51
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
52
|
Gong B, Ji W, Chen X, Li P, Cheng W, Zhao Y, He B, Zhuang J, Gao J, Yin Y. Recent Advancements in Strategies for Abnormal Protein Clearance in Alzheimer's Disease. Mini Rev Med Chem 2022; 22:2260-2270. [PMID: 35156576 DOI: 10.2174/1389557522666220214092824] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/06/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
:
Alzheimer's disease (AD) is a intricate neurodegenerative disease with chronic and progressive development whose typical neuropathological features encompasses senile plaques and neurofibrillary tangles respectively formed by the extracellular deposition of amyloid-beta (Aβ) and the intracellular accumulation of hyperphosphorylated tau protein in the brain, particularly in limbic and cortical regions. The pathological changes are considered to be caused by the loss of Aβ and tau protein clearance mechanisms under pathological conditions, which leads to an imbalance between the rates of clearance and production. Consequently, the main strategies for treating AD aim to reduce the production of Aβ and hyperphosphorylated tau protein in the brain, inhibit their accumulation, or accelerate their clearance. Although drugs utilizing these therapeutic strategies have been studied successively, their therapeutic effects have generally been less than ideal. Fortunately, recent advances have been made in clearance strategies for these abnormally expressed proteins, including immunotherapies and nanomedicines targeting Aβ or tau, which could represent an important breakthrough for treating AD. Here, we review recent development of the strategies for the removal of abnormal proteins and provide new ideas and methods for treating AD.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Wenbo Ji
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Xiaohan Chen
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Peng Li
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Wenbin Cheng
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Yuchen Zhao
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Bin He
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Jianhua Zhuang
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - Jie Gao
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| | - You Yin
- Department of Neurology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, China; b Institute of Translational Medicine, Shanghai University, Shanghai, 200444, Chin
| |
Collapse
|
53
|
Bandaru LJM, Ayyalasomayajula N, Murumulla L, Challa S. Mechanisms associated with the dysregulation of mitochondrial function due to lead exposure and possible implications on the development of Alzheimer's disease. Biometals 2022; 35:1-25. [PMID: 35048237 DOI: 10.1007/s10534-021-00360-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Lead (Pb) is a multimedia contaminant with various pathophysiological consequences, including cognitive decline and neural abnormalities. Recent findings have reported an association of Pb toxicity with Alzheimer's disease (AD). Studies have revealed that mitochondrial dysfunction is a pathological characteristic of AD. According to toxicology reports, Pb promotes mitochondrial oxidative stress by lowering complex III activity in the electron transport chain, boosting reactive oxygen species formation, and reducing the cell's antioxidant defence system. Here, we review recent advances in the role of mitochondria in Pb-induced AD pathology, as well as the mechanisms associated with the mitochondrial dysfunction, such as the depolarisation of the mitochondrial membrane potential, mitochondrial permeability transition pore opening; mitochondrial biogenesis, bioenergetics and mitochondrial dynamics alterations; and mitophagy and apoptosis. We also discuss possible therapeutic options for mitochondrial-targeted neurodegenerative disease (AD).
Collapse
Affiliation(s)
- Lakshmi Jaya Madhuri Bandaru
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Neelima Ayyalasomayajula
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Department of Cell Biology, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Telangana, 500007, India.
| |
Collapse
|
54
|
Man VH, Lin D, He X, Gao J, Wang J. Joint Computational/Cell-Based Approach for Screening Inhibitors of Tau Oligomerization: A Proof-of-Concept Study. J Alzheimers Dis 2022; 89:107-119. [PMID: 35848028 DOI: 10.3233/jad-220450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tau assembly produces soluble oligomers and insoluble neurofibrillary tangles, which are neurotoxic to the brain and associated with Alzheimer's and Parkinson's diseases. Therefore, preventing tau aggregation is a promising therapy for those neurodegenerative disorders. OBJECTIVE The aim of this study was to develop a joint computational/cell-based oligomerization protocol for screening inhibitors of tau assembly. METHODS Virtual oligomerization inhibition (VOI) experiment using molecular dynamics simulation was performed to screen potential oligomerization inhibitors of PHF6 hexapeptide. Tau seeding assay, which is directly related to the outcome of therapeutic intervention, was carried out to confirm a ligand's ability in inhibiting tau assembly formation. RESULTS Our protocol was tested on two known compounds, EGCG and Blarcamesine. EGCG inhibited both the aggregation of PHF6 peptide in VOI and tau assembly in tau seeding assay, while Blarcamesine was not a good inhibitor at the two tasks. We also pointed out that good binding affinity to tau aggregates is needed, but not sufficient for a ligand to become a good inhibitor of tau oligomerization. CONCLUSION VOI goes beyond traditional computational inhibitor screening of amyloid aggregation by directly examining the inhibitory ability of a ligand to tau oligomerization. Comparing with the traditional biochemical assays, tau seeding activities in cells is a better indicator for the outcome of a therapeutic intervention. Our hybrid protocol has been successfully validated. It can effectively and efficiently identify the inhibitors of amyloid oligomerization/aggregation processes, thus, facilitate to the drug development of tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Da Lin
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
55
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
56
|
Alali S, Riazi G, Ashrafi-Kooshk MR, Meknatkhah S, Ahmadian S, Hooshyari Ardakani M, Hosseinkhani B. Cannabidiol Inhibits Tau Aggregation In Vitro. Cells 2021; 10:cells10123521. [PMID: 34944028 PMCID: PMC8700709 DOI: 10.3390/cells10123521] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
A hallmark of Alzheimer’s disease (AD) is the accumulation of tau protein in the brain. Compelling evidence indicates that the presence of tau aggregates causes irreversible neuronal destruction, eventually leading to synaptic loss. So far, the inhibition of tau aggregation has been recognized as one of the most effective therapeutic strategies. Cannabidiol (CBD), a major component found in Cannabis sativa L., has antioxidant activities as well as numerous neuroprotective features. Therefore, we hypothesize that CBD may serve as a potent substance to hamper tau aggregation in AD. In this study, we aim to investigate the CBD effect on the aggregation of recombinant human tau protein 1N/4R isoform using biochemical methods in vitro and in silico. Using Thioflavin T (ThT) assay, circular dichroism (CD), and atomic force microscopy (AFM), we demonstrated that CBD can suppress tau fibrils formation. Moreover, by quenching assay, docking, and job’s plot, we further demonstrated that one molecule of CBD interacts with one molecule of tau protein through a spontaneous binding. Experiments performed by quenching assay, docking, and Thioflavin T assay further established that the main forces are hydrogen Van der Waals and some non-negligible hydrophobic forces, affecting the lag phase of tau protein kinetics. Taken together, this study provides new insights about a natural substance, CBD, for tau therapy which may offer new hope for the treatment of AD.
Collapse
Affiliation(s)
- Soha Alali
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
- Correspondence: (S.A.); (G.R.)
| | - Gholamhossein Riazi
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
- Correspondence: (S.A.); (G.R.)
| | - Mohammad Reza Ashrafi-Kooshk
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
| | - Sogol Meknatkhah
- Laboratory of Neuro-Organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614335, Iran; (M.R.A.-K.); (S.M.)
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mohammad Hooshyari Ardakani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G.C., Evin, Tehran 1983969411, Iran;
| | - Baharak Hosseinkhani
- Biomedical Research Institute (BIOMED), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| |
Collapse
|
57
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
58
|
Kondak C, Riedel G, Harrington CR, Wischik CM, Klein J. Hydromethylthionine enhancement of central cholinergic signalling is blocked by rivastigmine and memantine. J Neurochem 2021; 160:172-184. [PMID: 34855998 DOI: 10.1111/jnc.15553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/26/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
The prevention of tau protein aggregations is a therapeutic goal for the treatment of Alzheimer's disease (AD), and hydromethylthionine (HMT) (also known as leucomethylthioninium-mesylate [LMTM]), is a potent inhibitor of tau aggregation in vitro and in vivo. In two Phase 3 clinical trials in AD, HMT had greater pharmacological activity on clinical endpoints in patients not receiving approved symptomatic treatments for AD (acetylcholinesterase (AChE) inhibitors and/or memantine) despite different mechanisms of action. To investigate this drug interaction in an animal model, we used tau-transgenic L1 and wild-type NMRI mice treated with rivastigmine or memantine prior to adding HMT, and measured changes in hippocampal acetylcholine (ACh) by microdialysis. HMT given alone doubled hippocampal ACh levels in both mouse lines and increased stimulated ACh release induced by exploration of the open field or by infusion of scopolamine. Rivastigmine increased ACh release in both mouse lines, whereas memantine was more active in tau-transgenic L1 mice. Importantly, our study revealed a negative interaction between HMT and symptomatic AD drugs: the HMT effect was completely eliminated in mice that had been pre-treated with either rivastigmine or memantine. Rivastigmine was found to inhibit AChE, whereas HMT and memantine had no effects on AChE or on choline acetyltransferase (ChAT). The interactions observed in this study demonstrate that HMT enhances cholinergic activity in mouse brain by a mechanism of action unrelated to AChE inhibition. Our findings establish that the drug interaction that was first observed clinically has a neuropharmacological basis and is not restricted to animals with tau aggregation pathology. Given the importance of the cholinergic system for memory function, the potential for commonly used AD drugs to interfere with the treatment effects of disease-modifying drugs needs to be taken into account in the design of clinical trials.
Collapse
Affiliation(s)
- Constantin Kondak
- Institute of Medical Sciences, Translational Neuroscience, University of Aberdeen, Aberdeen, Scotland.,Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| | - Gernot Riedel
- Institute of Medical Sciences, Translational Neuroscience, University of Aberdeen, Aberdeen, Scotland
| | - Charles R Harrington
- Institute of Medical Sciences, Translational Neuroscience, University of Aberdeen, Aberdeen, Scotland.,TauRx Therapeutics Ltd, Aberdeen, Scotland
| | - Claude M Wischik
- Institute of Medical Sciences, Translational Neuroscience, University of Aberdeen, Aberdeen, Scotland.,TauRx Therapeutics Ltd, Aberdeen, Scotland
| | - Jochen Klein
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
59
|
Lim DJ. Methylene Blue-Based Nano and Microparticles: Fabrication and Applications in Photodynamic Therapy. Polymers (Basel) 2021; 13:3955. [PMID: 34833254 PMCID: PMC8618133 DOI: 10.3390/polym13223955] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022] Open
Abstract
Methylene blue (MB) has been used in the textile industry since it was first extracted by the German chemist Heinrich Caro. Its pharmacological properties have also been applied toward the treatment of certain diseases such as methemoglobinemia, ifosfamide-induced encephalopathy, and thyroid conditions requiring surgery. Recently, the utilization of MB as a safe photosensitizer in photodynamic therapy (PDT) has received attention. Recent findings demonstrate that photoactivated MB exhibits not only anticancer activity but also antibacterial activity both in vitro and in vivo. However, due to the hydrophilic nature of MB, it is difficult to create MB-embedded nano- or microparticles capable of increasing the clinical efficacy of the PDT. This review aims to summarize fabrication techniques for MB-embedded nano and microparticles and to provide both in vitro and in vivo examples of MB-mediated PDT, thereby offering a future perspective on improving this promising clinical treatment modality. We also address examples of MB-mediated PDT in both cancer and infection treatments. Both in-vitro and in-vivo studies are summarized here to document recent trends in utilizing MB as an effective photosensitizer in PDT. Lastly, we discuss how developing efficient MB-carrying nano- and microparticle platforms would be able to increase the benefits of PDT.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0012, USA
| |
Collapse
|
60
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
61
|
[Neuroprotective treatment of tauopathies]. DER NERVENARZT 2021; 92:1227-1238. [PMID: 34652482 DOI: 10.1007/s00115-021-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Tau pathology is now considered to be the main cause of a wide spectrum of neurodegenerative diseases, which are collectively referred to as tauopathies. These include primary tauopathies, in which tau plays the main role in the pathogenesis as well as secondary tauopathies, such as Alzheimer's disease, in which amyloid beta also plays a substantial role in the disease process in addition to the tau pathology. Primary tauopathies include progressive supranuclear palsy, corticobasal degeneration, Pick's disease and rare hereditary tauopathies, which are referred to as frontotemporal lobar degeneration with microtubule-associated protein tau (MAPT) mutation. Tauopathies differ from each other pathologically by the affected brain regions and cell types as well as by the biochemical characteristics of the aggregated tau protein. Various tau-centered neuroprotective treatment approaches are currently in preclinical and clinical development. They target different mechanisms, including the reduction of tau expression, inhibition of tau aggregation, dissolution of tau aggregates, improvement of cellular mechanisms to eliminate toxic tau species, stabilization of microtubules and prevention of intercellular tau spreading. This review article gives an overview of tauopathies and the current concepts for the development of disease-modifying treatment.
Collapse
|
62
|
Imbimbo BP, Ippati S, Watling M, Balducci C. A critical appraisal of tau-targeting therapies for primary and secondary tauopathies. Alzheimers Dement 2021; 18:1008-1037. [PMID: 34533272 DOI: 10.1002/alz.12453] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Primary tauopathies are neurological disorders in which tau protein deposition is the predominant pathological feature. Alzheimer's disease is a secondary tauopathy with tau forming hyperphosphorylated insoluble aggregates. Tau pathology can propagate from region to region in the brain, while alterations in tau processing may impair tau physiological functions. METHODS We reviewed literature on tau biology and anti-tau drugs using PubMed, meeting abstracts, and ClnicalTrials.gov. RESULTS The past 15 years have seen >30 drugs interfering with tau aggregation, processing, and accumulation reaching the clinic. Initial results with tau aggregation inhibitors and anti-tau monoclonal antibodies have not shown clinical efficacy. DISCUSSION The reasons for these clinical failures are unclear but could be linked to the clearing of physiological forms of tau by non-specific drugs. Research is now concentrating efforts on developing reliable translational animal models and selective compounds targeting specific tau epitopes, neurotoxic tau aggregates, and post-translational tau modifications.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Stefania Ippati
- San Raffaele Scientific Institute, San Raffaele Hospital, Milan, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| |
Collapse
|
63
|
Gupta GL, Samant NP. Current druggable targets for therapeutic control of Alzheimer's disease. Contemp Clin Trials 2021; 109:106549. [PMID: 34464763 DOI: 10.1016/j.cct.2021.106549] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder that has an increasingly large burden on health and social care systems. The pathophysiology involves the accumulation of extracellular amyloid-beta plaques (Aβ) and intracellular neurofibrillary tangles contributing to neuronal death and leading to cognition impairment. However, its cause remains poorly understood, and there is no cure for AD despite extensive research and billions of dollars spent over decades. Currently, there are only four US Food and Drug Administration (FDA) approved drugs and one combination therapy available in the market for the symptomatic relief of AD. Since 2003, no new drug has been approved by the FDA for the treatment of AD. Researchers continue to explore new treatments and therapeutic strategies to treat AD. The need for novel discoveries on therapeutic targets and the development of new therapeutic approaches is imminent when considering the current expectations regarding the increased number of AD cases each year and the huge financial cost amounted to healthcare. This review focused on the current status of drugs in the clinical pipeline targeting β-amyloid, tau phosphorylation, or neurotransmitter dysfunction for therapeutic control of Alzheimer's disease.
Collapse
Affiliation(s)
- Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur Campus, Shirpur 425 405, Maharashtra, India; Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| | - Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| |
Collapse
|
64
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
65
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
66
|
Bomasang-Layno E, Bronsther R. Diagnosis and Treatment of Alzheimer's Disease:: An Update. Dela J Public Health 2021; 7:74-85. [PMID: 34604768 PMCID: PMC8482985 DOI: 10.32481/djph.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
67
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
68
|
Pinzi L, Tinivella A, Rastelli G. Chemoinformatics Analyses of Tau Ligands Reveal Key Molecular Requirements for the Identification of Potential Drug Candidates against Tauopathies. Molecules 2021; 26:5039. [PMID: 34443629 PMCID: PMC8400687 DOI: 10.3390/molecules26165039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Tau is a highly soluble protein mainly localized at a cytoplasmic level in the neuronal cells, which plays a crucial role in the regulation of microtubule dynamic stability. Recent studies have demonstrated that several factors, such as hyperphosphorylation or alterations of Tau metabolism, may contribute to the pathological accumulation of protein aggregates, which can result in neuronal death and the onset of a number of neurological disorders called Tauopathies. At present, there are no available therapeutic remedies able to reduce Tau aggregation, nor are there any structural clues or guidelines for the rational identification of compounds preventing the accumulation of protein aggregates. To help identify the structural properties required for anti-Tau aggregation activity, we performed extensive chemoinformatics analyses on a dataset of Tau ligands reported in ChEMBL. The performed analyses allowed us to identify a set of molecular properties that are in common between known active ligands. Moreover, extensive analyses of the fragment composition of reported ligands led to the identification of chemical moieties and fragment combinations prevalent in the more active compounds. Interestingly, many of these fragments were arranged in recurring frameworks, some of which were clearly present in compounds currently under clinical investigation. This work represents the first in-depth chemoinformatics study of the molecular properties, constituting fragments and similarity profiles, of known Tau aggregation inhibitors. The datasets of compounds employed for the analyses, the identified molecular fragments and their combinations are made publicly available as supplementary material.
Collapse
Affiliation(s)
- Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy; (L.P.); (A.T.)
| | - Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy; (L.P.); (A.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy; (L.P.); (A.T.)
| |
Collapse
|
69
|
Wang D, Huang X, Yan L, Zhou L, Yan C, Wu J, Su Z, Huang Y. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 2021; 40:656-668. [PMID: 34401998 DOI: 10.1007/s10930-021-10017-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer's disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Xianlong Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Lu Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Luoqi Zhou
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Chang Yan
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jinhu Wu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China. .,Hubei Key Laboratory of Industrial Microbiology, Department of Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
70
|
Chen D, Xu Q, Wang W, Shao J, Huang W, Dong X. Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006742. [PMID: 34038611 DOI: 10.1002/smll.202006742] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Indexed: 05/11/2023]
Abstract
Photodynamic therapy (PDT) has shown great potential for tumor treatment with merits of non-invasiveness, high selectivity, and minimal side effects. However, conventional type II PDT relying on 1 O2 presents poor therapeutic efficacy for hypoxic tumors due to the oxygen-dependent manner. Alternatively, emerging researches have demonstrated that type I PDT exhibits superiority over type II PDT in tumor treatment owing to its diminished oxygen-dependence. In this review, state-of-the-art studies concerning recent progress in type I photosensitizers are scrutinized, emphasizing the strategies to construct highly effective type I photosensitizers. As the foundation, basic principles of type I PDT are presented, and up-to-date type I photosensitizers are summarized and classified based on their attributes. Then, a literature review of representative type I photosensitizers (including nanomaterials and small molecules) is presented with impetus to delineate their novel designs, action mechanisms, as well as anticancer PDT applications. Finally, the remaining challenges and development directions of type I photosensitizers are outlined, highlighting key scientific issues toward clinical translations.
Collapse
Affiliation(s)
- Dapeng Chen
- Nanjing Tech University (NanjingTech), Nanjing, 210009, China
| | - Qian Xu
- Nanjing Tech University (NanjingTech), Nanjing, 210009, China
| | - Wenjun Wang
- Liaocheng University, Liaocheng, 252059, China
| | - Jinjun Shao
- Nanjing Tech University (NanjingTech), Nanjing, 210009, China
| | - Wei Huang
- Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Xiaochen Dong
- Nanjing Tech University (NanjingTech), Nanjing, 210009, China
- Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
71
|
Liu H, Zhong H, Liu H, Yao X. Molecular dynamics simulations reveal the disruption mechanism of a 2,4-thiazolidinedione derivative C30 against tau hexapeptide (PHF6) oligomer. Proteins 2021; 90:142-154. [PMID: 34331342 DOI: 10.1002/prot.26196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 11/08/2022]
Abstract
Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of β-sheet structure, and transforms β-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haiyang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
72
|
Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer's Disease: An Updated Review. Int J Mol Sci 2021; 22:8208. [PMID: 34360973 PMCID: PMC8348485 DOI: 10.3390/ijms22158208] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and accounts for most cases of dementia. The prevalence of AD has increased in the current rapidly aging society and contributes to a heavy burden on families and society. Despite the profound impact of AD, current treatments are unable to achieve satisfactory therapeutic effects or stop the progression of the disease. Finding novel treatments for AD has become urgent. In this paper, we reviewed novel therapeutic approaches in five categories: anti-amyloid therapy, anti-tau therapy, anti-neuroinflammatory therapy, neuroprotective agents including N-methyl-D-aspartate (NMDA) receptor modulators, and brain stimulation. The trend of therapeutic development is shifting from a single pathological target to a more complex mechanism, such as the neuroinflammatory and neurodegenerative processes. While drug repositioning may accelerate pharmacological development, non-pharmacological interventions, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), also have the potential for clinical application. In the future, it is possible for physicians to choose appropriate interventions individually on the basis of precision medicine.
Collapse
Affiliation(s)
- Tien-Wei Yu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
73
|
The photodynamic and intrinsic effects of Azure B on mitochondrial bioenergetics and the consequences of its intrinsic effects on hepatic energy metabolism. Photodiagnosis Photodyn Ther 2021; 35:102446. [PMID: 34289416 DOI: 10.1016/j.pdpdt.2021.102446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The present study aimed to characterize the intrinsic and photodynamic effects of azure B (AB) on mitochondrial bioenergetics, as well as the consequences of its intrinsic effects on hepatic energy metabolism. METHODS Two experimental systems were utilized: (a) isolated rat liver mitochondria and (b) isolated perfused rat liver. RESULTS AB interacted with mitochondria regardless of photostimulation, but its binding degree was reduced by mitochondrial energization. Under photostimulation, AB caused lipid peroxidation and protein carbonylation and decreased the content of reduced glutathione (GSH) in mitochondria. AB impaired mitochondrial bioenergetics in at least three distinct ways: (1) uncoupling of oxidative phosphorylation; (2) photoinactivation of complexes I and II; and (3) photoinactivation of the FoF1-ATP synthase complex. Without photostimulation, AB also demonstrated mitochondrial toxicity, which was characterized by the induction of lipid peroxidation, loss of inner mitochondrial membrane integrity, and uncoupling of oxidative phosphorylation. The perfused rat liver experiments showed that mitochondria were one of the major targets of AB, even in intact cells. AB inhibited gluconeogenesis and ureagenesis, two biosynthetic pathways strictly dependent on intramitochondrially generated ATP. Contrariwise, AB stimulated glycogenolysis and glycolysis, which are required compensatory pathways for the inhibited oxidative phosphorylation. Similarly, AB reduced the cellular ATP content and the ATP/ADP and ATP/AMP ratios. CONCLUSIONS Although the properties and severe photodynamic effects of AB on rat liver mitochondria might suggest its usefulness in PDT treatment of liver tumors, this possibility should be considered with precaution given the toxic intrinsic effects of AB on mitochondrial bioenergetics and energy-linked hepatic metabolism.
Collapse
|
74
|
Zhang M, Wu Q, Zhao R, Yao X, Du X, Liu Q, Lv G, Xiao S. Isobavachalcone ameliorates cognitive deficits, and Aβ and tau pathologies in triple-transgenic mice with Alzheimer's disease. Food Funct 2021; 12:7749-7761. [PMID: 34269361 DOI: 10.1039/d1fo01306h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects 50 million people worldwide. The current medicines have modest benefits in preventing or curing AD. Thus, it is urgent to discover drugs with the potential to change the progression of the disease. The primary clinical symptoms are memory loss and anxiety, while the critical pathological characteristics are Aβ plaques and hyperphosphorylated tau tangles. In this study, isobavachalcone (ISO), isolated from Psoralea corylifolia, was administered to 3×Tg-AD mice. It has been shown that this compound could significantly improve anxiety, memory and recognition deficits in the AD mice, attenuate the accumulation of Aβ oligomers, reduce the hyperphosphorylation of tau, and prevent the production of tau filaments. The metabolomic analysis implicates that the most probable pathways affected by ISO were bile secretion, tyrosine metabolism, and purine metabolism. In summary, ISO possesses the potential for further development as a drug candidate for AD.
Collapse
Affiliation(s)
- Mohan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Li Q, Xiong C, Liu H, Ge H, Yao X, Liu H. Computational Insights Into the Inhibition Mechanism of Proanthocyanidin B2 on Tau Hexapeptide (PHF6) Oligomer. Front Chem 2021; 9:666043. [PMID: 34336783 PMCID: PMC8316602 DOI: 10.3389/fchem.2021.666043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
The formation of amyloid fibrils from Tau is a key pathogenic feature of Alzheimer's disease (AD). To disturb the formation of Tau aggregates is considered as a promising therapeutic strategy for AD. Recently, a natural product proanthocyanidin B2 (PB2) was confirmed to not only inhibit Tau aggregation, but also disaggregate Tau fibrils. Herein, to explore the inhibition mechanism of PB2 against Tau fibril and to provide the useful information for drug design and discovery, all-atom molecular dynamics simulations were carried out for the ordered Tau hexapeptide PHF6 oligomer in the presence and absence of PB2. The obtained result shows that PB2 can transform PHF6 oligomer from the ordered β-sheet structure into disordered one. Moreover, the clustering analysis and binding free energy calculations identify that S3 site is the most potential binding site. At S3 site, by hydrophobic and hydrogen bond interactions, the residues V309, Y310 and K311 are essential for binding with PB2, especially K311. In a word, our study reveals the molecular mechanism of PB2 inhibiting PHF6 aggregation and it will provide some valuable information for the development of Tau aggregation inhibitors.
Collapse
Affiliation(s)
- Qin Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chunmei Xiong
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Huizhen Ge
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
76
|
Abstract
Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick’s disease (PiD). Tauopathies are defined by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathological conformations, termed “strains,” that stably propagate in living systems, and create unique patterns of neuropathology. Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more accurate diagnosis and effective therapy.
Collapse
|
77
|
Advances in developing therapeutic strategies for Alzheimer's disease. Biomed Pharmacother 2021; 139:111623. [DOI: 10.1016/j.biopha.2021.111623] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
|
78
|
Anglada‐Huguet M, Rodrigues S, Hochgräfe K, Mandelkow E, Mandelkow E. Inhibition of Tau aggregation with BSc3094 reduces Tau and decreases cognitive deficits in rTg4510 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12170. [PMID: 34095439 PMCID: PMC8168941 DOI: 10.1002/trc2.12170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND One of the major hallmarks of Alzheimer's disease (AD)is the aberrant modification and aggregation of the microtubule-associated protein Tau . The extent of Tau pathology correlates with cognitive decline, strongly implicating Tau in the pathogenesis of the disease. Because the inhibition of Tau aggregation may be a promising therapeutic target, we tested the efficacy of BSc3094, an inhibitor of Tau aggregation, in reducing Tau pathology and ameliorating the disease symptoms in transgenic mice. METHODS Mice expressing human Tau with the P301L mutation (line rTg4510) were infused with BSc3094 into the lateral ventricle using Alzet osmotic pumps connected to a cannula that was placed on the skull of the mice, thus bypassing the blood-brain barrier (BBB) . The drug treatment lasted for 2 months, and the effect of BSc3094 on cognition and on reversing hallmarks of Tau pathology was assessed. RESULTS BSc3094 significantly reduced the levels of Tau phosphorylation and sarkosyl-insoluble Tau. In addition, the drug improved cognition in different behavioral tasks and reduced anxiety-like behavior in the transgenic mice used in the study. CONCLUSIONS Our in vivo investigations demonstrated that BSc3094 is capable of partially reducing the pathological hallmarks typically observed in Tau transgenic mice, highlighting BSc3094 as a promising compound for a future therapeutic approach for AD.
Collapse
Affiliation(s)
- Marta Anglada‐Huguet
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Sara Rodrigues
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Katja Hochgräfe
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| | - Eva‐Maria Mandelkow
- German Center for Neurodegenerative DiseasesDZNEBonnGermany
- Center for Advanced European Studies and ResearchCAESARBonnGermany
| |
Collapse
|
79
|
Riedel G, Klein J, Niewiadomska G, Kondak C, Schwab K, Lauer D, Magbagbeolu M, Steczkowska M, Zadrozny M, Wydrych M, Cranston A, Melis V, Santos RX, Theuring F, Harrington CR, Wischik CM. Mechanisms of Anticholinesterase Interference with Tau Aggregation Inhibitor Activity in a Tau-Transgenic Mouse Model. Curr Alzheimer Res 2021; 17:285-296. [PMID: 32091331 PMCID: PMC7403648 DOI: 10.2174/1567205017666200224120926] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 01/18/2023]
Abstract
Background Symptomatic treatments of Alzheimer’s Disease (AD) with cholinesterase inhibitors and/or memantine are relatively ineffective and there is a need for new treatments targeting the underlying pathology of AD. In most of the failed disease-modifying trials, patients have been allowed to continue taking symptomatic treatments at stable doses, under the assumption that they do not impair efficacy. In recently completed Phase 3 trials testing the tau aggregation inhibitor leuco-methylthioninium bis (hydromethane-sulfonate) (LMTM), we found significant differences in treatment response according to whether patients were taking LMTM either as monotherapy or as an add-on to symptomatic treatments. Methods We have examined the effect of either LMTM alone or chronic rivastigmine prior to LMTM treatment of tau transgenic mice expressing the short tau fragment that constitutes the tangle filaments of AD. We have measured acetylcholine levels, synaptosomal glutamate release, synaptic proteins, mitochondrial complex IV activity, tau pathology and Choline Acetyltransferase (ChAT) immunoreactivity. Results LMTM given alone increased hippocampal Acetylcholine (ACh) levels, glutamate release from synaptosomal preparations, synaptophysin levels in multiple brain regions and mitochondrial complex IV activity, reduced tau pathology, partially restored ChAT immunoreactivity in the basal forebrain and reversed deficits in spatial learning. Chronic pretreatment with rivastigmine was found to reduce or eliminate almost all these effects, apart from a reduction in tau aggregation pathology. LMTM effects on hippocampal ACh and synaptophysin levels were also reduced in wild-type mice. Conclusion The interference with the pharmacological activity of LMTM by a cholinesterase inhibitor can be reproduced in a tau transgenic mouse model and, to a lesser extent, in wild-type mice. Long-term pretreatment with a symptomatic drug alters a broad range of brain responses to LMTM across different transmitter systems and cellular compartments at multiple levels of brain function. There is, therefore, no single locus for the negative interaction. Rather, the chronic neuronal activation induced by reducing cholinesterase function produces compensatory homeostatic downregulation in multiple neuronal systems. This reduces a broad range of treatment responses to LMTM associated with a reduction in tau aggregation pathology. Since the interference is dictated by homeostatic responses to prior symptomatic treatment, it is likely that there would be similar interference with other drugs tested as add-on to the existing symptomatic treatment, regardless of the intended therapeutic target or mode of action. The present findings outline key results that now provide a working model to explain interference by symptomatic treatment.
Collapse
Affiliation(s)
- Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Jochen Klein
- Department of Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue Str. 9, Frankfurt, 60438 Frankfurt am Main, Germany
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Constantin Kondak
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.,Department of Pharmacology and Clinical Pharmacy, Goethe University, Max-von-Laue Str. 9, Frankfurt, 60438 Frankfurt am Main, Germany
| | - Karima Schwab
- Charite-Institute of Pharmacology, Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Dilyara Lauer
- Charite-Institute of Pharmacology, Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Mandy Magbagbeolu
- Charite-Institute of Pharmacology, Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Marta Steczkowska
- Mossakowski Medical Research Centre, 5 Pawinski Street, 02-106 Warsaw, Poland
| | - Maciej Zadrozny
- Mossakowski Medical Research Centre, 5 Pawinski Street, 02-106 Warsaw, Poland
| | - Malgorzata Wydrych
- Mossakowski Medical Research Centre, 5 Pawinski Street, 02-106 Warsaw, Poland
| | - Anna Cranston
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Renato X Santos
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Franz Theuring
- Charite-Institute of Pharmacology, Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.,TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, United Kingdom
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.,TauRx Therapeutics Ltd., 395 King Street, Aberdeen AB24 5RP, United Kingdom
| |
Collapse
|
80
|
Shiells H, Schelter BO, Bentham P, Baddeley TC, Rubino CM, Ganesan H, Hammel J, Vuksanovic V, Staff RT, Murray AD, Bracoud L, Wischik DJ, Riedel G, Gauthier S, Jia J, Moebius HJ, Hardlund J, Kipps CM, Kook K, Storey JMD, Harrington CR, Wischik CM. Concentration-Dependent Activity of Hydromethylthionine on Clinical Decline and Brain Atrophy in a Randomized Controlled Trial in Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2021; 75:501-519. [PMID: 32280089 PMCID: PMC7306898 DOI: 10.3233/jad-191173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hydromethylthionine is a potent inhibitor of pathological aggregation of tau and TDP-43 proteins. OBJECTIVE To compare hydromethylthionine treatment effects at two doses and to determine how drug exposure is related to treatment response in bvFTD. METHODS We undertook a 52-week Phase III study in 220 bvFTD patients randomized to compare hydromethylthionine at 200 mg/day and 8 mg/day (intended as a control). The principal outcomes were change on the Addenbrookes Cognitive Examination - Revised (ACE-R), the Functional Activities Questionnaire (FAQ), and whole brain volume. Secondary outcomes included Modified Clinical Global Impression of Change (Modified-CGIC). A population pharmacokinetic exposure-response analysis was undertaken in 175 of the patients with available blood samples and outcome data using a discriminatory plasma assay for the parent drug. RESULTS There were no significant differences between the two doses as randomized. There were steep concentration-response relationships for plasma levels in the range 0.3-0.6 ng/ml at the 8 mg/day dose on clinical and MRI outcomes. There were significant exposure-dependent differences at 8 mg/day for FAQ, Modified-CGIC, and whole brain atrophy comparing patients with plasma levels greater than 0.346 ng/ml with having minimal drug exposure. The exposure-response is biphasic with worse outcomes at the high concentrations produced by 200 mg/day. CONCLUSIONS Hydromethylthionine has a similar concentration-response profile for effects on clinical decline and brain atrophy at the 8 mg/day dose in bvFTD as recently reported in AD. Treatment responses in bvFTD are predicted to be maximal at doses in the range 20-60 mg/day. A confirmatory placebo-controlled trial is now planned.
Collapse
Affiliation(s)
| | - Bjoern O Schelter
- TauRx Therapeutics Ltd., Aberdeen, UK.,Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | | | - Thomas C Baddeley
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | | | - Harish Ganesan
- Institute of Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Jeffrey Hammel
- Institute of Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Vesna Vuksanovic
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Roger T Staff
- Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Damon J Wischik
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Serge Gauthier
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Jianping Jia
- Beijing Institute for Brain Disorders Alzheimer's Disease Centre, Beijing, China
| | | | | | | | | | - John M D Storey
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- TauRx Therapeutics Ltd., Aberdeen, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Claude M Wischik
- TauRx Therapeutics Ltd., Aberdeen, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
81
|
Bi D, Xiao S, Lin Z, Yao L, Fang W, Wu Y, Xu H, Lu J, Xu X. Alginate-Derived Mannuronate Oligosaccharide Attenuates Tauopathy through Enhancing Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4438-4445. [PMID: 33829789 DOI: 10.1021/acs.jafc.1c00394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymannuronate (PM) is an acidic polysaccharide prepared from alginate, contained in edible brown seaweeds. An unsaturated mannuronate oligosaccharide (MOS) is an enzymatically depolymerized oligosaccharide prepared from PM. The effects of MOS on attenuating tauopathy were studied in HEK293/Tau cells and primary triple transgenic (3×Tg) neurons. MOS inhibited heparin-induced aggregation of the Tau-K18 oligomer and suppressed the levels of phosphorylated Tau protein. MOS treatment reduced the activity of glycogen synthase kinase-3β (GSK-3β) by decreasing its phosphorylation levels on the sites of Y216 and increasing phosphorylation levels on the sites of S9. MOS treatment increased the ratio of LC3-II/LC3-I levels and reduced the expression of p62, indicating an increase in autophagy. Finally, MOS-induced decrease in Tau protein expression was attenuated by the addition of an autophagy inhibitor, confirming the involvement of autophagy. These data support MOS as a promising functional food or potential pharmaceutics for attenuating Tau protein-related disease.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijian Lin
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Weishan Fang
- School of Medicine, Shenzhen University, Shenzhen 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jun Lu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- Institute of Biomedical Technology, Auckland University of Technology, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Discovery, Auckland 1010, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
82
|
Süer C, Yıldız N, Barutçu Ö, Tan B, Dursun N. Long-term depression-related tau phosphorylation is enhanced by methylene blue in healthy rat hippocampus. Pharmacol Rep 2021; 73:828-840. [PMID: 33797746 DOI: 10.1007/s43440-021-00254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The present study examined whether inhibition of guanylate cyclase (GC) is associated with the plasticity-related microtubule-stabilizing protein tau phosphorylation in the dentate gyrus (DG) of hippocampal formation. METHODS To address this issue, methylene blue (MB 50 μM) or saline was infused into the DG starting from the induction of long-term potentiation (LTP) or depression (LTD) for 1 h. Then, protein phosphatase 1 alpha (PP1α), glycogen synthase kinase 3 beta (GSK3β), and tau total and phosphorylated protein levels were measured in these hippocampi using western blotting. LTP and LTD were induced by application of high- and low-frequency stimulation protocols (HFS and LFS), respectively. 5-min averages of the excitatory postsynaptic potential (EPSP) slopes and population spike amplitudes at the end of recording were averaged to measure the magnitude of LTP or LTD. RESULTS Low-frequency stimulation protocols was unable to phosphorylate thr181 and thr231epitopes of tau, but possessed kinase activity similar to the HFS in phosphorylation of ser396 and ser416 epitopes. MB infusion during LTD induction attenuated LTD, prevented EPSP/spike dissociation and increased tau phosphorylation at ser396 and ser416 epitopes, without changing tau phosphorylation at thr181 and thr231 epitopes. Neither LTP nor LTP-related tau phosphorylation state was changed by MB infusion. CONCLUSION Although MB can benefit to stabilize the balance between LTP and LTD, and to fix the increased spike wave discharges, it might trigger deregulation of tau phosphorylation, leading to the development of Alzheimer's disease by a mechanism that goes awry during induction of LTD. Thereby detailed studies to reveal more precise evidence for the use of MB in this disease are needed.
Collapse
Affiliation(s)
- Cem Süer
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurbanu Yıldız
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Özlem Barutçu
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey.
| | - Nurcan Dursun
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
83
|
Xiao S, Lu Y, Wu Q, Yang J, Chen J, Zhong S, Eliezer D, Tan Q, Wu C. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int J Biol Macromol 2021; 178:381-393. [PMID: 33662414 DOI: 10.1016/j.ijbiomac.2021.02.210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease which severely impacts the health of the elderly. Current treatments are only able to alleviate symptoms, but not prevent or cure the disease. The neurofibrillary tangles formed by tau protein aggregation are one of the defining characteristics of Alzheimer's disease, so tau protein has become a key target for the drug design. In this study, we show that fisetin, a plant-derived polyphenol compound, can inhibit aggregation of the tau fragment, K18, and can disaggregate tau K18 filaments in vitro. Meanwhile it is able to prevent the formation of tau aggregates in cells. Both experimental and computational studies indicate that fisetin could directly interact with tau K18 protein. The binding is mainly created by hydrogen bond and van der Waal force, prevents the formation of β-strands at the two hexapeptide motifs, and does not perturb the secondary structure or the tubulin binding ability of tau protein. In summary, fisetin might be a candidate for further development as a potential preventive or therapeutic drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Yafei Lu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Qiuping Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiaying Yang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jierui Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Suyue Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Qiulong Tan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Chengchen Wu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China.
| |
Collapse
|
84
|
Zeng Y, Yang J, Zhang B, Gao M, Su Z, Huang Y. The structure and phase of tau: from monomer to amyloid filament. Cell Mol Life Sci 2021; 78:1873-1886. [PMID: 33078207 PMCID: PMC11073437 DOI: 10.1007/s00018-020-03681-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/20/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Tau is a microtubule-associated protein involved in regulation of assembly and spatial organization of microtubule in neurons. However, in pathological conditions, tau monomers assemble into amyloid filaments characterized by the cross-β structures in a number of neurodegenerative diseases known as tauopathies. In this review, we summarize recent progression on the characterization of structures of tau monomer and filament, as well as the dynamic liquid droplet assembly. Our aim is to reveal how post-translational modifications, amino acid mutations, and interacting molecules modulate the conformational ensemble of tau monomer, and how they accelerate or inhibit tau assembly into aggregates. Structure-based aggregation inhibitor design is also discussed in the context of dynamics and heterogeneity of tau structures.
Collapse
Affiliation(s)
- Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Bailing Zhang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
85
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
86
|
Li S, Yi Y, Cui K, Zhang Y, Chen Y, Han D, Sun L, Zhang X, Chen F, Zhang Y, Yang Y. A Single-Chain Variable Fragment Antibody Inhibits Aggregation of Phosphorylated Tau and Ameliorates Tau Toxicity in vitro and in vivo. J Alzheimers Dis 2021; 79:1613-1629. [PMID: 33459708 DOI: 10.3233/jad-191266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common cause of dementia among elderly people. Hyperphosphorylation and aggregation of tau correlates with the clinical progression of AD; therefore, therapies targeting the aggregation of tau may have potential applications for anti-AD drug development. Several inhibitors of tau aggregation, including small molecules and antibodies, have been found to decrease the aggregation of tau and the corresponding pathology. OBJECTIVE To screen one kind of single-chain variable fragment (scFv) antibody which could inhibit the aggregation of tau and ameliorate its cytotoxicity. METHODS/RESULTS Using phosphorylated tau (pTau) as an antigen, we obtained a scFv antibody via the screening of a high-capacity phage antibody library. Biochemical analysis revealed that this scFv antibody (scFv T1) had a strong ability to inhibit pTau aggregation both in dilute solutions and under conditions of macromolecular crowding. ScFv T1 could also depolymerize preformed pTau aggregates in vitro. Furthermore, scFv T1 was found to be able to inhibit the cytotoxicity of extracellular pTau aggregates and ameliorate tau-mediated toxicity when coexpressed with a hTauR406W mutant in the eye of transgenic Drosophila flies. CONCLUSION This scFv T1 antibody may be a potential new therapeutic agent against AD. Our methods can be used to develop novel strategies against protein aggregation for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yushan Yi
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Ke Cui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yanqiu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Yange Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Dou Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China
| | - Ling Sun
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Xiaohui Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China
| |
Collapse
|
87
|
FTLD Treatment: Current Practice and Future Possibilities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:297-310. [PMID: 33433882 DOI: 10.1007/978-3-030-51140-1_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
While behavioral variant frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) remain unrelenting and universally fatal conditions, there is a framework for supportive treatment in patients diagnosed with these frontotemporal dementia (FTD) syndromes and the larger spectrum of clinical syndromes associated with frontotemporal lobar degeneration (FTLD) pathology on autopsy. A managing physician has an important role in weighing therapeutic options, organizing caregiver support, and framing long-term expectations for patients and caregivers. Additionally, a dedicated neurologist may assist patients and caregivers in navigating a growing range of FTD research, including exciting opportunities in clinical therapeutic trials. This chapter will review current therapeutic options for patients with bvFTD and PPA and detail the landscape of potential new disease-modifying therapies targeting the pathophysiology or FTLD.
Collapse
|
88
|
Bengoa-Vergniory N, Velentza-Almpani E, Silva AM, Scott C, Vargas-Caballero M, Sastre M, Wade-Martins R, Alegre-Abarrategui J. Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun 2021; 9:18. [PMID: 33509301 PMCID: PMC7844979 DOI: 10.1186/s40478-020-01117-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | | - Ana Maria Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Armstrong Road, London, SW7 2AZ UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 1, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | |
Collapse
|
89
|
Martínez-Maldonado A, Ontiveros-Torres MÁ, Harrington CR, Montiel-Sosa JF, Prandiz RGT, Bocanegra-López P, Sorsby-Vargas AM, Bravo-Muñoz M, Florán-Garduño B, Villanueva-Fierro I, Perry G, Garcés-Ramírez L, de la Cruz F, Martínez-Robles S, Pacheco-Herrero M, Luna-Muñoz J. Molecular Processing of Tau Protein in Progressive Supranuclear Palsy: Neuronal and Glial Degeneration. J Alzheimers Dis 2021; 79:1517-1531. [PMID: 33459640 PMCID: PMC7990452 DOI: 10.3233/jad-201139] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are examples of neurodegenerative diseases, characterized by abnormal tau inclusions, that are called tauopathies. AD is characterized by highly insoluble paired helical filaments (PHFs) composed of tau with abnormal post-translational modifications. PSP is a neurodegenerative disease with pathological and clinical heterogeneity. There are six tau isoforms expressed in the adult human brain, with repeated microtubule-binding domains of three (3R) or four (4R) repeats. In AD, the 4R:3R ratio is 1:1. In PSP, the 4R isoform predominates. The lesions in PSP brains contain phosphorylated tau aggregates in both neurons and glial cells. OBJECTIVE Our objective was to evaluate and compare the processing of pathological tau in PSP and AD. METHODS Double and triple immunofluorescent labeling with antibodies to specific post-translational tau modifications (phosphorylation, truncation, and conformational changes) and thiazin red (TR) staining were carried out and analyzed by confocal microscopy. RESULTS Our results showed that PSP was characterized by phosphorylated tau in neurofibrillary tangles (NFTs) and glial cells. Tau truncated at either Glu391 or Asp421 was not observed. Extracellular NFTs (eNFTs) and glial cells in PSP exhibited a strong affinity for TR in the absence of intact or phosphorylated tau. CONCLUSION Phosphorylated tau was as abundant in PSP as in AD. The development of eNFTs from both glial cells and neuronal bodies suggests that truncated tau species, different from those observed in AD, could be present in PSP. Additional studies on truncated tau within PSP lesions could improve our understanding of the pathological processing of tau and help identify a discriminatory biomarker for AD and PSP.
Collapse
Affiliation(s)
- Alejandra Martínez-Maldonado
- Departamento de Fisiología Biofísica y Neurociencias, CINVESTAV, México City, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, México
| | | | - Charles R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - José Francisco Montiel-Sosa
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | | | - Marely Bravo-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Depto. Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Sandra Martínez-Robles
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Santiago de los Caballeros, República Dominicana
| | - José Luna-Muñoz
- National Dementia BioBank, Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
- Banco Nacional de Cerebros-UNPHU, Universidad Nacional Pedro Henríquez Ureña, República Dominicana
| |
Collapse
|
90
|
Solovyev N, El-Khatib AH, Costas-Rodríguez M, Schwab K, Griffin E, Raab A, Platt B, Theuring F, Vogl J, Vanhaecke F. Cu, Fe, and Zn isotope ratios in murine Alzheimer's disease models suggest specific signatures of amyloidogenesis and tauopathy. J Biol Chem 2021; 296:100292. [PMID: 33453282 PMCID: PMC7949056 DOI: 10.1016/j.jbc.2021.100292] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of tau and amyloid-beta in the brain, and recent evidence suggests a correlation between associated protein aggregates and trace elements, such as copper, iron, and zinc. In AD, a distorted brain redox homeostasis and complexation by amyloid-beta and hyperphosphorylated tau may alter the isotopic composition of essential mineral elements. Therefore, high-precision isotopic analysis may reveal changes in the homeostasis of these elements. We used inductively coupled plasma-mass spectrometry (ICP-MS)-based techniques to determine the total Cu, Fe, and Zn contents in the brain, as well as their isotopic compositions in both mouse brain and serum. Results for male transgenic tau (Line 66, L66) and amyloid/presenilin (5xFAD) mice were compared with those for the corresponding age- and sex-matched wild-type control mice (WT). Our data show that L66 brains showed significantly higher Fe levels than did those from the corresponding WT. Significantly less Cu, but more Zn was found in 5xFAD brains. We observed significantly lighter isotopic compositions of Fe (enrichment in the lighter isotopes) in the brain and serum of L66 mice compared with WT. For 5xFAD mice, Zn exhibited a trend toward a lighter isotopic composition in the brain and a heavier isotopic composition in serum compared with WT. Neither mouse model yielded differences in the isotopic composition of Cu. Our findings indicate significant pathology-specific alterations of Fe and Zn brain homeostasis in mouse models of AD. The associated changes in isotopic composition may serve as a marker for proteinopathies underlying AD and other types of dementia.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Ghent, Belgium
| | - Ahmed H El-Khatib
- BAM Bundesanstalt für Materialforschung und -prüfung, Division 1.1 Inorganic Trace Analysis, Berlin, Germany; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, African Union Authority St, Abbassia, Ain Shams University, Cairo, Egypt
| | - Marta Costas-Rodríguez
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Ghent, Belgium
| | - Karima Schwab
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Elizabeth Griffin
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Andrea Raab
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, University of Aberdeen, Aberdeen, Scotland, United Kingdom; Institute of Chemistry, Environmental Analytical Chemistry, University of Graz, Graz, Austria
| | - Bettina Platt
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, Foresterhill, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Franz Theuring
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Berlin, Germany
| | - Jochen Vogl
- BAM Bundesanstalt für Materialforschung und -prüfung, Division 1.1 Inorganic Trace Analysis, Berlin, Germany
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry-A&MS Research Unit, Ghent University, Ghent, Belgium.
| |
Collapse
|
91
|
Lemke N, Melis V, Lauer D, Magbagbeolu M, Neumann B, Harrington CR, Riedel G, Wischik CM, Theuring F, Schwab K. Differential compartmental processing and phosphorylation of pathogenic human tau and native mouse tau in the line 66 model of frontotemporal dementia. J Biol Chem 2020; 295:18508-18523. [PMID: 33127647 PMCID: PMC7939472 DOI: 10.1074/jbc.ra120.014890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Synapse loss is associated with motor and cognitive decline in multiple neurodegenerative disorders, and the cellular redistribution of tau is related to synaptic impairment in tauopathies, such as Alzheimer's disease and frontotemporal dementia. Here, we examined the cellular distribution of tau protein species in human tau overexpressing line 66 mice, a transgenic mouse model akin to genetic variants of frontotemporal dementia. Line 66 mice express intracellular tau aggregates in multiple brain regions and exhibit sensorimotor and motor learning deficiencies. Using a series of anti-tau antibodies, we observed, histologically, that nonphosphorylated transgenic human tau is enriched in synapses, whereas phosphorylated tau accumulates predominantly in cell bodies and axons. Subcellular fractionation confirmed that human tau is highly enriched in insoluble cytosolic and synaptosomal fractions, whereas endogenous mouse tau is virtually absent from synapses. Cytosolic tau was resistant to solubilization with urea and Triton X-100, indicating the formation of larger tau aggregates. By contrast, synaptic tau was partially soluble after Triton X-100 treatment and most likely represents aggregates of smaller size. MS corroborated that synaptosomal tau is nonphosphorylated. Tau enriched in the synapse of line 66 mice, therefore, appears to be in an oligomeric and nonphosphorylated state, and one that could have a direct impact on cognitive function.
Collapse
Affiliation(s)
- Nora Lemke
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Bundesanstalt für Materialforschung und-prüfung, Berlin, Germany
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | | | - Boris Neumann
- Charité-Universitätsmedizin Berlin, Berlin, Germany; Proteome Factory AG, Berlin, Germany
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom; TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | | | - Karima Schwab
- Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
92
|
Inhibition of cholinesterases by safranin O: Integration of inhibition kinetics with molecular docking simulations. Arch Biochem Biophys 2020; 698:108728. [PMID: 33345803 DOI: 10.1016/j.abb.2020.108728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
In the present study, the inhibitory mechanisms and effects of a synthetic phenazine dye, safranin O (SO) on human plasma butyrylcholinesterase (BChE), human erythrocyte acetylcholinesterase (AChE) and recombinant BChE mutants were investigated. Kinetic studies showed the following information: SO leaded to linear competitive inhibition of human plasma BChE with Ki = 0.44 ± 0.085 μM; α = ∞. It acted as a hyperbolic noncompetitive inhibitor of human erythrocyte AChE with Ki = 0.69 ± 0.13; α = 1; β = 0.08 ± 0.02. On the other hand, the inhibitory effects of SO on two BChE mutants, where A328 was modified to either F or Y, revealed differences in terms of inhibitory patterns and Ki values, compared to the obtained results with recombinant wild type BChE. SO was found to act as a linear competitive inhibitor of A328F and A328Y BChE mutants. Compared to recombinant wild type BChE, A328Y and A328F BChE mutants caused a 4- and 10-fold decrease in Ki value for SO, respectively. These findings were supported by molecular modelling studies. In conclusion, SO is a potent inhibitor of human cholinesterases and may be useful in the design and development of new drugs for the treatment of AD.
Collapse
|
93
|
Cloete SJ, Petzer A, Petzer JP. Interactions of dye compounds that are structurally related to methylene blue with acetylcholinesterase and butyrylcholinesterase. Chem Biol Drug Des 2020. [DOI: 10.1111/cbdd.13814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stephanus J. Cloete
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
- Pharmaceutical Chemistry, School of Pharmacy North‐West University Potchefstroom South Africa
| | - Jacobus P. Petzer
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
- Pharmaceutical Chemistry, School of Pharmacy North‐West University Potchefstroom South Africa
| |
Collapse
|
94
|
Microfluidic Protein Imaging Platform: Study of Tau Protein Aggregation and Alzheimer's Drug Response. Bioengineering (Basel) 2020; 7:bioengineering7040162. [PMID: 33322166 PMCID: PMC7763324 DOI: 10.3390/bioengineering7040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Tau protein aggregation is identified as one of the key phenomena associated with the onset and progression of Alzheimer’s disease. In the present study, we performed on-chip confocal imaging of tau protein aggregation and tau–drug interactions using a spiral-shaped passive micromixing platform. Numerical simulations and experiments were performed in order to validate the performance of the micromixer design. We performed molecular modeling of adenosine triphosphate (ATP)-induced tau aggregation in order to successfully validate the concept of helical tau filament formation. Tau aggregation and native tau restoration were realized using an immunofluorescence antibody assay. The dose–response behavior of an Alzheimer’s drug, methylthioninium chloride (MTC), was monitored on-chip for defining the optimum concentration of the drug. The proposed device was tested for reliability and repeatability of on-chip tau imaging. The amount of the tau protein sample used in our experiments was significantly less than the usage for conventional techniques, and the whole protein–drug assay was realized in less than two hours. We identified that intensity-based tau imaging could be used to study Alzheimer’s drug response. In addition, it was demonstrated that cell-free, microfluidic tau protein assays could be used as potential on-chip drug evaluation tools for Alzheimer’s disease.
Collapse
|
95
|
Soeda Y, Takashima A. New Insights Into Drug Discovery Targeting Tau Protein. Front Mol Neurosci 2020; 13:590896. [PMID: 33343298 PMCID: PMC7744460 DOI: 10.3389/fnmol.2020.590896] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| |
Collapse
|
96
|
Ashrafian H, Zadeh EH, Khan RH. Review on Alzheimer's disease: Inhibition of amyloid beta and tau tangle formation. Int J Biol Macromol 2020; 167:382-394. [PMID: 33278431 DOI: 10.1016/j.ijbiomac.2020.11.192] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/19/2022]
Abstract
It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation, to suppress or postpone AD.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, USA; Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
97
|
Lo CH, Sachs JN. The role of wild-type tau in Alzheimer's disease and related tauopathies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2020; 2:1-17. [PMID: 33665646 PMCID: PMC7929479 DOI: 10.36069/jols/20201201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tau oligomers have recently emerged as the principal toxic species in Alzheimer's disease (AD) and tauopathies. Tau oligomers are spontaneously self-assembled soluble tau proteins that are formed prior to fibrils, and they have been shown to play a central role in neuronal cell death and in the induction of neurodegeneration in animal models. As the therapeutic paradigm shifts to targeting toxic tau oligomers, this suggests the focus to study tau oligomerization in species that are less susceptible to fibrillization. While truncated and mutation containing tau as well as the isolated repeat domains are particularly prone to fibrillization, the wild-type (WT) tau proteins have been shown to be resistant to fibril formation in the absence of aggregation inducers. In this review, we will summarize and discuss the toxicity of WT tau both in vitro and in vivo, as well as its involvement in tau oligomerization and cell-to-cell propagation of pathology. Understanding the role of WT tau will enable more effective biomarker development and therapeutic discovery for treatment of AD and tauopathies.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
98
|
Chatterjee S, Salimi A, Lee JY. Intrinsic Origin of Tau Protein Aggregation: Effects of Histidine Tautomerism on Tau 267-312 Monomer. ACS Chem Neurosci 2020; 11:3814-3822. [PMID: 33147004 DOI: 10.1021/acschemneuro.0c00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Histidine tautomerism is considered a crucial component that affects the constitutional and accumulation characteristics of the tau267-312 monomer in the neutral condition, which are connected with the pathobiology of Alzheimer's disease (AD). Interpreting the organizational characteristics and accumulation procedure is a challenging task because two tautomeric conformations (the Nε-H or Nδ-H tautomer) can occur in the open neutral condition. In the current work, replica-exchange molecular dynamics (REMD) simulations were performed to investigate the structural properties of the tau267-312 monomer considering the histidine tautomeric effect. Based on the simulation outcomes, the histidine 268 (H268) (δ)-H299 (δ) (δδ) isomer had the highest β-sheet content with a value of 26.2%, which acquires a sheet-governing toxic conformer with the first abundant conformational state of 22.6%. In addition, δδ displayed notable antiparallel β-sheets between lysine 8 (K8)-asparagine 13 (N13) and valine 40 (V40)-tyrosine 44 (Y44) as well as between K32-H33 and V40-Y44 (β-meander supersecondary structure), indicating this tautomeric isomer may exist to stimulate tau oligomerization. Furthermore, H299 was found to play an essential role in the structural stabilization of the δδ isomer compared with H268. The present research will aid in obtaining insight into the organizational and accumulation properties of tau protein in the presence of histidine tautomerism to control AD.
Collapse
Affiliation(s)
| | - Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
99
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
100
|
Flores-Rodríguez P, Harrington CR, Wischik CM, Ibarra-Bracamontes V, Zarco N, Navarrete A, Martínez-Maldonado A, Guadarrama-Ortíz P, Villanueva-Fierro I, Ontiveros-Torres MA, Perry G, Alonso AD, Floran-Garduño B, Segovia J, Luna-Muñoz J. Phospho-Tau Protein Expression in the Cell Cycle of SH-SY5Y Neuroblastoma Cells: A Morphological Study. J Alzheimers Dis 2020; 71:631-645. [PMID: 31424392 DOI: 10.3233/jad-190155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been reported that the main function of tau protein is to stabilize microtubules and promote the movement of organelles through the axon in neurons. In Alzheimer's disease, tau protein is the major constituent of the paired helical filament, and it undergoes post-translational modifications including hyperphosphorylation and truncation. Whether other functions of tau protein are involved in Alzheimer's disease is less clear. We used SH-SY5Y human neuroblastoma cells as an in vitro model to further study the functions of tau protein. We detected phosphorylated tau protein as small dense dots in the cell nucleus, which strongly colocalize with intranuclear speckle structures that were also labelled with an antibody to SC35, a protein involved in nuclear RNA splicing. We have shown further that tau protein, phosphorylated at the sites recognized by pT231, TG-3, and AD2 antibodies, is closely associated with cell division. Different functions may be characteristic of phosphorylation at specific sites. Our findings suggest that the presence of tau protein is involved in separation of sister chromatids in anaphase, and that tau protein also participates in maintaining the integrity of the DNA (pT231, prophase) and chromosomes during cell division (TG-3).
Collapse
Affiliation(s)
- Paola Flores-Rodríguez
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México.,CIIDIR Durango, Instituto Politécnico Nacional, Becario COFAA, Durango, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Vanessa Ibarra-Bracamontes
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| | - Natanael Zarco
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Araceli Navarrete
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Alejandra Martínez-Maldonado
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Anahuac University North Mexico, CDMX, México
| | | | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, TX, USA
| | - Alejandra D Alonso
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | | | - José Segovia
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - José Luna-Muñoz
- Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| |
Collapse
|