoinositide response to 10 microM veratrine. It is concluded that in pulse label experiments using rat cerebral cortical miniprisms, local anesthetics in general, and (+)-bupivacaine in particular, block the phosphoinositide response to veratrine with a high degree of specificity. This system may be useful as a relatively simple and quantitative assay for drug effects on Na(+)-channels.
Collapse
Affiliation(s)
- G Tiger
- Department of Pharmacology, Umeå University, Sweden
| | | | | |
Collapse
|
56
|
Myles ME, Gokmen-Polar Y, Fain JN. Inhibition by veratridine of carbachol-stimulated inositol tetrakisphosphate accumulation in rat brain cortical slices. Neurochem Res 1995; 20:1057-64. [PMID: 8570010 DOI: 10.1007/bf00995560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present studies examined the inhibitory effect of veratridine (a Na+ channel activator) on carbachol (a cholinergic agonist) stimulated inositol 1,3,4,5-tetrakisphosphate accumulation in rat brain cortical slices. Veratridine inhibited carbachol stimulation of inositol 1,3,4,5-tetrakisphosphate formation (after a delay of about 30 seconds) at 60 or 120 seconds when there was little inhibition of inositol 1,4,5 trisphosphate accumulation. The inhibitory effect of veratridine on carbachol stimulated inositol 1,3,4,5-tetrakisphosphate accumulation was abolished in the presence of ouabain or tetrodotoxin but was unaffected in low calcium conditions. Veratridine reduced the total ATP content and this effect was abolished by tetrodotoxin. The inhibitory effect of 10 but not 30 microM veratridine on inositol 1,3,4,5-tetrakisphosphate accumulation in the presence of carbachol was reversed by the presence of exogenous 8-bromo cyclic AMP or forskolin which activates adenylyl cyclase. However, the decrease in brain slice ATP seen in the presence of veratridine was unaffected by forskolin. Our results are compatible with the hypothesis that veratridine inhibition of carbachol-stimulated inositol 1,3,4,5-tetrakisphosphate formation is due to depletion of ATP at the site of Ins 1,3,4,5-P4 formation from Ins 1,4,5-P3.
Collapse
Affiliation(s)
- M E Myles
- Department of Biochemistry, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
57
|
Veratrine-Stimulated Phosphoinositide Breakdown as an Assay for Local Anesthetic Actions at Na+ Channels. Anesth Analg 1995. [DOI: 10.1213/00000539-199509000-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Romano-Silva MA, Gomez MV, Brammer MJ. Modulation of Ca(2+)-stimulated glutamate release from synaptosomes by Na+ entry through tetrodotoxin-sensitive channels. Biochem J 1994; 304 ( Pt 2):353-7. [PMID: 7528008 PMCID: PMC1137500 DOI: 10.1042/bj3040353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tityustoxin (TsTX), a toxin obtained from the venom of the Brazilian scorpion Tityus serrulatus, stimulates Na+ influx through tetrodotoxin (TTX)-sensitive Na+ channels which, in turn, promotes both Ca(2+)-dependent and Ca(2+)-independent release of glutamate from rat cerebrocortical synaptosomes. The level of Ca(2+)-dependent glutamate release after addition of 0.5 microM TsTX is greater than that produced by a maximally depolarizing concentration of KCl. This effect of TsTX, which is entirely dependent on Na+ entry, suggests that Na+ has a role in modulating Ca2+ entry and glutamate release that is not simply related to membrane depolarization. In order to investigate possible modulatory role(s) of Na+ on Ca(2+)-dependent glutamate release, we compared the effects of TsTX with those of KCl and the Na+ ionophore gramicidin D. When used alone, 100 nM gramicidin D produced a larger increase in intrasynaptosomal free Na+ than did 0.5 microM TsTX, and a similar rise in intrasynaptosomal free Ca2+, but was much less effective in promoting glutamate release. Even the combination of membrane depolarization (by 33 mM KCl) and elevation of intrasynaptosomal free Na+ (by 100 nM gramicidin) was still less effective than TsTX at causing Ca(2+)-dependent glutamate release. These data suggest that localized Na+ entry, through TTX-sensitive Na+ channels, exerts a modulatory role on Ca(2+)-dependent glutamate release from nerve endings in the cerebral cortex.
Collapse
Affiliation(s)
- M A Romano-Silva
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
59
|
Myles ME, Fain JN. Carbachol, but not norepinephrine, NMDA, ionomycin, ouabain, or phorbol myristate acetate, increases inositol 1,3,4,5-tetrakisphosphate accumulation in rat brain cortical slices. J Neurochem 1994; 62:2333-9. [PMID: 8189237 DOI: 10.1046/j.1471-4159.1994.62062333.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ionomycin, a Ca2+ ionophore, stimulated phosphoinositide breakdown in rat brain cortical slices incubated in the presence of 1.2 mM Ca2+, but, unlike muscarinic cholinergic stimulation, it had little effect on inositol 1,3,4,5-tetrakisphosphate accumulation. However, at 2 min, the increase in inositol 1,4,5-trisphosphate due to 10 microM ionomycin was equivalent to that seen with 1 mM carbachol. Phorbol 12-myristate 13-acetate or high K+ (30 mM) increased inositol 1,4,5-trisphosphate, but not inositol 1,3,4,5-tetrakisphosphate accumulation. The stimulation of inositol 1,4,5-trisphosphate accumulation due to ionomycin, unlike that seen with carbachol, was abolished in buffer containing 0.2 mM Ca2+. The increase in inositol 1,3,4,5-tetrakisphosphate accumulation in brain slices due to 1 mM carbachol ranged from 55 to 68% of that for inositol 1,4,5-trisphosphate. Norepinephrine, NMDA, veratridine, and ouabain also increased inositol 1,4,5-trisphosphate, but had minimal effects on inositol 1,3,4,5-tetrakisphosphate accumulation. These results suggest that there is something unique about the stimulation of inositol 1,3,4,5-tetrakisphosphate accumulation by carbachol, which is also the only one of these agents that is able to activate phosphoinositidase C beta 1 in isolated rat brain membranes.
Collapse
Affiliation(s)
- M E Myles
- Department of Biochemistry, University of Tennessee at Memphis 38163
| | | |
Collapse
|
60
|
Vignes M, Guiramand J, Sassetti I, Récasens M. Effect of thiol reagents on phosphoinositide hydrolysis in rat brain synaptoneurosomes. Eur J Neurosci 1993; 5:327-34. [PMID: 8261113 DOI: 10.1111/j.1460-9568.1993.tb00500.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some divalent ions, such as Cd2+ and Zn2+, are able to stimulate phosphoinositide (PI) breakdown and to inhibit receptor-mediated PI metabolism. These ions are also known to react with the free -SH groups of proteins. This prompted us to investigate the effects of more potent sulphydryl reagents, Hg2+ and p-chloromercuric benzosulphonic acid (PCMBS), on the inositol phosphate (IP) accumulation triggered by the neuroactive substances: glutamate, carbachol and K+, using synaptoneurosomes from 8-day-old rat forebrains. Hg2+ and PCMBS, depending on their concentration, had two distinct effects on IP accumulation: at low doses, Hg2+ (from 1 to 10 microM) and PCMBS (0.1 mM) by themselves stimulated PI breakdown, inhibited glutamate-elicited IP accumulation and had additive effects with respect to carbachol-induced IP stimulation. At higher doses, Hg2+ (from 0.01 to 1 mM) inhibited both basal and neuroactive substance-stimulated IP accumulation. PCMBS (1 mM), provoked only an inhibition of the agonist-stimulated IP formation. Monitoring membrane potential and intracellular Ca2+ with the fluorescent dyes diSC2(5) and fura2, respectively, indicated that these mercurials could strongly depolarize the synaptoneurosomal membrane and produce a Ca2+ influx dependent on extracellular Ca2+. The stimulatory effects of low concentrations of mercurials on PI turnover could be linked to the depolarization they provoke and the subsequent Ca2+ rise, which in turn is known to stimulate some phospholipase C enzymes. The inhibitory effects observed at high concentrations might be due to a loss of activity of proteins involved in PI breakdown, as all receptor-mediated IP accumulations were inhibited.
Collapse
Affiliation(s)
- M Vignes
- INSERM U254, Hôpital Saint Charles, Montpellier, France
| | | | | | | |
Collapse
|
61
|
|
62
|
Candura SM, Castoldi AF, Manzo L, Costa LG. Guanine nucleotide- and muscarinic agonist-dependent phosphoinositide metabolism in synaptoneurosomes from cerebral cortex of immature rats. Neurochem Res 1992; 17:1133-41. [PMID: 1361027 DOI: 10.1007/bf00967291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanine nucleotide-, neurotransmitter-, and fluoride-stimulated accumulation of [3H]inositol phosphates ([3H]InsPs) was measured in [3H]inositol-labeled synaptoneurosomes from cerebral cortex of immature (7-day-old) and adult rats, in order to clarify the role of GTP-binding proteins (G-proteins) in modulating phosphoinositide (PtdIns) metabolism during brain development. GTP(S) [Guanosine 5'-O-(3-thio)triphosphate] time- and concentration-dependently stimulated PtdIns hydrolysis. Its effect was potentiated by full (carbachol, metacholine) and partial (oxotremorine) cholinergic agonists through activation of muscarinic receptors. The presence of deoxycholate was required to demonstrate agonist potentiation of the guanine nucleotide effect. The response to GTP(S) was higher in adult than in immature rats, while the effect of cholinergic agonists was similar at the two ages examined. At both ages, histamine potentiated the effect of GTP(S), while norepinephrine was ineffective. At both ages, guanosine 5'-O-(2-thio)diphosphate [GDP(S)] and pertussis toxin significantly decreased GTP(S)-induced [3H]InsPs formation. The phorbol ester phorbol 12-myristate 13-acetate (PMA), on the other hand, did not inhibit the guanine nucleotide response in synaptoneurosomes from immature rats. NaF mimicked the action of GTP(S) in stimulating PtdIns hydrolysis. Its effect was not affected by carbachol and was highly synergistic with that of AlCl3, according to the concept that fluoroaluminate (AlF4-) is the active stimulatory species. No quantitative differences were found in the response to these salts between immature and adult animals. These results provide evidence that, in both the immature and adult rat brain, neuroreceptor activation is coupled to PtdIns hydrolysis through modulatory G-proteins.
Collapse
Affiliation(s)
- S M Candura
- Department of Environmental Health, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
63
|
Lee HM, Fain JN. Magnesium-dependent inhibition of agonist-stimulated phosphoinositide breakdown in rat cortical slices by excitatory amino acids. J Neurochem 1992; 59:953-62. [PMID: 1322975 DOI: 10.1111/j.1471-4159.1992.tb08336.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.
Collapse
Affiliation(s)
- H M Lee
- Department of Biochemistry, University of Tennessee, Memphis 38163
| | | |
Collapse
|
64
|
Sierro CD, Vitus J, Dunant Y. Effects of muscarinic agonists and depolarizing agents on inositol monophosphate accumulation in the rabbit vagus nerve. J Neurochem 1992; 59:456-66. [PMID: 1629720 DOI: 10.1111/j.1471-4159.1992.tb09392.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of muscarinic agonists and depolarizing agents on inositol phospholipid hydrolysis in the rabbit vagus nerve were assessed by the measurement of [3H]inositol monophosphate production in nerves that had been preincubated with [3H]inositol. After 1 h of drug action, carbachol, oxotremorine, and arecoline increased the inositol monophosphate accumulation, though the maximal increase induced by these agonists differed. Addition of the muscarinic antagonists atropine or pirenzepine shifted the carbachol dose-response curves to the right, without decreasing the carbachol maximal stimulatory effects. The KB for pirenzepine was 35 nM, which is characteristic of muscarinic high-affinity binding sites coupled to phosphoinositide turnover and often associated with the M1 receptor subtype. On the other hand, agents known to depolarize or to increase the intracellular Ca2+ concentration, e.g., elevated extracellular K+, ouabain, Ca2+, and the Ca2+ ionophore A23187, also increased inositol monophosphate accumulation. These effects were not mediated by the release of acetylcholine, as suggested by the fact that they could not be potentiated by the addition of physostigmine nor inhibited by the addition of atropine. The Ca(2+)-channel antagonist Cd2+, also known to inhibit the Na+/Ca2+ exchanger, was able to block the effects of K+ and ouabain, but did not alter those of carbachol. These results suggest that depolarizing agents increase inositol monophosphate accumulation in part through elevation of the intracellular Ca2+ concentration and that muscarinic receptors coupled to phosphoinositide turnover are present along the trunk of the rabbit vagus nerve.
Collapse
Affiliation(s)
- C D Sierro
- Département de Pharmacologie, Centre Médical Universitaire, Genève, Switzerland
| | | | | |
Collapse
|
65
|
Uezono Y, Wada A, Yanagihara N, Kobayashi H, Mizuki T, Terao T, Koda Y, Izumi F. Veratridine causes the Ca(2+)-dependent increase in diacylglycerol formation and translocation of protein kinase C to membranes in cultured bovine adrenal medullary cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1992; 346:76-81. [PMID: 1407008 DOI: 10.1007/bf00167574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our previous studies suggested that protein kinase C is involved in the veratridine (an activator of voltage-dependent Na+ channels)-induced phosphorylation and activation of tyrosine hydroxylase as well as the synthesis of catecholamines in adrenal medulla (Uezono et al. 1989). In the present study, we investigated whether treatment of cultured bovine adrenal medullary cells with veratridine causes the accumulation of diacylglycerol, a physiological activator of protein kinase C and the translocation of protein kinase C from cytosol to membrane, a process required for protein kinase C activation. Veratridine (100 mumol/l) increased diacylglycerol level about 2.2 fold in a monophasic manner, with peaking at 5 min and declining toward the basal level within 20 min. Veratridine also increased membrane protein kinase C from 15.6% to 26.9% of total protein kinase C in a time-course similar to that of diacylglycerol accumulation. Both stimulatory effects of veratridine were inhibited by tetrodotoxin and not observed in Ca(2+)-free, EGTA-containing medium. Amiloride, an inhibitor of Na+/Ca2+ and Na+/H+ exchange, did not alter veratridine-induced events. These results suggest that veratridine-induced Ca2+ influx contributes to the accumulation of diacylglycerol and the activation of protein kinase C in adrenal medullary cells.
Collapse
Affiliation(s)
- Y Uezono
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Ciguatoxin: A Tool for Research on Sodium-Dependent Mechanisms. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/b978-0-12-185266-5.50016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
67
|
Guiramand J, Vignes M, Récasens M. A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: II. Calcium dependency, cadmium inhibition. J Neurochem 1991; 57:1501-9. [PMID: 1681030 DOI: 10.1111/j.1471-4159.1991.tb06344.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this article, we demonstrate that an increase in intracellular Ca2+ concentration may represent a specific common step(s) in the mechanism(s) of action of glutamate (Glu) and depolarizing agents on formation of inositol phosphates (IPs) in 8-day-old rat forebrain synaptoneurosomes. In fact, A23187, a Ca2+ ionophore, induces a dose-dependent accumulation of IPs, which is not additive with that evoked by Glu and K+ but is slightly synergistic with that induced by carbachol. In addition, Glu and K+ augment the intracellular Ca2+ concentration in synaptoneurosome preparations as measured by the fura-2 assay. The absence of external Ca2+ decreases basal and Glu-, and K(+)-stimulated formation of IPs. Cd2+ (100 microM) fully inhibits both Glu- and K(+)-evoked formation of IPs without affecting the carbachol-elicited response of IPs. Zn2+ inhibits Glu- and K(+)-stimulated accumulation of IPs (IC50 approximately 0.4 mM) but with a lower affinity than Cd2+ (IC50 approximately 0.035 mM). The organic Ca2+ channel blockers verapamil (10 microM), nifedipine (10 microM), omega-conotoxin (2 microM), and amiloride (10 microM) as well as the inorganic blockers Co2+ (100 microM) and La3+ (100 microM) block neither Glu- nor K(+)-evoked formation of IPs, a result suggesting that the opening of the L-, T-, N-, or P-type Ca2+ channels does not participate in these responses. All these data suggest that an increase in intracellular Ca2+ concentration resulting from an influx of Ca2+, sensitive to Cd2+ but not to other classical Ca2+ antagonists, may play a key role in the transduction mechanism activated by Glu or depolarizing agents.
Collapse
Affiliation(s)
- J Guiramand
- INSERM U. 254, Hôpital Saint Charles, Montpellier, France
| | | | | |
Collapse
|
68
|
Guiramand J, Vignes M, Mayat E, Lebrun F, Sassetti I, Récasens M. A specific transduction mechanism for the glutamate action on phosphoinositide metabolism via the quisqualate metabotropic receptor in rat brain synaptoneurosomes: I. External Na+ requirement. J Neurochem 1991; 57:1488-500. [PMID: 1681029 DOI: 10.1111/j.1471-4159.1991.tb06343.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The characteristics of the transduction mechanism(s) activated by glutamate (Glu) via the quisqualate metabotropic receptor, as well as by depolarizing agents, to trigger formation of inositol phosphates (IPs) were investigated in 8-day-old rat forebrain synaptoneurosomes. The replacement of external Na+ by various compounds (Li+, Tris+, N-methyl-D-glucamine+, and sucrose) induces an increase in basal accumulation of IPs and depolarizes synaptoneurosome membranes. Under these conditions, Glu- and K(+)-induced accumulations of IPs are inhibited, whereas the carbachol (Carb)-elicited response of IPs parallels the basal one. Agents increasing Na+ influx, such as veratridine and monensin, depolarize synaptoneurosomes and stimulate formation of IPs. These stimulations are not additive with responses of IPs elicited by Glu or K+. These data suggest that (a) Glu activates phosphoinositide metabolism via a specific mechanism (distinct from that of cholinergic agonists), (b) depolarizing agents and Glu share at least one common intermediate step in their mechanisms of activation of the metabolism of IPs, and (c) the depolarization may correspond to this common step. In addition, Na+ seems to be required for Glu stimulation of metabolism of IPs. The depolarization associated with the action of Glu on formation of IPs results neither from an influx via tetrodotoxin-sensitive voltage-dependent Na+ channels nor from an entry via the classically characterized Na+/Ca2+ or Na+/H+ exchangers. In fact, tetrodotoxin (2 microM) has no effect on the Glu- or K(+)-elicited response of IPs. Amiloride (greater than 50 microM) and some of its derivatives similarly inhibit not only Glu- and K(+)- but also Carb-evoked formation of IPs.
Collapse
Affiliation(s)
- J Guiramand
- INSERM U. 254, Hôpital Saint Charles, Montpellier, France
| | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Récasens M, Guiramand J, Vignes M. The putative molecular mechanism(s) responsible for the enhanced inositol phosphate synthesis by excitatory amino acids: an overview. Neurochem Res 1991; 16:659-68. [PMID: 1686474 DOI: 10.1007/bf00965552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Récasens
- Laboratoire de Neurobiologie de l'Audition, Université Montpellier II, Hôpital St Charles, France
| | | | | |
Collapse
|
71
|
Toescu EC, Nordmann JJ. Effect of sodium and calcium on basal secretory activity of rat neurohypophysial peptidergic nerve terminals. J Physiol 1991; 433:127-44. [PMID: 1841936 PMCID: PMC1181363 DOI: 10.1113/jphysiol.1991.sp018418] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The release of arginine vasopressin (AVP) from a perifused preparation of peptidergic nerve terminals isolated from rat neurohypophyses was studied during manipulations of the external sodium and calcium concentrations. Intracellular concentrations of these two ions were manipulated by use of ouabain and a calcium ionophore, respectively. 2. Removal of extracellular Na+ caused, in a concentration-dependent manner, a significant decrease of secretory activity. Conversely, graded addition of Na+ to a Na(+)-free perifusion medium increased secretion. Half-maximal activation of secretory activity was attained at ca 75 mM [Na+]o. 3. Manipulations of extracellular Ca2+ did not affect the level of hormonal secretion in the absence of extracellular Na+. However, when Na+ was present in the perifusion medium, removal of extracellular Ca2+ induced an increase of secretory activity. 4. The effects of manipulations of [Na+]o were not dependent on the presence of Ca2+ in the perifusion medium nor on the nature of the Na+ replacement used (i.e. choline or mannitol). 5. Ouabain (0.1 mM) increased the basal secretory activity and potentiated the secretory response to removal of Ca2+ from the perifusion medium. 6. The Ca2+ ionophore A23187 stimulated, in a concentration-dependent fashion, the secretory activity of the peptidergic nerve terminals and this stimulation was strictly dependent on the presence of Ca2+ in the perifusion medium. 7. These results show that basal secretion is directly dependent on [Na]o and indicate that intracellular Na+ is an important factor in the control of secretory mechanisms. Evidence is presented in regard to a possible antagonistic effect of extracellular Ca2+ and Na+ on secretion.
Collapse
Affiliation(s)
- E C Toescu
- Centre de Neurochimie, Strasbourg, France
| | | |
Collapse
|
72
|
Balduini W, Costa LG. Characterization of ouabain-induced phosphoinositide hydrolysis in brain slices of the neonatal rat. Neurochem Res 1990; 15:1023-9. [PMID: 1963925 DOI: 10.1007/bf00965749] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of the Na/K-ATPase inhibitor ouabain on phosphoinositide (Ptdlns) hydrolysis was studied in rat brain cortical slices. Ouabain induced a dose-dependent accumulation of inositol phosphates (InsPs) which was much higher in neonatal rats (1570 +/- 40% of basal) than in adult animals (287 +/- 18% of basal). For this reason, all experiments were conducted with 7 day-old rats. Strophantidin caused a similar stimulation of Ptdlns hydrolysis, although it was less potent than ouabain. The order of potency for ouabain-stimulated InsPs accumulation in brain areas was hippocampus greater than cortex greater than brainstem greater than cerebellum. The effect of ouabain was not blocked by antagonists for the muscarinic, alpha1 -adrenergic and glutamate receptors. Also ineffective were the K+ channel blockers 4-aminopyridine and tetraethylammonium, the sodium channel blocker tetrodotoxin, and the calcium channel blocker verapamil, whereas the Na/Ca exchanger blocker amiloride partially antagonized the effect of ouabain. The accumulation of InsPs induced by ouabain was additive to that of carbachol and norepinephrine, as well as to that induced by high K+ and veratrine, but not to that of glutamate. Removal of Na+ ions from the incubation buffer completely prevented the accumulation of InsPs induced by ouabain. The effect of ouabain was also dependent upon extracellular calcium and was under negative feedback control of protein kinase C. Despite the higher effect of ouabain on Ptdlns hydrolysis of immature rats, the density of [3H]ouabain binding sites, as well as the activity of Na/K-ATPase were higher in adult animals. Furthermore, a poor correlation was found between ouabain-stimulated Ptdlns hydrolysis and [3H]ouabain binding in brain regions.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- W Balduini
- Department of Environmental Health, University of Washington, Seattle 98195
| | | |
Collapse
|
73
|
Chandler LJ, Crews FT. Calcium- versus G protein-mediated phosphoinositide. Hydrolysis in rat cerebral cortical synaptoneurosomes. J Neurochem 1990; 55:1022-30. [PMID: 2166771 DOI: 10.1111/j.1471-4159.1990.tb04592.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The role of calcium and sodium in stimulating phosphoinositide hydrolysis in brain was investigated in rat cerebral cortical synaptoneurosomes. In buffer containing 136 mM sodium and various concentrations of added calcium (0-1.0 mM), basal, potassium-stimulated, and norepinephrine-stimulated formation of 3H-inositol phosphates decreased with decreasing extracellular calcium. Potassium- and norepinephrine-stimulated formation of 3H-inositol phosphates was reduced to basal levels by addition of EGTA. Isosmotically replacing sodium with choline chloride or N-methyl-D-glucamine to disrupt Na+/Ca2+ exchange resulted in a large increase in the formation of 3H-inositol phosphates. Measurement of cytosolic calcium with fura-2 revealed that the cytosolic calcium concentration was sensitive to changes in the extracellular calcium concentration and increased on resuspension of synaptoneurosomes in sodium-free rather than sodium-containing medium. In the absence of sodium, potassium-stimulated formation of 3H-inositol phosphates was reduced or eliminated, depending on the extracellular calcium concentration. Subtraction of basal formation of 3H-inositol phosphates from that in the presence of 1 mM carbachol or 100 microM norepinephrine revealed that the carbachol-stimulated component was the same in the presence and absence of sodium, whereas the norepinephrine-stimulated component was reduced in the absence of sodium. Addition of the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate inhibited norepinephrine- and, to a lesser extent, carbachol but not basal or aluminum fluoride-stimulated formation of 3H-inositol phosphates in sodium-free medium. These results suggest that an increase in intracellular calcium, via disruption of Na+/Ca2+ exchange or depolarization-induced calcium influx, may explain previous demonstrations that agents that stimulate Na+ influx can also stimulate phosphoinositide hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L J Chandler
- Department of Pharmacology, University of Florida, College of Medicine, Gainesville 32610
| | | |
Collapse
|
74
|
Dargent B, Couraud F. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons. Proc Natl Acad Sci U S A 1990; 87:5907-11. [PMID: 2165609 PMCID: PMC54438 DOI: 10.1073/pnas.87.15.5907] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, we investigated the effect of Na(+)-channel activators (scorpion alpha toxin, batrachotoxin, and veratridine) on the density of Na+ channels in fetal rat brain neurons in vitro. A partial but rapid (t1/2, 15 min) disappearance of surface Na+ channels was observed as measured by a decrease in the specific binding of [3H]saxitoxin and 125I-labeled scorpion beta toxin and a decrease in specific 22Na+ uptake. Moreover, the increase in the number of Na+ channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na+ channels was abolished by tetrodotoxin, was found to be dependent on the external Na+ concentration, and was prevented when either choline (a nonpermeant ion) or Li+ (a permeant ion) was substituted for Na+. Amphotericin B, a Na+ ionophore, and monensin were able to mimick the effect of Na(+)-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na(+)-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na+ concentration, whether elicited by Na(+)-channel activators or mediated by a Na+ ionophore, can induce a decrease in surface Na+ channels and therefore is involved in down-regulation of Na(+)-channel density in fetal rat brain neurons in vitro.
Collapse
Affiliation(s)
- B Dargent
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique UA 1179, Faculté de Médecine-Secteur Nord, Marseille, France
| | | |
Collapse
|
75
|
Chuang DM. Regulation by batrachotoxin, veratridine, and monensin of basal and carbachol-induced phosphoinositide hydrolysis in neurohybrid NCB-20 cells. Neurochem Res 1990; 15:695-704. [PMID: 2168525 DOI: 10.1007/bf00973650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Batrachotoxin (BTX), veratridine and monensin induced a time- and dose-dependent increase of [3H]-inositol monophosphate (3H-IP1) accumulation in the presence of lithium in prelabeled neurohybrid NCB-20 cells. A decrease of NaCl concentration to less than 30 mM markedly increased basal 3H-IP1 accumulation; however, the percentage of stimulation induced by these three agents remained unchanged even in the complete absence of sodium. The stimulation of phosphoinositide hydrolysis induced by these agents was detected in the absence of lithium but was largely prevented in the calcium-free medium. Tetradotoxin (TTX) blocked effects of BTX and veratridine (IC50 approximately 20nM), but not that stimulated by monensin. Thus, calcium-dependent activation of phospholipase C by these agents did not involve the entry of sodium or lithium. BTX and monensin also induced greater than additive effects on carbachol-induced 3H-IP1 accumulation. These effects were also TTX-sensitive and involved an increase in the Vmax and a decrease in the EC50 for carbachol. Veratridine provoked strikingly different effects on carbachol-dependent phosphoinositide turnover, depending on the passage number of the cells.
Collapse
Affiliation(s)
- D M Chuang
- Unit of Molecular Neurobiology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
76
|
Boess FG, Balasubramanian MK, Brammer MJ, Campbell IC. Stimulation of muscarinic acetylcholine receptors increases synaptosomal free calcium concentration by protein kinase-dependent opening of L-type calcium channels. J Neurochem 1990; 55:230-6. [PMID: 2162377 DOI: 10.1111/j.1471-4159.1990.tb08843.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In synaptosomes prepared from rat cerebral cortex, free cytosolic calcium concentration ([Ca2+]i) was measured using the fluorescent dye fura-2. Incubation of fura-2-loaded synaptosomes with carbachol increased [Ca2+]i in a dose-dependent manner (1-1,000 microM), with a maximum response of 22 +/- 2% at approximately 100 microM and an EC50 (calculated concentration producing 50% of the maximum response) of 30 microM. The effect of carbachol (100 microM) on [Ca2+]i was antagonised by atropine, but not by hexamethonium (10 microM). The calculated concentration of atropine needed for 50% inhibition (IC50) was 260 nM. The rise in [Ca2+]i produced by carbachol was reduced in the absence of extrasynaptosomal Ca2+ and effectively blocked by the L-type calcium channel blocker nifedipine (with an IC50 of 29 nM). The response to carbachol was reduced if the synaptosomes were preincubated with the protein kinase inhibitors H7 [1-(5-isoquinolinylsulfonyl)-2- methylpiperazine] (from 17% in the solvent control to 4%) and staurosporine (from 20% in the solvent control to 3%). These results show that stimulation of muscarinic acetylcholine receptors in synaptosomes increases [Ca2+]i by protein kinase-dependent activation of 1,4-dihydropyridine-sensitive calcium channels.
Collapse
Affiliation(s)
- F G Boess
- Department of Neuroscience, Institute of Psychiatry, DeCrespigny Park, London, England
| | | | | | | |
Collapse
|
77
|
Crawford ML, Young JM. Potentiation by gamma-aminobutyric acid of alpha 1-agonist-induced accumulation of inositol phosphates in slices of rat cerebral cortex. J Neurochem 1990; 54:2100-9. [PMID: 1971011 DOI: 10.1111/j.1471-4159.1990.tb04916.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Noradrenaline-induced accumulation of 3H-labeled inositol mono-, bis-, and trisphosphate (IP1, IP2, and IP3, respectively) in lithium-treated slices of rat cerebral cortex preincubated with [3H]inositol was potentiated by gamma-aminobutyric acid (GABA). However, the effect on [3H]IP2 accumulation was much greater than that on [3H]IP1 or [3H]IP3 accumulation. The principal effect of GABA on noradrenaline concentration-response curves for both [3H]IP1 and [3H]IP2 was to cause an increase in the maximal response attainable. However, whereas the EC50 for GABA potentiation of [3H]IP1 formation was 0.5 mM, the curve for the potentiation of [3H]IP2 formation showed a marked upturn at GABA concentrations of greater than 1 mM. Prazosin (1 microM) blocked the noradrenaline-induced formation of all three inositol phosphates (IPs), in both the presence and the absence of 2 mM GABA. 3H-IP formation induced by phenylephrine and methoxamine was also potentiated by GABA, and again the greatest effect was on [3H]IP2 accumulation. The ratio of [3H]IP2/[3H]IP1 formed in response to 100 microM noradrenaline was increased by 2 mM GABA at all times from 10 to 60 min, whereas the ratio of [3H]IP3/[3H]IP1 was little altered. The effect of GABA was not mimicked by the GABAA agonists isoguvacine and 3-aminopropanesulphonic acid and was not blocked by bicuculline methiodide. (-)-Baclofen, a GABAB agonist, did produce some stimulation of the response to noradrenaline, but to a much lesser extent than GABA. Of the agents tested, nipecotic acid came nearest to reproducing the effect of GABA, in that the major effect was on [3H]IP2 accumulation. The effects of 2 mM GABA and 2 mM nipecotic acid were not additive. GABA potentiation of noradrenaline-induced 3H-IP formation was still apparent in the absence of Li+, but the increase of [3H]IP2 content was less than that of [3H]IP1 content.
Collapse
Affiliation(s)
- M L Crawford
- Department of Pharmacology, University of Cambridge, England
| | | |
Collapse
|
78
|
Baird JG, Nahorski SR. Differences between muscarinic-receptor- and Ca2(+)-induced inositol polyphosphate isomer accumulation in rat cerebral-cortex slices. Biochem J 1990; 267:835-8. [PMID: 2339992 PMCID: PMC1131374 DOI: 10.1042/bj2670835] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscarinic-receptor stimulation or depolarization by elevated K+ leads to increased accumulation of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4 and several degradation products of these polyphosphates separated by h.p.l.c. On the other hand, agents such as ionomycin and maitotoxin, which increase intracellular Ca2+ directly, produce a small accumulation of [3H]Ins(1,4,5)P3 and markedly increase [3H]Ins(1,4)P2, but [3H]Ins(1,3,4,5)P4, [3H]Ins(1,3,4)P3 and [3H]Ins(1,3)P2 are virtually unaffected. Ca2(+)-dependent [3H]inositol polyphosphate metabolism may involve different pools of lipids and/or phosphoinositidases.
Collapse
Affiliation(s)
- J G Baird
- Department of Pharmacology and Therapeutics, University of Leicester, U.K
| | | |
Collapse
|
79
|
Molgó J, Comella JX, Legrand AM. Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals. Br J Pharmacol 1990; 99:695-700. [PMID: 1972891 PMCID: PMC1917552 DOI: 10.1111/j.1476-5381.1990.tb12991.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. Ciguatoxin (CTX), a marine toxin produced by the benthic dinoflagellate Gambierdiscus toxicus, is responsible for a complex endemic disease in man known as ciguatera fish poisoning. In the present study we have investigated the effects of purified CTX extracted for Gymnothorax javanicus moray-eel liver on frog isolated neuromuscular preparations with conventional electrophysiological techniques. 2. CTX (1-2.5 nM) applied to cutaneous pectoris nerve-muscle preparations induced, after a short delay, spontaneous fibrillations of the muscle fibres that could be suppressed with 1 microM tetrodotoxin (TTX) or by formamide to uncouple excitation-contraction. 3. In preparations treated with formamide, CTX (1-2.5 nM) caused either spontaneous or repetitive muscle action potentials (up to frequencies of 60-100 Hz) in response to a single nerve stimulus. Recordings performed at extrajunctional regions of the muscle membrane revealed that during the repetitive firing a prolongation of the repolarizing phase of the action potential occurred. At junctional sites the repetitive action potentials were triggered by repetitive endplate potentials (e.p.ps). 4. CTX (2.5 nM) caused a TTX-sensitive depolarization of the muscle membrane. 5. In junctions equilibrated in solutions containing high Mg2+ + low Ca2+, addition of CTX (1.5 nM) first induced an average increase of 239 +/- 36% in the mean quantal content of e.p.ps. Subsequently CTX reduced and finally blocked nerve-evoked transmitter release irreversibly. 6. CTX (1.5-2.5 nM) increased the frequency of miniature endplate potentials (m.e.p.ps) in junctions bathed either in normal Ringer, low Ca2(+)-high Mg2+ medium or in a nominally Ca2(+)-free solution containing EGTA.2+ Extensive washing with toxin-free solutions did not reverse the effect. Furthermore, Cd2 + (0.1 mM), a potent calcium channel blocker, neither antagonized nor abolished the increase in transmitter release caused by CTX. 7. TTX (1 microM) completely prevented the effect of CTX (2.5nM) on m.e.p.p. frequency. This effect was independent of the presence of extracellular Ca2 +. TTX, when added after CTX (2.5 nM) exposure, antagonized the increase in m.e.p.p. frequency. The antagonism was complete in Ca2 +-free medium. These results strongly suggest that increased permeability of the nerve terminal to Na+ is responsible for the increase in m.e.p.p. frequency caused by CTX. It is likely that CTX may trigger calcium release from internal stores due to an increase of intraterminal Na+ concentration. 8. It is concluded that CTX exerts, in the nanomolar concentration range, a selective action on sodium channels of the neuromuscular junction causing both pre- and postsynaptic effects.
Collapse
Affiliation(s)
- J Molgó
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, C.N.R.S., Gif sur Yvette, France
| | | | | |
Collapse
|
80
|
Baird JG, Nahorski SR. Increased intracellular calcium stimulates 3H-inositol polyphosphate accumulation in rat cerebral cortical slices. J Neurochem 1990; 54:555-61. [PMID: 2299353 DOI: 10.1111/j.1471-4159.1990.tb01907.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Agents that increase the intracellular Ca2+ concentration have been examined for their ability to stimulate 3H-inositol polyphosphate accumulation in rat cerebral cortex slices. Elevated extracellular K+ levels, the alkaloid sodium channel activator veratrine, the calcium ionophore ionomycin, and the marine toxin maitotoxin were all able to stimulate phosphoinositide metabolism. Certain features appear common to the agents studied. Thus, although [3H]inositol monophosphate, [3H]inositol bisphosphate ([3H]InsP2), and [3H]inositol trisphosphate were all stimulated, a proportionally greater effect was observed on [3H]InsP2 in comparison to stimulation by the muscarinic receptor agonist carbachol. However, only an elevated K+ level stimulated [3H]inositol tetrakisphosphate ([3H]InsP4) accumulation alone or produced marked synergy with carbachol on the formation of this polyphosphate. The results suggest that agents that elevate the cytoplasmic Ca2+ concentration in cerebral cells can increase the hydrolysis of membrane polyphosphoinositides. The pattern of the response differs from that produced by muscarinic receptor agonists and indicate that Ca2(+)-dependent hydrolysis may involve different pools of lipids, phosphoinositidase C enzymes, or both. However, clear differences in the ability of these agents to stimulate InsP4, alone or in the presence of muscarinic agonist, suggest that factors other than a simple elevated intracellular Ca2+ concentration are implicated.
Collapse
Affiliation(s)
- J G Baird
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | |
Collapse
|
81
|
Linden DJ, Routtenberg A. cis-Fatty acids, which activate protein kinase C, attenuate Na+ and Ca2+ currents in mouse neuroblastoma cells. J Physiol 1989; 419:95-119. [PMID: 2559978 PMCID: PMC1189998 DOI: 10.1113/jphysiol.1989.sp017863] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Activation of protein kinase C (PKC) by phorbol esters or diacylglycerols has been shown to modulate a number of ionic currents carried by Ca2+, K+ and Cl-. Recently, it has been demonstrated that PKC may be activated by cis-fatty acids in the absence of either phospholipid or Ca2+. We wished to determine if this new class of PKC-activating compound would also modulate ionic currents. To this end we applied the whole-cell voltage-clamp technique to N1E-115 neuroblastoma cells. 2. Analysis of families of currents evoked under voltage clamp by depolarizing steps from a holding potential of -85 mV during external application of 5 microM-oleate (a cis-fatty acid) showed a 36% reduction of the peak inward current with no shift in either the peak or the reversal potential of the current-voltage relation and no alteration of outward current. 3. External application of the cis-fatty acids oleate, linoleate and linolenate reversibly attenuated voltage-dependent Na+ current with approximate half-maximal dose values of 2, 3, and 10 microM respectively. Oleate was approximately 2 times more potent when applied internally (ED50 = 1 microM). Externally applied elaidate (a trans-isomer of oleate) and stearate (a saturated fatty acid) which do not activate PKC, had no effect. Since cis-fatty acids are known to fluidize membranes, as well as to activate PKC, we sought to dissociate these functions by applying compounds that fluidize membranes but do not activate PKC: methyloleate and lysophosphatidylcholine. Neither compound affected Na+ current when applied externally at concentrations of 1-50 microM. 4. In contrast to cis-fatty acids, three classical PKC activators, phorbol-12.13-dibutyrate (PDB), phorbol-12.13-diacetate (PDA), and 1.2-oleoylacetylglycerol (OAG) were found to have no effect on the voltage-dependent Na+ current when applied externally at 10 nM-1 microM (phorbol esters) or 1-150 microM (OAG) for incubation periods up to 1 h. 5. External application of the PKC inhibitors polymyxin B, H-7, sphingosine and staurosporine blocked the attenuation of the Na+ current by cis-fatty acid in a dose-dependent manner, with maximal inhibition occurring at doses of 50, 10, 200 and 0.1 microM, respectively. The cyclic nucleotide-dependent protein kinase inhibitor H-8 was much less effective in blocking the cis-fatty acid effect. Polymyxin B and staurosporine were more potent when applied internally. 6. Chronic (24 h) exposure to 1 microM phorbol-12-myristate-13-acetate (TPA) was employed to down-regulate PKC.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Linden
- Cresap Neuroscience Laboratory, Northwestern University, Evanston, IL 60208
| | | |
Collapse
|
82
|
Dudek SM, Bear MF. A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 1989; 246:673-5. [PMID: 2573152 DOI: 10.1126/science.2573152] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stimulation of phosphoinositide hydrolysis by excitatory amino acids was studied in synaptoneurosomes of kitten striate cortex at several postnatal ages. Ibotenate and glutamate stimulated phosphoinositide turnover during the second and third postnatal months; N-methyl-D-aspartate and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) were without effect. The developmental profile of ibotenate-stimulated phosphoinositide turnover parallels the postnatal changes in cortical susceptibility to visual deprivation. The transient increase in ibotenate-stimulated phosphoinositide turnover does not occur in visual cortex of kittens reared in complete darkness.
Collapse
Affiliation(s)
- S M Dudek
- Center for Neural Science, Brown University, Providence, RI 02912
| | | |
Collapse
|
83
|
Gonzales RA, Minor LD. Calcium channel involvement in potassium depolarization-induced phosphoinositide hydrolysis in rat cortical slices. Neurochem Res 1989; 14:1067-74. [PMID: 2480532 DOI: 10.1007/bf00965612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stimulation of production of inositol phosphates in rat cortical slices by KCl depolarization and the effects of calcium channel active drugs were investigated. Elevation of K+ in the medium up to 48 mM KCl caused a linear concentration-dependent increase in [3H]inositol phosphate accumulation. The KCl stimulated response was not significantly inhibited in the presence of muscarinic or alpha 1-adrenergic antagonists. KCl stimulated the production of inositol trisphosphate at 60 min but not 10 min. Addition of peptidase inhibitors did not significantly affect KCl-stimulated PI hydrolysis. The KCl-stimulated response was still observed in the absence of extracellular calcium, although the net accumulation of inositol phosphates was greater in the presence of 0.1 or 0.5 mM calcium. KCl (48 mM) inhibited [3H]inositol uptake into phospholipids of cortical slices. The dihydropyridine calcium channel agonist BAY K 8644 stimulated PI hydrolysis in cortical slices in a concentration dependent manner in the presence of 19 mM KCl. The BAY K 8644-stimulated PI response was partially inhibited by 1 microM atropine but not by 1 microM prazosin. Calcium channel blockers nitrendipine, verapamil, flunarizine, and nifedipine slightly inhibited the PI response stimulated by 19 mM KCl in the presence or absence of BAY K 8644. The effects of the calcium channel antagonists were attenuated in the presence of 1 microM atropine. The peptide calcium channel blocker omega-conotoxin did not affect KCl-stimulated PI hydrolysis. These results suggest that endogenous muscarinic or adrenergic neurotransmitters are not involved in KCl-stimulated PI hydrolysis in cortical slices. Although extracellular calcium is necessary for optimal KCl-stimulated PI hydrolysis, it is not required for the expression of the KCl-evoked response suggesting that depolarization is the primary trigger for this stimulant.
Collapse
Affiliation(s)
- R A Gonzales
- Department of Pharmacology, University of Texas, Austin 78712
| | | |
Collapse
|
84
|
Baird JG, Nahorski SR. Dual effects of K+ depolarisation on inositol polyphosphate production in rat cerebral cortex. J Neurochem 1989; 53:681-5. [PMID: 2788208 DOI: 10.1111/j.1471-4159.1989.tb11757.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Depolarisation of [3H]inositol-prelabelled slices of rat cerebral cortex with elevated extracellular K+ induced a rapid and marked increase in inositol polyphosphate accumulation. Addition of the muscarinic antagonist atropine (10 microM) markedly inhibited the K+-induced accumulation of inositol tetrakisphosphate (InsP4), with only a slight reduction in stimulated inositol bis- and trisphosphate levels. Inhibitory effects on InsP4 were noted at the earliest time period measured (30 s) and suggested the involvement of released endogenous acetylcholine in part of the response. The atropine-insensitive component of depolarisation did not appear to be secondary to release of noradrenaline, histamine, or 5-hydroxytryptamine, because addition of prazosin, mepyramine, or ketanserin was without effect on the K+ response. Furthermore, secretion of a neuropeptide that could stimulate phosphoinositide hydrolysis was unlikely, because the peptidase inhibitor bacitracin was also without effect. The results suggest that endogenous acetylcholine can stimulate phosphoinositide metabolism by interacting with muscarinic receptors and that this is particularly evident on InsP4 accumulation. Atropine-insensitive responses may be secondary to Ca2+ entry via voltage-sensitive channels.
Collapse
Affiliation(s)
- J G Baird
- Department of Pharmacology and Therapeutics, University of Leicester, England
| | | |
Collapse
|
85
|
Uezono Y, Yanagihara N, Wada A, Koda Y, Yokota K, Kobayashi H, Izumi F. Veratridine-induced phosphorylation and activation of tyrosine hydroxylase, and synthesis of catecholamines in cultured bovine adrenal medullary cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1989; 339:653-9. [PMID: 2570366 DOI: 10.1007/bf00168658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanism of the synthesis of catecholamines by veratridine was studied in cultured bovine adrenal medullary cells. (1) Veratridine increased the phosphorylation and activity of tyrosine hydroxylase as well as the synthesis of [14C]catecholamines from [14C]tyrosine, all of which were inhibited by tetrodotoxin. Veratridine-induced activation of tyrosine hydroxylase and synthesis of [14C]catecholamines were reduced in 20 mmol/l extracellular Na+ or in Ca2+-free medium. (2) 12-O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, increased the synthesis of [14C]catecholamines. In the presence of TPA, veratridine did not produce any additional increase in [14C]catecholamine synthesis. In protein kinase C-deficient cells which were prepared by pretreatment with 1 mumol/l TPA for 24 h, TPA failed to increase [14C]catecholamine synthesis and veratridine-induced [14C]catecholamine synthesis was suppressed by 50%. (3) Polymyxin B, an inhibitor of protein kinase C and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), an inhibitor of calmodulin, inhibited veratridine-stimulated synthesis of [14C]catecholamines as well as veratridine-induced influx of 22Na+ and 45Ca2+ with similar potencies. (4) In digitonin-permeabilized cells, polymyxin B attenuated the activation of tyrosine hydroxylase caused by Ca2+. These results suggest that veratridine-induced synthesis of catecholamines and activation of tyrosine hydroxylase were mediated by Ca2+-dependent phosphorylation of this enzyme, and protein kinase C may be responsible, at least in part, for this process.
Collapse
Affiliation(s)
- Y Uezono
- Department of Pharmacology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Glanville TN, Spence MW, Cook HW, Palmer FB. Sodium channel activation does not alter lipid metabolism in cultured neuroblastoma cells. Neurochem Res 1988; 13:1015-21. [PMID: 2853304 DOI: 10.1007/bf00973144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of voltage-sensitive Na+-channels and membrane lipid metabolism was examined by incubating cultured neuroblastoma cells with neurotoxins which alter the voltage-dependent relationship between the closed and open conformation of the channel protein. Guanidinium flux rate, a measure of Na+-channel activation, was increased 10-fold by the combined action of veratridine (100 microM) and scorpion venom (28 micrograms/ml). This response was completely blocked by tetrodotoxin (1 microM). Under the same experimental conditions, the toxins did not increase the efflux of [3H]arachidonic acid from prelabeled cell membrane lipids or stimulate uptake of exogenous [3H]arachidonic acid. In addition, altering membrane fatty acid composition by incubating cells for 24 hr in a medium containing 50 microM arachidonic or oleic acid did not alter guanidinium flux rates relative to that of control cultures. When cells were pulsed with 32Pi for 60 min and stimulated by veratridine plus scorpion venom for an additional 30 min, uptake of 32Pi into phosphatidylinositol was reduced; stimulating cells with bradykinin, a receptor agonist which activates the inositol cycle, promoted a 3.8 fold increase. Polyphosphoinositide turnover was not affected by Na+-channel activation, but was stimulated by bradykinin. These results suggest that voltage-sensitive Na+-channel activation in cultured neuroblastoma cells can function independent of membrane phospholipid and fatty acid metabolism.
Collapse
Affiliation(s)
- T N Glanville
- Atlantic Research Center for Mental Retardation, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
87
|
Brammer MJ, Hajimohammadreza I, Sardiwal S, Weaver K. Is inositol bisphosphate the product of A23187 and carbachol-mediated polyphosphoinositide breakdown in synaptosomes? J Neurochem 1988; 51:514-21. [PMID: 2839621 DOI: 10.1111/j.1471-4159.1988.tb01068.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synaptosomes have been isolated from rat cerebral cortex and labelled in vitro with [32P]orthophosphate and myo-[2-3H]inositol. Subsequent addition of the Ca2+ ionophore A23187 in the presence of 2 mM extrasynaptosomal Ca2+ raised intrasynaptosomal free [Ca2+] to greater than 2 microM from a resting level of 200 nM and led to rapid breakdown of polyphosphoinositides. This was accompanied by a small increase in the level of inositol monophosphate, greatly enhanced accumulation in inositol bisphosphate, but no detectable increase in inositol trisphosphate. Depolarising (25 mM) extrasynaptosomal K+ produced a smaller increase in intrasynaptosomal free [Ca2+] (to around 400 nM) and a proportional increase in inositol bisphosphate radioactivity. Carbachol (1 mM) alone elicited only limited polyphosphoinositide breakdown and inositol mono- and bisphosphate formation, but this was greatly increased in the presence of 25 mM K+. The effect of carbachol in the presence of depolarising K+ was time- and dose-dependent and was antagonised by atropine (10 microM). There was no detectable accumulation of inositol trisphosphate in the presence of carbachol, K+, or carbachol plus K+, even after short (30 s.) incubations. The lack of inositol trisphosphate accumulation does not appear to result from rapid formation of inositol tetrakisphosphate or from enhanced breakdown of the trisphosphate in synaptosomes.
Collapse
Affiliation(s)
- M J Brammer
- Department of Biochemistry, Institute of Psychiatry, London, England
| | | | | | | |
Collapse
|
88
|
Sigel E, Baur R. Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, and gamma-aminobutyrate type A channels. Proc Natl Acad Sci U S A 1988; 85:6192-6. [PMID: 2457909 PMCID: PMC281931 DOI: 10.1073/pnas.85.16.6192] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Xenopus oocytes were used to study the interaction of neuronal quisqualate receptors with neuronal ion channels. Total mRNA was isolated from chick forebrain and injected into Xenopus oocytes. This technique led to the expression of functional voltage-gated Na+ and Ca2+ channels, of ligand-gated gamma-aminobutyrate and kainate receptor channels, and of quisqualate receptors that could activate endogenous chloride channels by means of inositol trisphosphate-mediated Ca2+ release. Exposure of the oocytes to quisqualate decreased the amplitude of the Na+ current and of the gamma-aminobutyrate type A-gated current and increased the amplitude of the Ba2+ current through Ca2+ channels. This modulation of neuronal ion channels by quisqualate could be mimicked by the protein kinase C activator phorbol 12-myristate 13-acetate and the diacylglycerol analogue 1,2-oleoylacetylglycerol. The kainate-gated channel was not affected by these agents. Phorbol esters that do not activate protein kinase C, alpha-phorbol 12-myristate 13-acetate and alpha-phorbol, were without effect. The inhibitor of protein kinase C, tamoxifen, prevented the modulatory effects of phorbol 12-myristate 13-acetate. The present evidence suggests that the activity of the neuronal Na+ and Ca2+ channels and the ligand-gated gamma-aminobutyrate type A receptor channel are under the control of protein kinase C and that neurotransmitters that activate protein kinase C could profoundly affect neuronal signaling.
Collapse
Affiliation(s)
- E Sigel
- Pharmakologisches Institut, Universität Bern, Switzerland
| | | |
Collapse
|
89
|
Gusovsky F, Daly JW. Formation of second messengers in response to activation of ion channels in excitable cells. Cell Mol Neurobiol 1988; 8:157-69. [PMID: 2457443 PMCID: PMC11567297 DOI: 10.1007/bf00711242] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1987] [Accepted: 11/30/1987] [Indexed: 01/01/2023]
Abstract
1. Depolarization of excitable cells of the central nervous system results in the formation of the second messengers cyclic AMP, cyclic GMP, inositol phosphates, and diacylglycerides. 2. Depolarization-evoked accumulation of cyclic AMP in brain preparations can be accounted for mainly by the release of adenosine, which subsequently interacts with stimulatory adenosine receptor linked to adenylate cyclase. 3. Depolarization-evoked formation of cyclic GMP in brain preparations is linked to activation of voltage-dependent calcium channels, presumably leading to activation of guanylate cyclase by calcium ions. 4. In brain slices depolarization-evoked stimulation of phosphoinositide breakdown and subsequent formation of inositol phosphates and diacylglycerides are linked to activation of voltage-dependent calcium channels, which are sensitive to dihydropyridines, presumably leading to activation of phospholipase(s) C by calcium ions. 5. In the synaptoneurosome preparation depolarization-evoked stimulation of phosphoinositide breakdown does not involve activation of dihydropyridine-sensitive calcium channels and, instead, appears to be regulated primarily by the intracellular concentration of sodium ions. Thus, agents that induce increases in intracellular sodium--such as toxins that open or delay inactivation of voltage-dependent sodium channels; ouabain, an inhibitor of Na+/K+ ATPase that transports sodium outward and a sodium ionophore--all stimulate phosphoinositide breakdown. Mechanistically, increases in intracellular sodium either might directly affect phospholipase(s) C or might lead to influx of calcium ions through Na+/Ca2+ transporters. 6. Depolarization-evoked stimulation of cyclic AMP formation and phosphoinositide breakdown can exhibit potentiative interactions with responses to receptor agonists, thereby providing mechanisms for modulation of receptor responses by neuronal activity. 7. Since all these second messengers can induce phosphorylation of ion channels through the activation of specific kinases, it is proposed that depolarization-evoked formation of second messengers represents a putative feedback mechanism to regulate ion fluxes in excitable cells.
Collapse
Affiliation(s)
- F Gusovsky
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
90
|
Martin C, Finger W. Veratridine-induced high-frequency asynchronous release of inhibitory transmitter quanta in crayfish nerve-muscle synapses superfused with normal and low-calcium saline. Pflugers Arch 1988; 411:469-77. [PMID: 2838800 DOI: 10.1007/bf00582366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Crayfish fibres of opener muscles were voltage clamped to E = -80 mV membrane potential (T = 19-22 degrees C), and veratridine (10-100 mumol/l) was added to the superfusate. Within 30-60 s this caused large fluctuations of the clamp current due to vigorous asynchronous quantal release from the inhibitory nerve terminals along the muscle fibre. Excitatory postsynaptic receptors were previously desensitized by application of 5 mmol/l glutamate. Current fluctuations were evaluated by means of the noise analysis technique. Typically, 100 mumol/l veratridine increased instantaneously the quantal release rate n from n less than 1 quantum/s to n congruent to 10,000 quanta/s. Thereafter, n declined exponentially with a time constant of congruent to 70 s. On average, about 500,000 inhibitory quanta could be liberated in this way from the terminals on a single muscle fibre of congruent to 1 mm length. Serotonin (1 mumol/l) facilitated the effect of lower veratridine concentrations (1-10 mumol/l). In opener muscles veratridine-induced asynchronous quantal release showed little dependence on the bath concentration of Ca2+. The opposite was found for fibres of the superficial abdominal extensor muscle. Beside postsynaptic current fluctuations, veratridine elicited slowly changing average postsynaptic DC-currents which could be explained partly by superposition of individual inhibitory quantal currents. These DC-currents suggest that beside inhibitory quantal release another factor activates inhibitory postsynaptic receptors after application of veratridine.
Collapse
Affiliation(s)
- C Martin
- Physiologisches Institut der Technischen Universität München, Federal Republic of Germany
| | | |
Collapse
|
91
|
Gusovsky F, Rossignol DP, McNeal ET, Daly JW. Pumiliotoxin B binds to a site on the voltage-dependent sodium channel that is allosterically coupled to other binding sites. Proc Natl Acad Sci U S A 1988; 85:1272-6. [PMID: 2448797 PMCID: PMC279749 DOI: 10.1073/pnas.85.4.1272] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pumiliotoxin B (PTX-B), an alkaloid that has cardiotonic and myotonic activity, increases sodium influx in guinea pig cerebral cortical synaptoneurosomes. In the presence of scorpion venom (Leiurus) or purified alpha-scorpion toxin, the PTX-B-induced sodium influx is enhanced severalfold. PTX-B alone has no effect on sodium flux in N18 neuroblastoma cells but, in the presence of alpha-scorpion toxin, stimulation of sodium influx by PTX-B reaches levels comparable to that attained with the sodium channel activator veratridine. In neuroblastoma LV9 cells, a variant mutant that lacks sodium channels, neither veratridine nor PTX-B induces sodium fluxes in either the presence or absence of alpha-scorpion toxin. In synaptoneurosomes and in N18 cells, the sodium influx induced by the combination of PTX-B and alpha-scorpion toxin is inhibited by tetrodotoxin and local anesthetics. PTX-B does not interact with two of the known toxin sites on the sodium channel, as evidenced by a lack of effect on binding of [3H]saxitoxin or [3H]batrachotoxinin A benzoate to brain synaptoneurosomes. Synergistic effects on sodium influx with alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin indicate that PTX-B does not interact directly with three other toxin sites on the sodium channel. Thus, PTX-B appears to activate sodium influx by interacting with yet another site on the voltage-dependent sodium channel, a site that is coupled allosterically to sites for alpha-scorpion toxin, beta-scorpion toxin, and brevetoxin.
Collapse
Affiliation(s)
- F Gusovsky
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | | | | | | |
Collapse
|
92
|
Overman LE, Sharp MJ. Enantioselective total synthesis of the pumiliotoxin a alkaloids via reductive iminium ion-alkyne cyclizations. Total synthesis of (+)-pumiliotoxin a. Tetrahedron Lett 1988. [DOI: 10.1016/s0040-4039(00)82477-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
93
|
Goodman MN. Acute alterations in sodium flux in vitro lead to decreased myofibrillar protein breakdown in rat skeletal muscle. Biochem J 1987; 247:151-6. [PMID: 3689343 PMCID: PMC1148382 DOI: 10.1042/bj2470151] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Myofibrillar protein breakdown was evaluated by measuring the release of N tau-methylhistidine by isolated rat skeletal muscles or perfused rat muscles in the presence of a variety of agents known to affect Na+ flux. Total cell proteolysis was evaluated simultaneously by measuring tyrosine release by muscles after the inhibition of protein synthesis with cycloheximide. Treatment of muscles with the Na+ ionophore monensin or inhibitors of Na+-K+ ATPase (ouabain, digoxin or vanadate) decreased N tau-methylhistidine release by muscles by 21-35%. A phorbol ester (phorbol 12-myristate 13-acetate) as well as a synthetic diacylglycerol known to activate protein kinase C and a Na+/H+ antiport also decreased N tau-methylhistidine release by muscles. Removal of extracellular Na+ blocked the ability of these agents to attenuate N tau-methylhistidine release by muscles, suggesting that their effectiveness required a change in Na+ flux. In contrast with N tau-methylhistidine release by muscles, these agents, except for monensin, did not effect the release of tyrosine, suggesting that they attenuate specifically the breakdown of myofibrillar proteins. Overall these results indicate a link between Na+ and the regulation of protein breakdown in rat skeletal muscle, whereby an influx of Na+ can result in a decrease in myofibrillar proteolysis. Left unresolved is whether phospholipid hydrolysis is involved in this scheme.
Collapse
Affiliation(s)
- M N Goodman
- Department of Medicine, University of California at Davis, Sacramento 95817
| |
Collapse
|
94
|
Diamant S, Avraham B, Atlas D. Neomycin inhibits K+- and veratridine-stimulated noradrenaline release in rat brain slices and rat brain synaptosomes. FEBS Lett 1987; 219:445-50. [PMID: 3609302 DOI: 10.1016/0014-5793(87)80269-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The possible involvement of phosphoinositides' turnover in the process of neurotransmitter release in the central nervous system (CNS) was studied using rat brain slices and synaptosomes. A depolarizing concentration of potassium chloride (25 mM) induces an 8.6 +/- 0.4% increase of [3H]noradrenaline [( 3H]NA) fractional release in cerebral cortical slices above spontaneous release, and 15 mM KCl induces a 3-fold increase of [3H]NA release in rat brain synaptosomes. Neomycin, an aminoglycoside which binds phosphoinositides, inhibits the potassium-induced release in cortical slices with an IC50 = 0.5 +/- 0.07 mM and with IC50 = 0.2 +/- 0.03 mM in synaptosomes. Veratridine, a veratrum alkaloid which increases membrane permeability to sodium ions and causes depolarization of neuronal cells, induces a net 13.4 +/- 0.3% increase of [3H]NA fractional release above spontaneous release in cortical slices. In analogy to K+ stimulation, neomycin inhibits the veratridine-stimulated release in cortical slices with an IC50 = 0.65 +/- 0.1 mM. It appears that the recycling of phosphoinositides, which is necessary for Ca2+ mobilization, participates in the Ca2+-dependent induced neurotransmitter release in the central nervous system.
Collapse
|
95
|
|
96
|
Vandenberg SR, Herman MM, Rubinstein LJ. Embryonal central neuroepithelial tumors: current concepts and future challenges. Cancer Metastasis Rev 1987; 5:343-65. [PMID: 2882864 DOI: 10.1007/bf00055377] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
While the embryonal central neuroepithelial tumors present complex conceptual and clinical problems, advances in cell type identification by special neurohistological, immunohisto- and immunocytochemical techniques have permitted discrimination of distinct cytomorphogenetic entities. These are based in part on their resemblance to the normal phases of neurocytogenesis. Four of these tumors, medulloepithelioma, desmoplastic infantile ganglioglioma, pineoblastoma and medulloblastoma, are designated as multipotential in light of their capacity to undergo divergent differentiation. Cytomorphogenetic, clinical and experimental data implicate fetal neural cell targets for transformation and raise the possibility that aberrant developmental regulatory mechanisms may contribute to the biologic behavior of these tumors. Growth factors and some neuroregulatory neurotransmitters (such as serotonin) are known to act as modulators of normal neuromorphogenesis. They could play a regulatory role in central neuroepithelial tumors on the hypothesis that the aberrant behavior of the embryonal neoplasms could either be modified by functional receptor responses or result from abnormal receptor responses to these substances. Future challenges include the definition of new cytomorphogenetic entities and subgroups of the currently defined forms of embryonal CNS tumors based on the presence of specific growth factors and neuroregulatory neurotransmitters, or their receptors, the characterization of neoplastic receptor responses mediating any modulatory role of the presently known growth factors or neuroregulatory neurotransmitters on the growth and maturation potential of the embryonal central neuroepithelial tumors and the further definition of developmental, stage-specific modulators that might be operative in these tumors.
Collapse
|