51
|
Zhou M, Engel AG, Auerbach A. Serum choline activates mutant acetylcholine receptors that cause slow channel congenital myasthenic syndromes. Proc Natl Acad Sci U S A 1999; 96:10466-71. [PMID: 10468632 PMCID: PMC17912 DOI: 10.1073/pnas.96.18.10466] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have found that mutant acetylcholine receptor channels (AChRs) that cause slow-channel congenital myasthenic syndromes are activated by serum and that the high frequency of openings in serum is reduced by treatment with choline oxidase. Thus, slow-channel congenital myasthenic syndrome AChRs at the neuromuscular junction are likely to be activated both by steady exposure to serum choline and by transient exposure to synaptically released transmitter. Single-channel kinetic analyses indicate that the increased response to choline is caused by a reduced intrinsic stability of the closed channel. The results suggest that a mutation that destabilizes the inactive conformation of the AChR, together with the sustained exposure of endplates to serum choline, results in continuous channel activity that contributes to the pathophysiology of the disease.
Collapse
Affiliation(s)
- M Zhou
- Department of Physiology and Biophysics, State University of New York, Buffalo, NY 14121, USA
| | | | | |
Collapse
|
52
|
Palma E, Maggi L, Barabino B, Eusebi F, Ballivet M. Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. J Biol Chem 1999; 274:18335-40. [PMID: 10373437 DOI: 10.1074/jbc.274.26.18335] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular recordings were performed in voltage-clamped Xenopus oocytes upon injection with a mixture of cDNAs encoding the beta3 and mutant alpha7 (L247Talpha7) neuronal nicotinic acetylcholine receptor (nAChR) subunits. The expressed receptors maintained sensitivity to methyllycaconitine and to alpha-bungarotoxin but exhibited a functional profile strikingly different from that of the homomeric L247Talpha7 receptor. The heteromeric L247Talpha7beta3 nAChR had a lower apparent affinity and a faster rate of desensitization than L247Talpha7 nAChR, exhibited nonlinearity in the I-V relationship, and was inhibited by 5-hydroxytryptamine, much like wild type alpha7 (WTalpha7) nAChR. Single channel recordings in cell-attached mode revealed unitary events with a slope conductance of 19 picosiemens and a lifetime of 5 ms, both values being much smaller than those of the homomeric receptor channel. Upon injection with a mixture of WTalpha7 and beta3 cDNAs, clear evidence was obtained for the plasma membrane assembly of heteromeric nAChRs, although ACh could not activate these receptors. It is concluded that beta3, long believed to be an orphan subunit, readily co-assembles with other subunits to form heteromeric receptors, some of which may be negative regulators of cholinergic function.
Collapse
Affiliation(s)
- E Palma
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Medicina Sperimentale Universita' di Roma "La Sapienza", via delle Messi d' Oro 156, 00158 Roma, Italy
| | | | | | | | | |
Collapse
|
53
|
Nakazawa K, Ohno Y. Block by 5-hydroxytryptamine and apomorphine of recombinant human neuronal nicotinic receptors. Eur J Pharmacol 1999; 374:293-9. [PMID: 10422771 DOI: 10.1016/s0014-2999(99)00325-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of 5-hydroxytryptamine and apomorphine on human neuronal nicotinic acetylcholine receptor/channels were examined by expressing these channels in Xenopus oocytes. Functional channels were expressed by combining one type of alpha subunits (alpha3 or alpha4) and one type of beta subunits (beta2 or beta4). 5-Hydroxytryptamine (100 microM to 1 mM) and apomorphine (10 to 100 microM) inhibited an inward current activated by acetylcholine in the oocytes expressing the channels. The sensitivity to 5-hydroxytryptamine or apomorphine depended on subunit combinations. When concentration-response relationship was obtained for the acetylcholine-activated current, the maximal response was reduced by these compounds. The inhibition by these compounds exhibited voltage-dependence: the inhibition was augmented at negative potentials. The results suggest that 5-hydroxytryptamine and apomorphine noncompetitively inhibits human recombinant nicotinic acetylcholine receptor/channels, presumably by acting on channel pores.
Collapse
Affiliation(s)
- K Nakazawa
- Division of Pharmacology, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | |
Collapse
|
54
|
Nakazawa K, Inoue K, Ohno Y. Block and unblock by imipramine of cloned and mutated P2X2 receptor/channel expressed in Xenopus oocytes. Neurosci Lett 1999; 264:93-6. [PMID: 10320022 DOI: 10.1016/s0304-3940(99)00183-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Effects of imipramine on the cloned P2X2 receptor/channel and its mutants expressed in Xenopus oocytes were examined. Imipramine (100 microM) partially blocked an ionic current mediated through the wild-type P2X2 receptor/channel. With a higher concentration (300 microM) of imipramine, the current block was attenuated, suggesting that the second, lower affinity, 'unblocking' binding-site for imipramine exists in addition to the 'blocking' binding-site. These profiles of the modulation by imipramine were influenced by the substitution of negatively charged or polarized amino acid residues near the outer mouth of the channel pore (Asp315, Thr330 and Asn333) with neutral amino acid residues (Val or Ile). With the neutralization of Asp315, the current 'block' by 100 microM imipramine was attenuated. With the neutralization of Thr330, the current 'block' by 100 microM imipramine was enhanced. With the neutralization of Asn333, the 'unblock' by 300 microM imipramine disappeared. The results suggest that imipramine modulates P2X2 receptor/channels by interacting these amino acid residues.
Collapse
Affiliation(s)
- K Nakazawa
- Division of Pharmacology, National Institute of Health Sciences, Setagaya, Tokyo, Japan.
| | | | | |
Collapse
|
55
|
Rothlin CV, Katz E, Verbitsky M, Elgoyhen AB. The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors. Mol Pharmacol 1999; 55:248-54. [PMID: 9927615 DOI: 10.1124/mol.55.2.248] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we provide evidence that the alpha9 nicotinic acetylcholine receptor (nAChR) shares pharmacological properties with members of the Cys-loop family of receptors. Thus, the type A gamma-aminobutyric acid receptor antagonist bicuculline, the glycinergic antagonist strychnine, and the type 3 serotonin receptor antagonist ICS-205,930 block ACh-evoked currents in alpha9-injected Xenopus laevis oocytes with the following rank order of potency: strychnine > ICS-205,930 > bicuculline. Block by antagonists was reflected in an increase in the acetylcholine (ACh) EC50 value, with no changes in agonist maximal response or Hill coefficient, which suggests a competitive type of block. Moreover, whereas neither gamma-aminobutyric acid nor glycine modified ACh-evoked currents, serotonin blocked responses to ACh in a concentration-dependent manner. The present results suggest that the alpha9 nAChR must conserve in its primary structure some residues responsible for ligand binding common to other Cys-loop receptors. In addition, it adds further evidence that the alpha9 nAChR and the cholinergic receptor present at the base of cochlear outer hair cells have similar pharmacological properties.
Collapse
Affiliation(s)
- C V Rothlin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
56
|
Maggi L, Palma E, Eusebi F, Moretti M, Balestra B, Clementi F, Gotti C. Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick alpha7 nicotinic receptor. Br J Pharmacol 1999; 126:285-95. [PMID: 10051147 PMCID: PMC1565803 DOI: 10.1038/sj.bjp.0702299] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We assessed the pharmacological activity of triethyl-(beta-4-stilbenoxy-ethyl) ammonium (MG624), a drug that is active on neuronal nicotinic receptors (nicotinic AChR). Experiments on the major nicotinic AChR subtypes present in chick brain, showed that it inhibits the binding of [125I]-alphaBungarotoxin (alphaBgtx) to the alpha7 subtype, and that of [3H]-epibatidine (Epi) to the alpha4beta2 subtype, with Ki values of respectively 106 nM and 84 microM. 2. MG624 also inhibited ACh elicited currents (I(ACh)) in the oocyte-expressed alpha7 and alpha4beta2 chick subtypes with half-inhibitory concentrations (IC50) of respectively 109 nM and 3.2 microM. 3. When tested on muscle-type AChR, it inhibited [125I]-alphaBgtx binding with a Ki of 32 microM and ACh elicited currents (I(ACh)) in the oocyte-expressed alpha1beta1gammadelta chick subtype with an IC50 of 2.9 microM. 4. The interaction of MG624 with the alpha7 subtype was investigated using an alpha7 homomeric mutant receptor with a threonine-for-leucine 247 substitution (L247T alpha7). MG624 did not induce any current in oocytes expressing the wild type alpha7 receptor, but did induce large currents in the oocyte-expressed L247T alpha7 receptor. The MG624 elicited current (I(MG62)) has an EC50 of 0.2 nM and a Hill coefficient nH of 1.9, and is blocked by the nicotinic receptor antagonist methyllycaconitine (MLA). 5. These binding and electrophysiological studies show that MG624 is a potent antagonist of neuronal chick alpha7 nicotinic AChR, and becomes a competitive agonist following the mutation of the highly conserved leucine residue 247 located in the M2 channel domain.
Collapse
Affiliation(s)
- L Maggi
- Department of Experimental Medicine and Pathology, Università di Roma ‘La Sapienza' e Laboratorio di Biofisica CRS, IRE, via delle Messi d'Oro 156, Rome, Italy
| | - E Palma
- Department of Experimental Medicine and Pathology, Università di Roma ‘La Sapienza' e Laboratorio di Biofisica CRS, IRE, via delle Messi d'Oro 156, Rome, Italy
| | - F Eusebi
- Department of Experimental Medicine and Pathology, Università di Roma ‘La Sapienza' e Laboratorio di Biofisica CRS, IRE, via delle Messi d'Oro 156, Rome, Italy
| | - M Moretti
- CNR Center of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - B Balestra
- CNR Center of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - F Clementi
- CNR Center of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - C Gotti
- CNR Center of Cellular and Molecular Pharmacology, Department of Medical Pharmacology, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
- Author for correspondence:
| |
Collapse
|
57
|
Maksay G. Bidirectional allosteric modulation of strychnine-sensitive glycine receptors by tropeines and 5-HT3 serotonin receptor ligands. Neuropharmacology 1998; 37:1633-41. [PMID: 9886686 DOI: 10.1016/s0028-3908(98)00127-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Specific binding of [3H]strychnine was studied on membranes prepared from rat spinal cord. Several antagonists and agonists of 5-HT3 receptors and tropane derivatives displaced [3H]strychnine binding with micromolar potencies. In the presence of 10 microM glycine a high affinity (nanomolar) component of displacement was also observed for the tropeines zatosetron, bemesetron and tropisetron. The displacing potency of glycine was also enhanced by these agents which are therefore termed glycine-positive. In contrast, atropine, SR 57227A, m-chlorophenylbiguanide, metoclopramide and granisetron are termed glycine-negative, because they decreased the displacing potency of glycine while glycine decreased the displacing potencies of atropine and metoclopramide. The dissociation of [3H]strychnine binding was accelerated in the presence of m-chlorophenylbiguanide, SR 57227A, atropine and zatosetron with a concentration dependence (EC50 values and Hill slopes) similar to their displacing effects. This demonstrates that the displacement of strychnine binding is associated with allosteric interactions between different binding sites. Structure-activity analysis revealed that the tropeine structure is essential for high affinity binding, and its substitutions (in scopolamine and cocaine) or its replacement (in ondansetron and metoclopramide) strongly decrease the potency and/or efficacy of allosteric modulation. High affinity modulatory sites for tropeines appear to be associated with the potentiation of ionophore function, but distinct from the low affinity channel blocking sites as well as from the binding sites of strychnine and glycine.
Collapse
Affiliation(s)
- G Maksay
- Department of Molecular Pharmacology, Chemical Research Center, Hungarian Academy of Sciences, Budapest.
| |
Collapse
|
58
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
59
|
Palma E, Maggi L, Miledi R, Eusebi F. Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci U S A 1998; 95:10246-50. [PMID: 9707632 PMCID: PMC21493 DOI: 10.1073/pnas.95.17.10246] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zn2+ is a key structural/functional component of many proteins and is present at high concentrations in the brain and retina, where it modulates ligand-gated receptors. Therefore, a study was made of the effects of zinc on homomeric neuronal nicotinic receptors expressed in Xenopus oocytes after injection of cDNAs encoding the chicken wild or mutant alpha7 subunits. In oocytes expressing wild-type receptors, Zn2+ alone did not elicit appreciable membrane currents. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by Zn2+ in a reversible and dose-dependent manner, with an IC50 of 27 microM and a Hill coefficient of 0.4. The inhibition of IAcCho by Zn2+ was competitive and voltage-independent, a behavior incompatible with a channel blockade mechanism. In sharp contrast, in oocytes expressing a receptor mutant, with a threonine-for-leucine 247 substitution (L247Talpha7), subnanomolar concentrations of Zn2+ elicited membrane currents (IZn) that were reversibly inhibited by the nicotinic receptor blockers methyllycaconitine and alpha-bungarotoxin. Cell-attached single-channel recordings showed that Zn2+ opened channels that had a mean open time of 5 ms and a conductance of 48 pS. At millimolar concentrations Zn2+ reduced IAcCho and the block became stronger with cell hyperpolarization. Thus, Zn2+ is a reversible blocker of wild-type alpha7 receptors, but becomes an agonist, as well as an antagonist, following mutation of the highly conserved leucine residue 247 located in the M2 channel domain. We conclude that Zn2+ is a modulator as well as an activator of homomeric nicotinic alpha7 receptors.
Collapse
Affiliation(s)
- E Palma
- Laboratorio di Biofisica, Centro Ricerca Sperimentale Istituto Regina Elena, via delle Messi d' Oro 156 I00158 Rome, Italy.
| | | | | | | |
Collapse
|
60
|
Gurley DA, Lanthorn TH. Nicotinic agonists competitively antagonize serotonin at mouse 5-HT3 receptors expressed in Xenopus oocytes. Neurosci Lett 1998; 247:107-10. [PMID: 9655604 DOI: 10.1016/s0304-3940(98)00306-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5-HT3 receptor (5-HT3R) is part of a superfamily of ligand-gated ion channels which includes nicotinic acetylcholine receptors (nAChR). cRNA derived from the long isoform cloned mouse 5-HT3R was used to drive expression of 5-HT3Rs in Xenopus oocytes. 5-HT-induced currents were monitored using two-electrode voltage-clamp. Eight nicotinic agonists, including ACh and nicotine, but not alpha-anatoxin, were found to antagonize 5-HT-induced currents. With the exception of 3-(2,4)-dimethoxybenzylidene-anabaseine (DMXB-anabaseine; GTS-21) this antagonism appeared to be competitive since it could be overcome by increasing concentrations of 5-HT. Potency of 5-HT3 antagonism was comparable to reported values for nAChR alpha7 activation. These results confirm the notion of families of receptors and further indicate that strong similarities can exist in some critical binding domains.
Collapse
Affiliation(s)
- D A Gurley
- Astra Arcus USA, Rochester, NY 14534, USA.
| | | |
Collapse
|
61
|
Arias HR. Topology of ligand binding sites on the nicotinic acetylcholine receptor. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:133-91. [PMID: 9403137 DOI: 10.1016/s0165-0173(97)00020-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of both alpha subunits there exist the binding sites for agonists such as the neurotransmitter acetylcholine (ACh) and for competitive antagonists such as d-tubocurarine. Agonists trigger the channel opening upon binding while competitive antagonists compete for the former ones and inhibit its pharmacological action. Identification of all residues involved in recognition and binding of agonist and competitive antagonists is a primary objective in order to understand which structural components are related to the physiological function of the AChR. The picture for the localisation of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are mainly located on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are sequentially identical, the observed high and low affinity for agonists on the receptor is conditioned by the interaction of the alpha subunit with the delta or the gamma chain, respectively. This relationship is opposite for curare-related drugs. This molecular interaction takes place probably at the interface formed by the different subunits. The principal component for the agonist/competitive antagonist binding sites involves several aromatic residues, in addition to the cysteine pair at 192-193, in three loops-forming binding domains (loops A-C). Other residues such as the negatively changed aspartates and glutamates (loop D), Thr or Tyr (loop E), and Trp (loop F) from non-alpha subunits were also found to form the complementary component of the agonist/competitive antagonist binding sites. Neurotoxins such as alpha-, kappa-bungarotoxin and several alpha-conotoxins seem to partially overlap with the agonist/competitive antagonist binding sites at multiple point of contacts. The alpha subunits also carry the binding site for certain acetylcholinesterase inhibitors such as eserine and for the neurotransmitter 5-hydroxytryptamine which activate the receptor without interacting with the classical agonist binding sites. The link between specific subunits by means of the binding of ACh molecules might play a pivotal role in the relative shift among receptor subunits. This conformational change would allow for the opening of the intrinsic receptor cation channel transducting the external chemical signal elicited by the agonist into membrane depolarisation. The ion flux activity can be inhibited by non-competitive inhibitors (NCIs). For this kind of drugs, a population of low-affinity binding sites has been found at the lipid-protein interface of the AChR. In addition, several high-affinity binding sites have been found to be located at different rings on the M2 transmembrane domain, namely luminal binding sites. In this regard, the serine ring is the locus for exogenous NCIs such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222, phencyclidine, and trifluoromethyliodophenyldiazirine. Trifluoromethyliodophenyldiazirine also binds to the valine ring, which is the postulated site for cembranoids. Additionally, the local anaesthetic meproadifen binding site seems to be located at the outer or extracellular ring. Interestingly, the M2 domain is also the locus for endogenous NCIs such as the neuropeptide substance P and the neurotransmitter 5-hydroxytryptamine. In contrast with this fact, experimental evidence supports the hypothesis for the existence of other NCI high-affinity binding sites located not at the channel lumen but at non-luminal binding domains. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| |
Collapse
|
62
|
Palma E, Maggi L, Eusebi F, Miledi R. Neuronal nicotinic threonine-for-leucine 247 alpha7 mutant receptors show different gating kinetics when activated by acetylcholine or by the noncompetitive agonist 5-hydroxytryptamine. Proc Natl Acad Sci U S A 1997; 94:9915-9. [PMID: 9275226 PMCID: PMC23293 DOI: 10.1073/pnas.94.18.9915] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric alpha7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the alpha7 mutant receptor for 5HT is not modified by the presence of dihydro-beta-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates alpha7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.
Collapse
Affiliation(s)
- E Palma
- Laboratorio di Biofisica, Centro Ricerca Sperimentale Istituto Regina Elena, via delle Messi d' Oro 156 I00158 Rome, Italy
| | | | | | | |
Collapse
|
63
|
García-Colunga J, Awad JN, Miledi R. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac). Proc Natl Acad Sci U S A 1997; 94:2041-4. [PMID: 9050901 PMCID: PMC20039 DOI: 10.1073/pnas.94.5.2041] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fluoxetine (Prozac), a widely used antidepressant, is said to exert its medicinal effects almost exclusively by blocking the serotonin uptake systems. The present study shows that both muscle and neuronal nicotinic acetylcholine receptors are blocked, in a noncompetitive and voltage-dependent way, by fluoxetine, which also increases the rate of desensitization of the nicotinic receptors. Because these receptors are very widely distributed in the both central and peripheral nervous systems, the blocking action of fluoxetine on nicotinic receptors may play an important role in its antidepressant and other therapeutical effects. Our findings will help to understand the mode of action of fluoxetine, and they may also help to develop more specific medicinal drugs.
Collapse
Affiliation(s)
- J García-Colunga
- Department of Psychobiology, University of California, Irvine 92697-4550, USA
| | | | | |
Collapse
|
64
|
Palma E, Eusebi F, Miledi R. Co-expression of the neuronal alpha7 and L247T alpha7 mutant subunits yields hybrid nicotinic receptors with properties of both wild-type alpha7 and alpha7 mutant homomeric receptors. Proc Natl Acad Sci U S A 1997; 94:1539-43. [PMID: 9037089 PMCID: PMC19827 DOI: 10.1073/pnas.94.4.1539] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Injection of cDNA encoding the neuronal alpha7 subunit into Xenopus oocytes yields homomeric receptors showing responses to AcCho that have low affinity, fast desensitization, nonlinear current-voltage (I-V) relation, and sensitivity to alpha-bungarotoxin (alpha-BTX) and 5-hydroxytryptamine (5HT), both substances acting as antagonists. Mutation of the Leu-247, located in the channel domain, changes 5HT from an antagonist to an agonist, slows the rate of desensitization, renders the I-V relation linear, and increases the affinity for acetylcholine (AcCho). A study was made of receptors expressed after injecting Xenopus oocytes with mixtures of cDNAs encoding the wild-type alpha7 (WT alpha7) and the L247T alpha7 mutated nicotinic AcCho receptors (nAcChoRs). The receptors expressed were again blocked by alpha-bungarotoxin (100 nM) but exhibited both WT alpha7 and alpha7 mutant functional characteristics. Out of eight different types of hybrid receptors identified, most were inhibited by 5HT (1 mM) and showed low sensitivity to AcCho, like the WT alpha7 receptors, but exhibited a slow rate of desensitization and an I-V relation similar to those of alpha7 mutant receptors. Together, these findings indicate that the increased nAcChoR affinity and the decreased nAc-ChoR desensitization after Leu-247 mutation are uncoupled events. We propose that receptor diversity is predicted by permutations of WT alpha7 and L247T alpha7 subunits in a pentameric symmetrical model and that even partial replacement of Leu-247 with a polar residue within the leucine ring in the channel domain considerably influences the properties of neuronal alpha7 nAcChoRs.
Collapse
Affiliation(s)
- E Palma
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Sperimentale Universita di Roma La Sapienza, Rome, Italy
| | | | | |
Collapse
|