51
|
Brumbley SM, Carney BF, Denny TP. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 1993; 175:5477-87. [PMID: 8366033 PMCID: PMC206604 DOI: 10.1128/jb.175.17.5477-5487.1993] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Phenotype conversion (PC) in Pseudomonas solanacearum is the coordinated change in production of extracellular polysaccharide and a variety of extracellular proteins, some of which contribute to virulence. Although PC is normally spontaneous, it is mimicked by transposon inactivation of the phcA locus (S. M. Brumbley and T. P. Denny, J. Bacteriol. 172:5677-5685, 1990). The DNA sequence of a 1.8-kb region from strain AW1 that contains phcA revealed one open reading frame that should encode a polypeptide of 38.6 kDa. The PhcA protein produced in Escherichia coli by using a T7 RNA polymerase expression system was of the predicted size. The deduced amino acid sequence of PhcA is similar to that of some members of the LysR transcriptional activator gene family, especially in the amino terminus, where a putative helix-turn-helix DNA-binding motif was identified. An analogous allele (phcA1) was cloned from the spontaneous PC mutant strain AW1-PC and found to be nonfunctional in complementation studies. When phcA1 was expressed in E. coli, the PhcA1 protein was 35.5 kDa, 3 kDa smaller than PhcA. Sequence analysis of phcA1 and chimeric constructs of phcA and phcA1 confirmed that PhcA1 is truncated by a 2-bp insertion 147 nucleotides upstream of the carboxyl terminus of PhcA. Southern blot analysis of 10 additional independently isolated PC mutants of strain AW1 revealed that two strains have larger insertions (0.2 and 1.0 kb) within phcA. These results suggest that phcA encodes a DNA-binding protein that regulates the transcription of one or more of the genes involved in P. solanacearum virulence and that spontaneous PC can be attributed to one of several different insertions within this locus.
Collapse
Affiliation(s)
- S M Brumbley
- Department of Plant Pathology, University of Georgia, Athens 30602-7274
| | | | | |
Collapse
|
52
|
Old IG, Saint Girons I, Richaud C. Physical mapping of the scattered methionine genes on the Escherichia coli chromosome. J Bacteriol 1993; 175:3689-91. [PMID: 8501076 PMCID: PMC204776 DOI: 10.1128/jb.175.11.3689-3691.1993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Methionine is an important amino acid which acts not only as a substrate for protein elongation but also as the initiator of protein synthesis. The genes of the met regulon, which consists of 10 biosynthetic genes (metA, metB, metC, metE, metF, metH, metK, metL, metQ, and metX), two regulatory genes (metJ and metR), and the methionyl tRNA synthetase gene (metG), are scattered throughout the chromosome. The only linked genes are metK and metX at 63.6 min, metE and metR at 86.3 min, and the metJBLF gene cluster at 89 min. metBL form the only met operon.
Collapse
Affiliation(s)
- I G Old
- Unité de Bactériologie Moléculaire et Médicale, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
53
|
Drummond JT, Matthews RG. Cobalamin-dependent and cobalamin-independent methionine synthases in Escherichia coli: two solutions to the same chemical problem. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 338:687-92. [PMID: 8304207 DOI: 10.1007/978-1-4615-2960-6_142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J T Drummond
- Biophysics Research Division, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
54
|
Coco WM, Rothmel RK, Henikoff S, Chakrabarty AM. Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida. J Bacteriol 1993; 175:417-27. [PMID: 8419291 PMCID: PMC196156 DOI: 10.1128/jb.175.2.417-427.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The 3-chlorocatechol operon clcABD is central to the biodegradative pathway of 3-chlorobenzoate. The clcR regulatory gene, which activates the clcABD operon, was cloned from the region immediately upstream of the operon and was shown to complement an insertion mutation for growth on 3-chlorobenzoate. ClcR activated the clcA promoter, which controls expression of the clcABD operon, in trans by 14-fold in an in vivo promoter probe assay in Pseudomonas putida when cells were incubated with 15 mM 3-chlorobenzoic acid. Specific binding of ClcR to the clcR-clcA intergenic promoter region was observed in a gel shift assay. Nucleotide sequence analysis of the clcR gene predicts a polypeptide of 32.5 kDa, which was confirmed by using specific in vivo 35S labeling of the protein from a T7 promoter-controlled ATG fusion construct. ClcR shares high sequence identity with the LysR family of bacterial regulator proteins and has especially high homology to a subgroup of the family consisting of TcbR (57% amino acid sequence identity), TfdS, CatR, and CatM. ClcR was shown to autoregulate its own production in trans to 35% of unrepressed levels but partially relieved this autorepression under conditions that induced transcription at the clcA promoter. Several considerations indicate that the clcR-clcABD locus is most similar to the tcbR-tcbCDEF regulon.
Collapse
Affiliation(s)
- W M Coco
- Department of Microbiology and Immunology, University of Illinois, Chicago 60612
| | | | | | | |
Collapse
|
55
|
Affiliation(s)
- S Maloy
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
56
|
Daniels DL, Plunkett G, Burland V, Blattner FR. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 1992; 257:771-8. [PMID: 1379743 DOI: 10.1126/science.1379743] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The DNA sequence of 91.4 kilobases of the Escherichia coli K-12 genome, spanning the region between rrnC at 84.5 minutes and rrnA at 86.5 minutes on the genetic map (85 to 87 percent on the physical map), is described. Analysis of this sequence identified 82 potential coding regions (open reading frames) covering 84 percent of the sequenced interval. The arrangement of these open reading frames, together with the consensus promoter sequences and terminator-like sequences found by computer searches, made it possible to assign them to proposed transcriptional units. More than half the open reading frames correlated with known genes or functions suggested by similarity to other sequences. Those remaining encode still unidentified proteins. The sequenced region also contains several RNA genes and two types of repeated sequence elements were found. Intergenic regions include three "gray holes," 0.6 to 0.8 kilobases, with no recognizable functions.
Collapse
Affiliation(s)
- D L Daniels
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
57
|
Wu WF, Urbanowski ML, Stauffer GV. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J Bacteriol 1992; 174:4833-7. [PMID: 1385596 PMCID: PMC206283 DOI: 10.1128/jb.174.14.4833-4837.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The vitamin B12 (B12)-mediated repression of the metE gene in Escherichia coli and Salmonella typhimurium requires the B12-dependent transmethylase, the metH gene product. It has been proposed that the MetH-B12 holoenzyme complex is involved directly in the repression mechanism. Using Escherichia coli strains lysogenized with a lambda phage carrying a metE-lacZ gene fusion, we examined B12-mediated repression of the metE-lacZ gene fusion. Although B12 supplementation results in a 10-fold repression of metE-lacZ expression, homocysteine addition to the growth medium overrides the B12-mediated repression. In addition, B12-mediated repression of the metE-lacZ fusion is dependent on a functional MetR protein. When a metB mutant was transformed with a high-copy-number plasmid carrying the metE gene, which would be expected to reduce intracellular levels of homocysteine, metE-lacZ expression was reduced and B12 supplementation had no further effect. In a metJ mutant, B12 represses metE-lacZ expression less than twofold. When the metJ mutant was transformed with a high-copy-number plasmid carrying the metH gene, which would be expected to reduce intracellular levels of homocysteine, B12 repression of the metE-lacZ fusion was partially restored. The results indicate that B12-mediated repression of the metE gene is primarily a loss of MetR-mediated activation due to depletion of the coactivator homocysteine, rather than a direct repression by the MetH-B12 holoenzyme.
Collapse
Affiliation(s)
- W F Wu
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
58
|
Windhövel U, Bowien B. Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol 1991; 5:2695-705. [PMID: 1779759 DOI: 10.1111/j.1365-2958.1991.tb01978.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A regulatory gene, cfxR, involved in the carbon dioxide assimilation of Alcaligenes eutrophus H16 has been characterized through the analysis of mutants. The function of cfxR is required for the expression of two cfx operons that comprise structural genes encoding Calvin cycle enzymes. CfxR (34.8 kDa) corresponds with an open reading frame of 954 bp, with a translational initiation codon 167 bp upstream of the chromosomal cfx operon. The cfx operon and cfxR are transcribed divergently. The N-terminal sequence of CfxR is very similar to those of bacterial regulatory proteins belonging to the LysR family. Heterologous expression of cfxR in Escherichia coli was achieved using the pT7-7 system. Mobility shift experiments demonstrated that CfxR is a DNA-binding protein with a target site upstream of both the chromosomal and the plasmid-encoded cfx operons.
Collapse
Affiliation(s)
- U Windhövel
- Institut für Mikrobiologie, Georg-August-Universität Gottingen, Germany
| | | |
Collapse
|
59
|
Caldwell AL, Gulig PA. The Salmonella typhimurium virulence plasmid encodes a positive regulator of a plasmid-encoded virulence gene. J Bacteriol 1991; 173:7176-85. [PMID: 1657882 PMCID: PMC209223 DOI: 10.1128/jb.173.22.7176-7185.1991] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The 90-kb virulence plasmid of Salmonella typhimurium is necessary for invasion beyond the Peyer's patches to the mesenteric lymph nodes and spleens of orally inoculated mice. Two Tn5 insertions located on the left side of a previously identified 14-kb virulence region (P. A. Gulig and R. Curtiss III, Infect. Immun. 58:3262-3271, 1988) and mapping 272 bp from each other exhibited opposite effects on splenic infection of mice after oral inoculation. spvR23::Tn5 decreased splenic infection by 1,000-fold, whereas a spv-14::Tn5 mutant outcompeted wild-type S. typhimurium for splenic infection by 27-fold in mice fed mixtures of mutated and wild-type S. typhimurium. spvR23::Tn5 was complemented by a virulence plasmid subclone with an insert sequence encoding only an 891-bp open reading frame specifying a 33,000-molecular-weight protein. The amino acid sequence of this open reading frame had significant homology to members of the LysR family of positive regulatory proteins; thus, the gene was named spvR (salmonella plasmid virulence). To examine the possible regulatory effects of spvR on other virulence genes, we constructed a lacZ operon fusion in a downstream virulence gene, spvB. When spvR subcloned behind the lac promoter was provided on a separate plasmid in trans to the spvB-lacZ operon fusion, transcription of spvB increased 15-fold. spv-14::Tn5, which conferred a competitive advantage to S. typhimurium, increased the expression of a spvR-lacZ operon fusion in cis. spvR is therefore a positive regulator of spvB and an essential virulence gene of S. typhimurium. As opposed to having spvR subcloned behind the lac promoter, the wild-type spvR gene present on the virulence plasmid did not function to positively regulate spvB-lacZ in trans when salmonellae were grown to the log phase in L broth, suggesting that this regulatory system is activated in vivo during infection.
Collapse
Affiliation(s)
- A L Caldwell
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610-0266
| | | |
Collapse
|
60
|
Rothmel RK, Shinabarger DL, Parsek MR, Aldrich TL, Chakrabarty AM. Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. J Bacteriol 1991; 173:4717-24. [PMID: 1649820 PMCID: PMC208149 DOI: 10.1128/jb.173.15.4717-4724.1991] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CatR, a LysR family protein, positively regulates the Pseudomonas putida catBC operon, which is required for growth on benzoate as a sole carbon source. Transcriptional studies show that the catR and catBC promoters are divergent and overlapping by 2 bp. A beta-galactosidase promoter probe vector was constructed to analyze expression from the catR and catBC promoters under induced and uninduced conditions. As predicted, the catBC promoter is expressed only under induced conditions, while the catR promoter is constitutive. CatR has been shown to specifically bind the catRBC promoter region, and this property was used to devise a purification protocol for CatR. Linear M13 DNA containing the catRBC control region was covalently bound to cyanogen bromide-activated Sepharose in order to construct a DNA affinity column. Crude extracts containing hyperproduced CatR protein were then incubated with the affinity resin under binding conditions, and the CatR protein was eluted with 1 M NaCl. CatR was also purified by heparin-agarose chromatography. This highly purified protein was used for gel retardation and hydroxyl-radical footprinting studies. From this analysis, it was shown that CatR binds upstream of the catBC promoter within the transcribed region of catR.
Collapse
Affiliation(s)
- R K Rothmel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | | | | | | | |
Collapse
|
61
|
Abstract
The biosynthesis of methionine in Escherichia coli is under complex regulation. The repression of the biosynthetic pathway by methionine is mediated by a repressor protein (MetJ protein) and S-adenosyl-methionine which functions as a corepressor for the MetJ protein. Recently, a new regulatory locus, metR, has been identified. The MetR protein is required for both metE and metH gene expression, and functions as a transactivator of transcription of these genes. MetR is a unique prokaryotic transcription activator in that it possesses a leucine zipper motif, first described for eukaryotic DNA-binding proteins. The transcriptional activity of MetR is modulated by homocysteine, the metabolic precursor of methionine. Finally, it is known that vitamin B12 can repress expression of the metE gene. This effect is mediated by the MetH holoenzyme, which contains a cobamide prosthetic group.
Collapse
Affiliation(s)
- H Weissbach
- Roche Research Center, Roche Institute of Molecular Biology, Nutley, New Jersey 07110
| | | |
Collapse
|
62
|
Byerly KA, Urbanowski ML, Stauffer GV. The metR binding site in the Salmonella typhimurium metH gene: DNA sequence constraints on activation. J Bacteriol 1991; 173:3547-53. [PMID: 1904437 PMCID: PMC207970 DOI: 10.1128/jb.173.11.3547-3553.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of the metH gene in Salmonella typhimurium and Escherichia coli is positively regulated by the metR gene product, a DNA binding protein. The interaction between the MetR activator protein and the S. typhimurium metH control region was investigated. In vitro gel mobility shift assays and DNase I protection assays established that the MetR protein binds to and protects a 24-bp sequence in the metH promoter region from DNase I attack. This region includes the proposed metR recognition sequence 5'-TGAANNNNNCTCA-3'. Single-base-pair changes were introduced into the proposed MetR recognition sequence within the promoter region of a metH-lacZ gene fusion by oligonucleotide-directed mutagenesis. Two classes of mutations were identified. In the first class, the mutations caused reduced activation of the metH-lacZ fusions that correlated with reduced MetR binding. In the second class, activation of the metH-lacZ fusion was reduced, yet there was no appreciable reduction in MetR binding, indicating that the presence of bound MetR is not sufficient for activation of metH-lacZ gene expression. These two classes of mutations in the DNA binding site are grouped spatially, suggesting that the proposed MetR recognition sequence can be divided into two functional domains, one for binding and the other for activation.
Collapse
Affiliation(s)
- K A Byerly
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
63
|
Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 1991; 5:825-34. [PMID: 1713281 DOI: 10.1111/j.1365-2958.1991.tb00755.x] [Citation(s) in RCA: 324] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a family of highly conserved, Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences, 14 of which have been identified in Escherichia coli and Salmonella typhimurium and a further three in other enterobacterial species (Yersinia pseudotuberculosis, Klebsiella pneumoniae and Vibrio cholerae). ERIC sequences are 126 bp long and appear to be restricted to transcribed regions of the genome, either in intergenic regions of polycistronic operons or in untranslated regions upstream or downstream of open reading frames. ERIC sequences are highly conserved at the nucleotide sequence level but their chromosomal locations differ between species. Several features of ERIC sequences resemble those of REP sequences (Stern et al., 1984) although the nucleotide sequence is entirely different. The question of whether ERICs have a specific function, or represent a form of 'selfish' DNA, is discussed.
Collapse
Affiliation(s)
- C S Hulton
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
64
|
Ostrowski J, Kredich NM. Negative autoregulation of cysB in Salmonella typhimurium: in vitro interactions of CysB protein with the cysB promoter. J Bacteriol 1991; 173:2212-8. [PMID: 1706701 PMCID: PMC207769 DOI: 10.1128/jb.173.7.2212-2218.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CysB protein positively regulates genes of the Salmonella typhimurium cysteine regulon and negatively autoregulates cysB. The cysB promoter was characterized by primer extension of cellular RNA, which gave products identifying a major in vivo transcription start site located 95 bp upstream of the cysB start codon and two minor sites located 9 and 10 bp downstream of the major site. Gel shift binding studies and DNase I footprinting experiments showed that CysB protein binds to the cysB promoter from position -10 to +36 relative to the major transcription start site. We have designated this binding site CBS-B. CysB protein inhibited transcription initiation at the cysB promoter in an in vitro runoff assay, indicating that cysB is negatively autoregulated by the binding of CysB protein to the cysB promoter, where it acts as a repressor. N-Acetyl-L-serine, an inducer of the cysteine regulon, inhibited the binding of CysB protein to the cysB promoter and partially reversed the ability of CysB protein to inhibit transcription initiation. These effects are in contrast to those observed in studies of positively regulated cys promoters, in which N-acetyl-L-serine stimulates binding and causes CysB protein to activate transcription initiation.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
65
|
Sharples GJ, Lloyd RG. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res 1990; 18:6503-8. [PMID: 2251112 PMCID: PMC332602 DOI: 10.1093/nar/18.22.6503] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a novel group of highly conserved DNA sequences located within the intergenic regions of the chromosomes of Escherichia coli, Salmonella typhimurium and other bacteria. These intergenic repeat units (IRUs) are 124-127 nucleotides long and have the potential to form stable stem-loop structures. The location of these sequences within the intergenic regions is variable with respect to known or putative signals for transcription and translation of the flanking genes. Some of the IRU sequences are transcribed, others are probably not. The structure and possible functions of these sequences are discussed in relation to palindromic units and other repeated DNA sequences in bacteria.
Collapse
Affiliation(s)
- G J Sharples
- Department of Genetics, University of Nottingham, Medical School, Queens Medical Centre, UK
| | | |
Collapse
|
66
|
Maxon ME, Wigboldus J, Brot N, Weissbach H. Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci U S A 1990; 87:7076-9. [PMID: 2205852 PMCID: PMC54686 DOI: 10.1073/pnas.87.18.7076] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli metR gene has been sequenced. The sequence predicts a protein of 317 amino acids and a calculated molecular weight of 35,628. This is about 15% larger than the protein from Salmonella typhimurium reported previously [Plamann, L.S. & Stauffer, G.V. (1987) J. Bacteriol. 169, 3932-3937]. The protein is a homodimer and contains a leucine zipper motif characteristic of many eukaryotic DNA-binding proteins. Replacement of two of the leucines in the leucine zipper region of the MetR protein, or substitution of proline for one of the leucines, results in loss of biological activity of the protein. In addition, truncation studies have identified a region on MetR that may be involved in the homocysteine activation of metE expression.
Collapse
Affiliation(s)
- M E Maxon
- Roche Research Center, Roche Institute of Molecular Biology, Nutley, NJ 07110-1199
| | | | | | | |
Collapse
|
67
|
Rothmel RK, Aldrich TL, Houghton JE, Coco WM, Ornston LN, Chakrabarty AM. Nucleotide sequencing and characterization of Pseudomonas putida catR: a positive regulator of the catBC operon is a member of the LysR family. J Bacteriol 1990; 172:922-31. [PMID: 1688844 PMCID: PMC208520 DOI: 10.1128/jb.172.2.922-931.1990] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas putida utilizes the catBC operon for growth on benzoate as a sole carbon source. This operon is positively regulated by the CatR protein, which is encoded from a gene divergently oriented from the catBC operon. The catR gene encodes a 32.2-kilodalton polypeptide that binds to the catBC promoter region in the presence or absence of the inducer cis-cis-muconate, as shown by gel retardation studies. However, the inducer is required for transcriptional activation of the catBC operon. The catR promoter has been localized to a 385-base-pair fragment by using the broad-host-range promoter-probe vector pKT240. This fragment also contains the catBC promoter whose -35 site is separated by only 36 nucleotides from the predicted CatR translational start. Dot blot analysis suggests that CatR binding to this dual promoter-control region, in addition to inducing the catBC operon, may also regulate its own expression. Data from a computer homology search using the predicted amino acid sequence of CatR, deduced from the DNA sequence, showed CatR to be a member of a large class of procaryotic regulatory proteins designated the LysR family. Striking homology was seen between CatR and a putative regulatory protein, TfdS.
Collapse
Affiliation(s)
- R K Rothmel
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | | | | | | | | | |
Collapse
|
68
|
Phillips SE, Manfield I, Parsons I, Davidson BE, Rafferty JB, Somers WS, Margarita D, Cohen GN, Saint-Girons I, Stockley PG. Cooperative tandem binding of met repressor of Escherichia coli. Nature 1989; 341:711-5. [PMID: 2677754 DOI: 10.1038/341711a0] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present biochemical and genetic data to support the hypothesis that the Escherichia coli met repressor, MetJ, binds to synthetic and natural operator sequences in tandem arrays such that repression depends not only on the affinity of the DNA-protein interaction, but also on protein-protein contacts along the tandem array. This represents a novel form of regulatory switch. Furthermore, there seems to be homology between the organization of the met and trp operators.
Collapse
Affiliation(s)
- S E Phillips
- Astbury Department of Biophysics, University of Leeds, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cai XY, Maxon ME, Redfield B, Glass R, Brot N, Weissbach H. Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. Proc Natl Acad Sci U S A 1989; 86:4407-11. [PMID: 2543976 PMCID: PMC287278 DOI: 10.1073/pnas.86.12.4407] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies by Urbanowski et al. [Urbanowski, M. L., Stauffer, L. T., Plamann, L. S. & Stauffer, G. V. (1987) J. Bacteriol. 169, 1391-1397] have identified a regulatory locus, called metR, required for the expression of the metE and metH genes. We recently purified the MetR protein from Escherichia coli and showed that it could stimulate the in vitro expression of the metE gene and autoregulate its own synthesis. In the present study, the purified MetR protein has been shown to stimulate the in vitro expression of the metH gene. Also, the in vitro synthesized MetE, MetH, and MetR proteins were shown to be biologically active. The transcription start sites for the metE and metR genes have been determined, and DNA footprinting experiments have identified regions in the metE-metR intergenic sequence that are protected by either the MetR or MetJ proteins.
Collapse
Affiliation(s)
- X Y Cai
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | | | |
Collapse
|