51
|
Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020; 12:cancers12113476. [PMID: 33266503 PMCID: PMC7700648 DOI: 10.3390/cancers12113476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This article describes an emerging area of significant interest in cancer and cell death and the relationships shared by these through the p53 and cathepsin proteins. While it has been demonstrated that the p53 protein can directly induce the leakage of cathepsin proteases from the lysosome, directly triggering cell death, little is known about what factors set the threshold at which the lysosome can become permeabilized. It appears that the expression levels of cathepsin proteases may be central to this process, with some of them being transcriptionally regulated by p53. The consequences of such a mechanism have serious implications for lysosomal-mediated apoptosis and have significant input into the design of therapeutics and their strategic use. In this review, we highlight the importance of extending such findings to other cathepsin family members and the need to assess the roles of p53 isoforms and mutants in furthering this mechanism. Abstract While viewed as the “guardian of the genome”, the importance of the tumor suppressor p53 protein has increasingly gained ever more recognition in modulating additional modes of action related to cell death. Slowly but surely, its importance has evolved from a mutated genetic locus heavily implicated in a wide array of cancer types to modulating lysosomal-mediated cell death either directly or indirectly through the transcriptional regulation of the key signal transduction pathway intermediates involved in this. As an important step in determining the fate of cells in response to cytotoxicity or during stress response, lysosomal-mediated cell death has also become strongly interwoven with the key components that give the lysosome functionality in the form of the cathepsin proteases. While a number of articles have been published highlighting the independent input of p53 or cathepsins to cellular homeostasis and disease progression, one key area that warrants further focus is the regulatory relationship that p53 and its isoforms share with such proteases in regulating lysosomal-mediated cell death. Herein, we review recent developments that have shaped this relationship and highlight key areas that need further exploration to aid novel therapeutic design and intervention strategies.
Collapse
Affiliation(s)
- Surinder M. Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Correspondence: (S.M.S.); (A.A.Z.J.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Vladimir A. Makarov
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
| | - Paul A. Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M13 9PL, UK;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia; (L.V.S.); (V.A.M.); (N.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (S.M.S.); (A.A.Z.J.)
| |
Collapse
|
52
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
53
|
Kumar D, Mishra PM, Gadhave K, Giri R. Conformational dynamics of p53 N-terminal TAD2 region under different solvent conditions. Arch Biochem Biophys 2020; 689:108459. [DOI: 10.1016/j.abb.2020.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023]
|
54
|
Gress A, Kalinina OV. SphereCon-a method for precise estimation of residue relative solvent accessible area from limited structural information. Bioinformatics 2020; 36:3372-3378. [PMID: 32154837 DOI: 10.1093/bioinformatics/btaa159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION In proteins, solvent accessibility of individual residues is a factor contributing to their importance for protein function and stability. Hence one might wish to calculate solvent accessibility in order to predict the impact of mutations, their pathogenicity and for other biomedical applications. A direct computation of solvent accessibility is only possible if all atoms of a protein three-dimensional structure are reliably resolved. RESULTS We present SphereCon, a new precise measure that can estimate residue relative solvent accessibility (RSA) from limited data. The measure is based on calculating the volume of intersection of a sphere with a cone cut out in the direction opposite of the residue with surrounding atoms. We propose a method for estimating the position and volume of residue atoms in cases when they are not known from the structure, or when the structural data are unreliable or missing. We show that in cases of reliable input structures, SphereCon correlates almost perfectly with the directly computed RSA, and outperforms other previously suggested indirect methods. Moreover, SphereCon is the only measure that yields accurate results when the identities of amino acids are unknown. A significant novel feature of SphereCon is that it can estimate RSA from inter-residue distance and contact matrices, without any information about the actual atom coordinates. AVAILABILITY AND IMPLEMENTATION https://github.com/kalininalab/spherecon. CONTACT alexander.gress@helmholtz-hips.de. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander Gress
- Department of Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany.,Graduate School of Computer Science, Saarland University, Saarbrücken 66123, Germany
| | - Olga V Kalinina
- Department of Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany.,Medical Faculty, Saarland University, Homburg 66421, Germany
| |
Collapse
|
55
|
Wang Z, Wu W, Guan X, Guo S, Li C, Niu R, Gao J, Jiang M, Bai L, Leung EL, Hou Y, Jiang Z, Bai G. 20( S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis. Acta Pharm Sin B 2020; 10:1020-1035. [PMID: 32642409 PMCID: PMC7332671 DOI: 10.1016/j.apsb.2020.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA–proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and “Warburg effect”. The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions, which further induced a series of omics changes.
Collapse
|
56
|
Loh SN. Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules 2020; 10:biom10020303. [PMID: 32075132 PMCID: PMC7072143 DOI: 10.3390/biom10020303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
The mutational landscape of p53 in cancer is unusual among tumor suppressors because most of the alterations are of the missense type and localize to a single domain: the ~220 amino acid DNA-binding domain. Nearly all of these mutations produce the common effect of reducing p53’s ability to interact with DNA and activate transcription. Despite this seemingly simple phenotype, no mutant p53-targeted drugs are available to treat cancer patients. One of the main reasons for this is that the mutations exert their effects via multiple mechanisms—loss of DNA contacts, reduction in zinc-binding affinity, and lowering of thermodynamic stability—each of which involves a distinct type of physical impairment. This review discusses how this knowledge is informing current efforts to develop small molecules that repair these defects and restore function to mutant p53. Categorizing the spectrum of p53 mutations into discrete classes based on their inactivation mechanisms is the initial step toward personalized cancer therapy based on p53 allele status.
Collapse
Affiliation(s)
- Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
57
|
|
58
|
Kamagata K, Kanbayashi S, Honda M, Itoh Y, Takahashi H, Kameda T, Nagatsugi F, Takahashi S. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci Rep 2020; 10:580. [PMID: 31953488 PMCID: PMC6969132 DOI: 10.1038/s41598-020-57521-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Early in vivo studies demonstrated the involvement of a tumor-suppressing transcription factor, p53, into cellular droplets such as Cajal and promyelocytic leukemia protein bodies, suggesting that the liquid-liquid phase separation (LLPS) might be involved in the cellular functions of p53. To examine this possibility, we conducted extensive investigations on the droplet formation of p53 in vitro. First, p53 itself was found to form liquid-like droplets at neutral and slightly acidic pH and at low salt concentrations. Truncated p53 mutants modulated droplet formation, suggesting the importance of multivalent electrostatic interactions among the N-terminal and C-terminal domains. Second, FRET efficiency measurements for the dimer mutants of p53 revealed that distances between the core domains and between the C-terminal domains were modulated in an opposite manner within the droplets. Third, the molecular crowding agents were found to promote droplet formation, whereas ssDNA, dsDNA, and ATP, to suppress it. Finally, the p53 mutant mimicking posttranslational phosphorylation did not form the droplets. We conclude that p53 itself has a potential to form droplets that can be controlled by cellular molecules and by posttranslational modifications, suggesting that LLPS might be involved in p53 function.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaya Honda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, 135-0064, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
59
|
Pedrote MM, Motta MF, Ferretti GDS, Norberto DR, Spohr TCLS, Lima FRS, Gratton E, Silva JL, de Oliveira GAP. Oncogenic Gain of Function in Glioblastoma Is Linked to Mutant p53 Amyloid Oligomers. iScience 2020; 23:100820. [PMID: 31981923 PMCID: PMC6976948 DOI: 10.1016/j.isci.2020.100820] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated p53 mutations endow cells with malignant phenotypes, including chemoresistance. Amyloid-like oligomers of mutant p53 transform this tumor suppressor into an oncogene. However, the composition and distribution of mutant p53 oligomers are unknown and the mechanism involved in the conversion is sparse. Here, we report accumulation of a p53 mutant within amyloid-like p53 oligomers in glioblastoma-derived cells presenting a chemoresistant gain-of-function phenotype. Statistical analysis from fluorescence fluctuation spectroscopy, pressure-induced measurements, and thioflavin T kinetics demonstrates the distribution of oligomers larger than the active tetrameric form of p53 in the nuclei of living cells and the destabilization of native-drifted p53 species that become amyloid. Collectively, these results provide insights into the role of amyloid-like mutant p53 oligomers in the chemoresistance phenotype of malignant and invasive brain tumors and shed light on therapeutic options to avert cancer. Amyloid oligomers transform p53 tumor suppressor into an oncogene Amyloid-like mutant p53 oligomers occur in chemoresistant glioblastoma cells p53 oligomer larger than tetramers is detected in the nuclei of living cells Gain-of-function p53 phenotypes is attributed to p53 amyloid oligomers
Collapse
Affiliation(s)
- Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Michelle F Motta
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Douglas R Norberto
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas. Av. dos Estados, 5001 Sta. Terezinha, Santo André, São Paulo 21941-590, Brazil
| | - Tania C L S Spohr
- Laboratório de Biomedicina do Cérebro, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Flavia R S Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697-2717, USA
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA.
| |
Collapse
|
60
|
Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020; 49:6995-7014. [DOI: 10.1039/d0cs00163e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small molecules targeting various aspects of the p53 protein pathway have shown significant promise in the treatment of a number of cancer types.
Collapse
Affiliation(s)
| | - Christian Gaiddon
- Inserm UMR_S 1113
- Université de Strasbourg
- Molecular Mechanisms of Stress Response and Pathologies
- ITI InnoVec
- Strasbourg
| | - Tim Storr
- Department of Chemistry
- Simon Fraser University
- Burnaby
- Canada
| |
Collapse
|
61
|
Qi W, Li J, Pei X, Ke Y, Bu Q, Ni X. β-Actin facilitates etoposide-induced p53 nuclear import. J Biosci 2020; 45:34. [PMID: 32098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a tumor suppressor, p53 preserves genomic integrity in eukaryotes. However, limited evidence is available for the p53 shuttling between the cytoplasm and nucleus. Previous studies have shown that β-actin polymerization negatively regulates p53 nuclear import through its interaction with p53. In this study, we found that DNA damage induces both β-actin and p53 accumulation in the nucleus. β-actin knockdown impaired the nuclear transport of p53. Additionally, β-actin could interact with p53 which was enhanced in response to genotoxic stress. Furthermore, N terminal deletion mutants of p53 shows reduced levels of association with β-actin. We further identified Ser15, Thr18 and Ser20 of p53 are critical to the β-actin: p53 interaction, which upon mutation into alanine abrogates the binding. Taken together, this study reveals that β-actin regulates the nuclear import of p53 through protein-protein interaction.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Bioscience, Changchun Normal University, 677 Changji Northroad, Changchun 130032, Jilin, China
| | | | | | | | | | | |
Collapse
|
62
|
Garg A, Hazra JP, Sannigrahi MK, Rakshit S, Sinha S. Variable Mutations at the p53-R273 Oncogenic Hotspot Position Leads to Altered Properties. Biophys J 2019; 118:720-728. [PMID: 31952808 DOI: 10.1016/j.bpj.2019.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Mutations in p53 protein, especially in the DNA-binding domain, is one of the major hallmarks of cancer. The R273 position is a DNA-contact position and has several oncogenic variants. Surprisingly, cancer patients carrying different mutant variants of R273 in p53 have different survival rates, indicating that the DNA-contact inhibition may not be the sole reason for reduced survival with R273 variants. Here, we probed the properties of three major oncogenic variants of the wild-type (WT) p53: [R273H]p53, [R273C]p53, and [R273L]p53. Using a series of biophysical, biochemical, and theoretical simulation studies, we observe that these oncogenic variants of the p53 not only suffer a loss in DNA binding, but they also show distinct structural stability, aggregation, and toxicity profiles. The WTp53 and the [R273H]p53 show the least destabilization and aggregation propensity. [R273C]p53 aggregation is disulfide mediated, leading to cross-β, thioflavin-T-positive aggregates, whereas hydrophobic interactions dominate self-assembly in [R273L]p53, leading to a mixture of amyloid and amorphous aggregates. Molecular dynamics simulations indicate different contact maps and secondary structures for the different variants along the course of the simulations. Our study indicates that each of the R273 variants has its own distinct property of stability and self-assembly, the molecular basis of which may lead to different types of cancer pathogenesis in vivo. These studies will aid the design of therapeutic strategies for cancer using residue-specific or process-specific protein aggregation as a target.
Collapse
Affiliation(s)
- Ankush Garg
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Malay Kumar Sannigrahi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| | - Sharmistha Sinha
- Institute of Nano Science and Technology, Habitat Centre, Punjab, India.
| |
Collapse
|
63
|
Miller JJ, Blanchet A, Orvain C, Nouchikian L, Reviriot Y, Clarke RM, Martelino D, Wilson D, Gaiddon C, Storr T. Bifunctional ligand design for modulating mutant p53 aggregation in cancer. Chem Sci 2019; 10:10802-10814. [PMID: 32055386 PMCID: PMC7006507 DOI: 10.1039/c9sc04151f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding and aggregation contributes to the development of a wide range of diseases. In cancer, over 50% of diagnoses are attributed to p53 malfunction due to missense mutations, many of which result in protein misfolding and accelerated aggregation. p53 mutations also frequently result in alteration or loss of zinc at the DNA-binding site, which increases aggregation via nucleation with zinc-bound p53. Herein, we designed two novel bifunctional ligands, LI and LH , to modulate mutant p53 aggregation and restore zinc binding using a metallochaperone approach. Interestingly, only the incorporation of iodine function in LI resulted in modulation of mutant p53 aggregation, both in recombinant and cellular environments. Native mass spectrometry shows a protein-ligand interaction for LI , as opposed to LH , which is hypothesized to lead to the distinct difference in the p53 aggregation profile for the two ligands. Incorporation of a di-2-picolylamine binding unit into the ligand design provided efficient intracellular zinc uptake, resulting in metallochaperone capability for both LI and LH . The ability of LI to reduce mutant p53 aggregation results in increased restoration of p53 transcriptional function and mediates both caspase-dependent and -independent cell death pathways. We further demonstrate that LI exhibits minimal toxicity in non-cancerous organoids, and that it is well tolerated in mice. These results demonstrate that iodination of our ligand framework restores p53 function by interacting with and inhibiting mutant p53 aggregation and highlights LI as a suitable candidate for comprehensive in vivo anticancer preclinical evaluations.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Anaïs Blanchet
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Christophe Orvain
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Lucienne Nouchikian
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Yasmin Reviriot
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Ryan M Clarke
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Diego Martelino
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| | - Derek Wilson
- Chemistry Department , York University , 6 Thompson Road , Toronto , Ontario M3J 1L3 , Canada
| | - Christian Gaiddon
- Inserm UMR_S 1113 , Université de Strasbourg , Molecular Mechanisms of Stress Response and Pathologies , Strasbourg , France .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada .
| |
Collapse
|
64
|
Krüger A, Stier A, Fischbach A, Bürkle A, Hauser K, Mangerich A. Interactions of p53 with poly(ADP-ribose) and DNA induce distinct changes in protein structure as revealed by ATR-FTIR spectroscopy. Nucleic Acids Res 2019; 47:4843-4858. [PMID: 30892621 PMCID: PMC6511852 DOI: 10.1093/nar/gkz175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Due to multiple domains and in part intrinsically disordered regions, structural analyses of p53 remain a challenging task, particularly in complex with DNA and other macromolecules. Here, we applied a novel attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic approach to investigate changes in secondary structure of full-length p53 induced by non-covalent interactions with DNA and poly(ADP-ribose) (PAR). To validate our approach, we confirmed a positive regulatory function of p53’s C-terminal domain (CTD) with regard to sequence-specific DNA binding and verified that the CTD mediates p53–PAR interaction. Further, we demonstrate that DNA and PAR interactions result in distinct structural changes of p53, indicating specific binding mechanisms via different domains. A time-dependent analysis of the interplay of DNA and PAR binding to p53 revealed that PAR represents p53’s preferred binding partner, which efficiently controls p53–DNA interaction. Moreover, we provide infrared spectroscopic data on PAR pointing to the absence of regular secondary structural elements. Finally, temperature-induced melting experiments via CD spectroscopy show that DNA binding stabilizes the structure of p53, while PAR binding can shift the irreversible formation of insoluble p53 aggregates to higher temperatures. In conclusion, this study provides detailed insights into the dynamic interplay of p53 binding to DNA and PAR at a formerly inaccessible molecular level.
Collapse
Affiliation(s)
- Annika Krüger
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Department of Chemistry, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Anna Stier
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, Konstanz 78464, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz 78464, Germany.,Zukunftskolleg, University of Konstanz, Konstanz 78464, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz 78464, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
65
|
Navalkar A, Ghosh S, Pandey S, Paul A, Datta D, Maji SK. Prion-like p53 Amyloids in Cancer. Biochemistry 2019; 59:146-155. [DOI: 10.1021/acs.biochem.9b00796] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Saikat Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Satyaprakash Pandey
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
66
|
de Oliveira GAP, Cordeiro Y, Silva JL, Vieira TCRG. Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:289-331. [PMID: 31928729 DOI: 10.1016/bs.apcsb.2019.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) and phase transition (LLPT) of proteins and nucleic acids have emerged as a new paradigm in cell biology. Here we will describe the recent findings about LLPS and LLPT, including the molecular and physical determinants leading to their formation, the resulting functions and their implications in cell physiology and disease. Amyloid aggregation is implicated in many neurodegenerative diseases and cancer, and LLPS of proteins involved in these diseases appear to be related to their function in different cell contexts. Amyloid formation would correspond to an irreversible liquid-to-solid transition, as clearly observed in the case of PrP, TDP43, FUS/TLS and tau protein in neurodegenerative pathologies as well as with the mutant tumor suppressor p53 in cancer. Nucleic acids play a modulatory effect on both LLPS and amyloid aggregation. Understanding the molecular events regulating how the demixing process advances to solid-like fibril materials is crucial for the development of novel therapeutic strategies against cancer and neurodegenerative maladies.
Collapse
Affiliation(s)
- Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tuane C R G Vieira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
67
|
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, Lane DP, Ghadessy F, Verma CS. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res 2019; 47:1637-1652. [PMID: 30649466 PMCID: PMC6393305 DOI: 10.1093/nar/gky1314] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic β-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.
Collapse
Affiliation(s)
- Mohan R Pradhan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Wei Siau
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Minh N Nguyen
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Zohra Ouaray
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,School of Chemistry, University of Southampton, SO17 1BJ, United Kingdom
| | - Chee Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Farid Ghadessy
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,School of Biological sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551
| |
Collapse
|
68
|
Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, Ganz M, Ferrando-May E, Hartwig A, Hauser K, Wiesmüller L, Bürkle A, Mangerich A. The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res 2019; 46:804-822. [PMID: 29216372 PMCID: PMC5778597 DOI: 10.1093/nar/gkx1205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/25/2023] Open
Abstract
The post-translational modification poly(ADP-ribosyl)ation (PARylation) plays key roles in genome maintenance and transcription. Both non-covalent poly(ADP-ribose) binding and covalent PARylation control protein functions, however, it is unknown how the two modes of modification crosstalk mechanistically. Employing the tumor suppressor p53 as a model substrate, this study provides detailed insights into the interplay between non-covalent and covalent PARylation and unravels its functional significance in the regulation of p53. We reveal that the multifunctional C-terminal domain (CTD) of p53 acts as the central hub in the PARylation-dependent regulation of p53. Specifically, p53 bound to auto-PARylated PARP1 via highly specific non–covalent PAR-CTD interaction, which conveyed target specificity for its covalent PARylation by PARP1. Strikingly, fusing the p53-CTD to a protein that is normally not PARylated, renders this a target for covalent PARylation as well. Functional studies revealed that the p53–PAR interaction had substantial implications on molecular and cellular levels. Thus, PAR significantly influenced the complex p53–DNA binding properties and controlled p53 functions, with major implications on the p53-dependent interactome, transcription, and replication-associated recombination. Remarkably, this mechanism potentially also applies to other PARylation targets, since a bioinformatics analysis revealed that CTD-like regions are highly enriched in the PARylated proteome.
Collapse
Affiliation(s)
- Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Krüger
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stephanie Hampp
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Greta Assmann
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Rank
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Martin T Stöckl
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jan M F Fischer
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sebastian Veith
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany.,Research Training Group 1331, University of Konstanz, 78457 Konstanz, Germany
| | - Pascal Rossatti
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Magdalena Ganz
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Elisa Ferrando-May
- Bioimaging Center, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, University of Ulm, 89075 Ulm, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
69
|
Saotome T, Yamazaki T, Kuroda Y. Misfolding of a Single Disulfide Bonded Globular Protein into a Low-Solubility Species Conformationally and Biophysically Distinct from the Native One. Biomolecules 2019; 9:biom9060250. [PMID: 31242697 PMCID: PMC6627273 DOI: 10.3390/biom9060250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
In practice and despite Anfinsen’s dogma, the refolding of recombinant multiple SS-bonded proteins is famously difficult because misfolded species with non-native SS-bonds appear upon the oxidization of their cysteine residues. On the other hand, single SS-bond proteins are thought to be simple to refold because their cysteines have only one SS-bond partner. Here, we report that dengue 4 envelope protein domain 3 (DEN4 ED3), a single SS-bonded protein can be irreversibly trapped into a misfolded species through the formation of its sole intramolecular SS-bond. The misfolded species had a much lower solubility than the native one at pHs higher than about 7, and circular dichroism measurements clearly indicated that its secondary structure content was different from the native species. Furthermore, the peaks in the Heteronuclear Single Quantum Correlation spectroscopy (HSQC) spectrum of DEN4 ED3 from the supernatant fraction were sharp and well dispersed, reflecting the beta-sheeted native structure, whereas the spectrum of the precipitated fraction showed broad signals clustered near its center suggesting no or little structure and a strong tendency to aggregate. The two species had distinct biophysical properties and could interconvert into each other only by cleaving and reforming the SS-bond, strongly suggesting that they are topologically different. This phenomenon can potentially happen with any single SS-bonded protein, and our observation emphasizes the need for assessing the conformation and biophysical properties of bacterially produced therapeutic proteins in addition to their chemical purities.
Collapse
Affiliation(s)
- Tomonori Saotome
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo 184-8588, Japan
| | - Toshio Yamazaki
- NMR Facility, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology (TUAT), Tokyo 184-8588, Japan.
| |
Collapse
|
70
|
Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 2019; 176:92-104. [PMID: 31100649 DOI: 10.1016/j.ejmech.2019.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
The p53 gene, a well-known tumor suppressor gene, plays a crucial role in cell cycle regulation, DNA repair, cell differentiation, and apoptosis. MDM2 exerts p53-dependent activity mainly by binding to p53 protein to form MDM2-p53 negative feedback loop. In addition, MDM2 is involved in a number of pathways that regulate cell proliferation and apoptosis, playing a p53-independent role. The p53 binding domain of MDMX bind to p53 transcriptional activation domain, inhibiting the transcriptional activity of p53 on its downstream genes, but does not mediate the degradation of p53. The anti-tumor effect is exerted by inhibiting the interaction between the MDM2/MDMX protein and the p53 protein by a small-molecule or by restoring the activity of the p53 protein. This review describes in the structural features, biological functions and mechanisms of p53-MDM2/MDMX, and summarizes small-molecule targeting p53-MDM2/MDMX.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Xiaohui Wang
- Department of Pharmacy, Naval Authorities Clinic, Beijing, 100841, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| |
Collapse
|
71
|
Hsp70- and Hsp90-Mediated Regulation of the Conformation of p53 DNA Binding Domain and p53 Cancer Variants. Mol Cell 2019; 74:831-843.e4. [DOI: 10.1016/j.molcel.2019.03.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
72
|
Li Y, Wang Z, Chen Y, Petersen RB, Zheng L, Huang K. Salvation of the fallen angel: Reactivating mutant p53. Br J Pharmacol 2019; 176:817-831. [PMID: 30632144 PMCID: PMC6433646 DOI: 10.1111/bph.14572] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/19/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor p53 is known as the guardian of the genome for its powerful anti-tumour capacity. However, mutations of p53 that undermine their protein structure, resulting in loss of tumour suppressor function and gain of oncogenic function, have been implicated in more than half of human cancers. The crucial role of mutant forms of p53 in cancer makes it an attractive therapeutic target. A large number of candidates, including low MW compounds, peptides, and nucleic acids, have been identified or designed to rescue p53 mutants and reactivate their anti-tumour capacity through a variety of mechanisms. In this review, we summarize the progress made in the reactivation of mutant forms of p53, focusing on the pharmacological mechanisms of the reactivators of p53 mutants.
Collapse
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhuoyi Wang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Robert B. Petersen
- Foundational SciencesCentral Michigan University College of MedicineMt. PleasantMichiganUSA
| | - Ling Zheng
- College of Life SciencesWuhan UniversityWuhanHubeiChina
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
73
|
Lei J, Qi R, Tang Y, Wang W, Wei G, Nussinov R, Ma B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA. FASEB J 2019; 33:4225-4235. [PMID: 30540922 PMCID: PMC6404584 DOI: 10.1096/fj.201801973r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
p53 is a tumor suppressor protein that maintains genome stability, but its Δ133p53β and Δ160p53β isoforms promote breast cancer cell invasion. The sequence truncations in the p53 core domain raise key questions related to their physicochemical properties, including structural stabilities, interaction mechanisms, and DNA-binding abilities. Herein, we investigated the conformational dynamics of Δ133p53β and Δ160p53β with and without binding to p53-specific DNA by using molecular dynamics simulations. We observed that the core domains of the 2 truncated isoforms are much less stable than wild-type (wt) p53β, and the increased solvent exposure of their aggregation-triggering segment indicates their higher aggregation propensities than wt p53. We also found that Δ133p53β stability is modulable by peptide or DNA interactions. Adding a p53 peptide (derived from truncated p53 sequence 107-129) may help stabilize Δ133p53. Most importantly, our simulations of p53 isomer-DNA complexes indicate that Δ133p53β dimer, but not Δ160p53β dimer, could form a stable complex with p53-specific DNA, which is consistent with recent experiments. This study provides physicochemical insight into Δ133p53β, Δ133p53β-DNA complexes, Δ133p53β's pathologic mechanism, and peptide-based inhibitor design against p53-related cancers.-Lei, J., Qi, R., Tang, Y., Wang, W., Wei, G., Nussinov, R., Ma, B. Conformational stability and dynamics of the cancer-associated isoform Δ133p53β are modulated by p53 peptides and p53-specific DNA.
Collapse
Affiliation(s)
- Jiangtao Lei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Yegen Tang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenning Wang
- Department of Chemistry, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences–Ministry of Education, Department of Physics, Fudan University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
- Department of Human Genetics and Molecular Medicine, Sackler Institute of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA; and
| |
Collapse
|
74
|
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol Cell 2019; 71:178-190.e8. [PMID: 29979965 DOI: 10.1016/j.molcel.2018.06.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only ∼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of ∼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Odem Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guy Goldfeld
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
75
|
Sundar D, Yu Y, Katiyar SP, Putri JF, Dhanjal JK, Wang J, Sari AN, Kolettas E, Kaul SC, Wadhwa R. Wild type p53 function in p53 Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:103. [PMID: 30808373 PMCID: PMC6390572 DOI: 10.1186/s13046-019-1099-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Background Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. Methods We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. Results We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. Conclusion The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation. Electronic supplementary material The online version of this article (10.1186/s13046-019-1099-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Yue Yu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Jaspreet Kaur Dhanjal
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jia Wang
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, and Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110, Ioannina, Greece
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
76
|
Mutant p53 Sequestration of the MDM2 Acidic Domain Inhibits E3 Ligase Activity. Mol Cell Biol 2019; 39:MCB.00375-18. [PMID: 30455251 DOI: 10.1128/mcb.00375-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
Missense p53 mutants often accumulate in tumors and drive progression through gain of function. MDM2 efficiently degrades wild-type p53 but fails to degrade mutant p53 in tumor cells. Previous studies revealed that mutant p53 inhibits MDM2 autoubiquitination, suggesting that the interaction inhibits MDM2 E3 activity. Recent work showed that MDM2 E3 activity is stimulated by intramolecular interaction between the RING and acidic domains. Here, we show that in the mutant p53-MDM2 complex, the mutant p53 core domain binds to the MDM2 acidic domain with significantly higher avidity than wild-type p53. The mutant p53-MDM2 complex is deficient in catalyzing ubiquitin release from the activated E2 conjugating enzyme. An MDM2 construct with extra copies of the acidic domain is resistant to inhibition by mutant p53 and efficiently promotes mutant p53 ubiquitination and degradation. The results suggest that mutant p53 interferes with the intramolecular autoactivation mechanism of MDM2, contributing to reduced ubiquitination and increased accumulation in tumor cells.
Collapse
|
77
|
Peng Y, Alexov E, Basu S. Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases. Int J Mol Sci 2019; 20:ijms20030548. [PMID: 30696058 PMCID: PMC6386852 DOI: 10.3390/ijms20030548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022] Open
Abstract
Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations-whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico⁻chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Sankar Basu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
78
|
Rangel LP, Ferretti GDS, Costa CL, Andrade SMMV, Carvalho RS, Costa DCF, Silva JL. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) inhibits amyloid aggregation of mutant p53 in cancer cells. J Biol Chem 2019; 294:3670-3682. [PMID: 30602570 DOI: 10.1074/jbc.ra118.004671] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
p53 mutants can form amyloid-like structures that accumulate in cells. p53 reactivation with induction of massive apoptosis-1 (PRIMA-1) and its primary active metabolite, 2-methylene-3-quinuclidinone (MQ), can restore unfolded p53 mutants to a native conformation that induces apoptosis and activates several p53 target genes. However, whether PRIMA-1 can clear p53 aggregates is unclear. In this study, we investigated whether PRIMA-1 can restore aggregated mutant p53 to a native form. We observed that the p53 mutant protein is more sensitive to both PRIMA-1 and MQ aggregation inhibition than WT p53. The results of anti-amyloid oligomer antibody assays revealed that PRIMA-1 reverses mutant p53 aggregate accumulation in cancer cells. Size-exclusion chromatography of the lysates from mutant p53-containing breast cancer and ovarian cell lines confirmed that PRIMA-1 substantially decreases p53 aggregates. We also show that MDA-MB-231 cell lysates can "seed" aggregation of the central core domain of recombinant WT p53, corroborating the prion-like behavior of mutant p53. We also noted that this aggregation effect was inhibited by MQ and PRIMA-1. This study provides the first demonstration that PRIMA-1 can rescue amyloid-state p53 mutants, a strategy that could be further explored as a cancer treatment.
Collapse
Affiliation(s)
- Luciana P Rangel
- From the Faculdade de Farmácia, .,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and
| | - Giulia D S Ferretti
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| | - Caroline L Costa
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| | | | | | - Danielly C F Costa
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and.,the Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, Brazil
| | - Jerson L Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, and .,Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil and
| |
Collapse
|
79
|
Daekee K, Mi-Jung H, Minjun J, Hee-Jin A, Kwang-Won S, Kyung-Sun K. Generation of Genetically Stable Human Direct-Conversion-Derived Neural Stem Cells Using Quantity Control of Proto-oncogene Expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:388-397. [PMID: 30731320 PMCID: PMC6365637 DOI: 10.1016/j.omtn.2018.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/02/2022]
Abstract
As the human lifespan has increased due to developments in medical technology, the number of patients with neurological diseases has rapidly increased. Therefore, studies on effective treatments for neurological diseases are becoming increasingly important. To perform these studies, it is essential to obtain a large number of patient-derived neural cells. The purpose of the present study was to establish a technology that allows the high-efficiency generation of genetically stable, direct-conversion-derived neural stem cells (dcNSCs) through the expression of a new combination of reprogramming factors, including a proto-oncogene. Specifically, human c-MYC proto-oncogene and the human SOX2 gene were overexpressed in a precisely controlled manner in various human somatic cells. As a result, the direct conversion into multipotent dcNSCs occurred only when the cells were treated with an MOI of 1 of hc-MYC proto-oncogene and hSOX2 retrovirus. When MOIs of 5 or 10 were utilized, distinct results were obtained. In addition, the pluripotency was bypassed during this process. Notably, as the MOI used to treat the cells increased, expression of the p53 tumor suppressor gene, which is typically a reprogramming hurdle, increased proportionately. Interestingly, p53 was genetically stable in dcNSCs generated through direct conversion into a low p53 expression state. In the present study, generation of genetically stable dcNSCs using direct conversion was optimized by precisely controlling the overexpression of a proto-oncogene. This method could be utilized in future studies, such as in vitro drug screening using generated dcNSCs. In addition, this method could be effectively utilized in studies on direct conversion into other types of target cells.
Collapse
Affiliation(s)
- Kwon Daekee
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea
| | - Han Mi-Jung
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea
| | - Ji Minjun
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea
| | - Ahn Hee-Jin
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea
| | - Seo Kwang-Won
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea
| | - Kang Kyung-Sun
- Stem Cells and Regenerative Bioengineering Institute in Kangstem Biotech, Biomedical Science Building, #81 Seoul National University, Seoul 08826, South Korea; Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
80
|
Combination of Proteasome and Histone Deacetylase Inhibitors Overcomes the Impact of Gain-of-Function p53 Mutations. DISEASE MARKERS 2018; 2018:3810108. [PMID: 30647797 PMCID: PMC6311857 DOI: 10.1155/2018/3810108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
Mutations in the “guardian of the genome” TP53 predominate in solid tumors. In addition to loss of tumor suppressor activity, a specific subset of missense mutations confers additional oncogenic properties. These “gain-of-function” (GOF) mutations portend poor prognosis across cancer types regardless of treatment. Our objective in this study was to identify novel therapeutic opportunities to overcome the deleterious effects of GOF TP53 mutants. Using gynecologic cancer cell lines with known TP53 mutational status, we established that treatment with a proteasome inhibitor induced cell death in cells with two recurrent GOF TP53 mutations (R175H and R248Q), and addition of a histone deacetylase inhibitor (HDACi) enhanced this effect. By contrast, p53-null cancer cells were relatively resistant to the combination. Proteasome inhibition promoted apoptosis of cells with TP53 GOF mutations, potentially through induction of the unfolded protein response. In line with the reported hyperstabilization of GOF p53 protein, cells treated with HDACi exhibited reduced levels of p53 protein. Together, these data form the basis for future clinical studies examining therapeutic efficacy in a preselected patient population with GOF TP53 mutations.
Collapse
|
81
|
Miller JJ, Orvain C, Jozi S, Clarke RM, Smith JR, Blanchet A, Gaiddon C, Warren JJ, Storr T. Multifunctional Compounds for Activation of the p53-Y220C Mutant in Cancer. Chemistry 2018; 24:17734-17742. [PMID: 30230059 DOI: 10.1002/chem.201802677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/13/2018] [Indexed: 01/19/2023]
Abstract
The p53 protein plays a major role in cancer prevention, and over 50 % of cancer diagnoses can be attributed to p53 malfunction. The common p53 mutation Y220C causes local protein unfolding, aggregation, and can result in a loss of Zn in the DNA-binding domain. Structural analysis has shown that this mutant creates a surface site that can be stabilized using small molecules, and herein a multifunctional approach to restore function to p53-Y220C is reported. A series of compounds has been designed that contain iodinated phenols aimed for interaction and stabilization of the p53-Y220C surface cavity, and Zn-binding fragments for metallochaperone activity. Their Zn-binding affinity was characterized using spectroscopic methods and demonstrate the ability of compounds L4 and L5 to increase intracellular levels of Zn2+ in a p53-Y220C-mutant cell line. The in vitro cytotoxicity of our compounds was initially screened by the National Cancer Institute (NCI-60), followed by testing in three stomach cancer cell lines with varying p53 status', including AGS (WTp53), MKN1 (V143A), and NUGC3 (Y220C). Our most promising ligand, L5, is nearly 3-fold more cytotoxic than cisplatin in a large number of cell lines. The impressive cytotoxicity of L5 is further maintained in a NUGC3 3D spheroid model. L5 also induces Y220C-specific apoptosis in a cleaved caspase-3 assay, reduces levels of unfolded mutant p53, and recovers p53 transcriptional function in the NUGC3 cell line. These results show that these multifunctional scaffolds have the potential to restore wild-type function in mutant p53-Y220C.
Collapse
Affiliation(s)
- Jessica J Miller
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Christophe Orvain
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Shireen Jozi
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Ryan M Clarke
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Anaïs Blanchet
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, Molecular Mechanisms of Stress Response and Pathologies, Université de Strasbourg, Strasbourg, France
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, Canada
| |
Collapse
|
82
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
83
|
Bej A, Rasquinha JA, Mukherjee S. Conformational Entropy as a Determinant of the Thermodynamic Stability of the p53 Core Domain. Biochemistry 2018; 57:6265-6269. [PMID: 30362715 DOI: 10.1021/acs.biochem.8b00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Juhi A. Rasquinha
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, West Bengal, India
| |
Collapse
|
84
|
Structural dynamics of the E6AP/UBE3A-E6-p53 enzyme-substrate complex. Nat Commun 2018; 9:4441. [PMID: 30361475 PMCID: PMC6202321 DOI: 10.1038/s41467-018-06953-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/05/2018] [Indexed: 12/21/2022] Open
Abstract
Deregulation of the ubiquitin ligase E6AP is causally linked to the development of human disease, including cervical cancer. In complex with the E6 oncoprotein of human papillomaviruses, E6AP targets the tumor suppressor p53 for degradation, thereby contributing to carcinogenesis. Moreover, E6 acts as a potent activator of E6AP by a yet unknown mechanism. However, structural information explaining how the E6AP-E6-p53 enzyme-substrate complex is assembled, and how E6 stimulates E6AP, is largely missing. Here, we develop and apply different crosslinking mass spectrometry-based approaches to study the E6AP-E6-p53 interplay. We show that binding of E6 induces conformational rearrangements in E6AP, thereby positioning E6 and p53 in the immediate vicinity of the catalytic center of E6AP. Our data provide structural and functional insights into the dynamics of the full-length E6AP-E6-p53 enzyme-substrate complex, demonstrating how E6 can stimulate the ubiquitin ligase activity of E6AP while facilitating ubiquitin transfer from E6AP onto p53.
Collapse
|
85
|
Methods to Screen Compounds Against Mutant p53 Misfolding and Aggregation for Cancer Therapeutics. Methods Mol Biol 2018. [PMID: 30341616 DOI: 10.1007/978-1-4939-8820-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
p53 is a critical tumor suppressor that functions as a transcription factor. Mutations in the TP53 gene are observed in more than 50% of cancer cases worldwide. Several of these mutations lead to a less stable, aggregation-prone protein that accumulates in cancer cells. These mutations are associated with a gain of oncogenic function, which leads to cancer progression. p53 amyloid aggregation is a common feature in most of these mutants; thus, it can be used as a druggable target to reactivate or induce the degradation of p53 and promote a retraction in the aggressive pattern of mutant p53-containing cells. We show here a series of experiments for the screening and validation of new p53 antiamyloid compounds.
Collapse
|
86
|
Verkhivker GM. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication. Biochim Biophys Acta Gen Subj 2018; 1863:210-225. [PMID: 30339916 DOI: 10.1016/j.bbagen.2018.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/19/2022]
Abstract
In the current study, we have combined molecular simulations and energetic analysis with dynamics-based network modeling and perturbation response scanning to determine molecular signatures of mutational hotspot residues in the p53, PTEN, and SMAD4 tumor suppressor proteins. By examining structure, energetics and dynamics of these proteins, we have shown that inactivating mutations preferentially target a group of structurally stable residues that play a fundamental role in global propagation of dynamic fluctuations and mediating allosteric interaction networks. Through integration of long-range perturbation dynamics and network-based approaches, we have quantified allosteric potential of residues in the studied proteins. The results have revealed that mutational hotspot sites often correspond to high centrality mediating centers of the residue interaction networks that are responsible for coordination of global dynamic changes and allosteric signaling. Our findings have also suggested that structurally stable mutational hotpots can act as major effectors of allosteric interactions and mutations in these positions are typically associated with severe phenotype. Modeling of shortest inter-residue pathways has shown that mutational hotspot sites can also serve as key mediating bridges of allosteric communication in the p53 and PTEN protein structures. Multiple regression models have indicated that functional significance of mutational hotspots can be strongly associated with the network signatures serving as robust predictors of critical regulatory positions responsible for loss-of-function phenotype. The results of this computational investigation are compared with the experimental studies and reveal molecular signatures of mutational hotspots, providing a plausible rationale for explaining and localizing disease-causing mutations in tumor suppressor genes.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States; Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
87
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
88
|
Chu HF, Chen CC, Moses DC, Chen YH, Lin CH, Tsai YC, Chou CY. Porcine epidemic diarrhea virus papain-like protease 2 can be noncompetitively inhibited by 6-thioguanine. Antiviral Res 2018; 158:199-205. [PMID: 30138642 PMCID: PMC7113753 DOI: 10.1016/j.antiviral.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a coronavirus (CoV) discovered in the 1970s that infects the intestinal tract of pigs, resulting in diarrhea and vomiting. It can cause extreme dehydration and death in neonatal piglets. In Asia, modified live attenuated vaccines have been used to control PEDV infection in recent years. However, a new strain of PEDV that belongs to genogroup 2a appeared in the USA in 2013 and then quickly spread to Canada and Mexico as well as Asian and European countries. Due to the less effective protective immunity provided by the vaccines against this new strain, it has caused considerable agricultural and economic loss worldwide. The emergence of this new strain increases the importance of understanding PEDV as well as strategies for inhibiting it. Coronaviral proteases, including main proteases and papain-like proteases, are ideal antiviral targets because of their essential roles in viral maturation. Here we provide a first description of the expression, purification and structural characteristics of recombinant PEDV papain-like protease 2, moreover present our finding that 6-thioguanine, a chemotherapeutic drug, in contrast to its competitive inhibition on SARS- and MERS-CoV papain-like proteases, is a noncompetitive inhibitor of PEDV papain-like protease 2. PEDV PL2pro exhibits much higher DUB activity than that of other PLpros in spite of their structural similarities. In contrast to its competitive inhibition on SARS- and MERS-CoV PLpros, 6-thioguanine inhibits PEDV PL2pro allosterically. Putative 6-thioguanine binding site is proposed to render the blocking loop less flexible and therefore disfavor catalysis. 6-thioguanine can be a lead compound for anti-coronaviral drug development.
Collapse
Affiliation(s)
- Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang-Ming University, Taipei 112, Taiwan; Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chiao-Che Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - David C Moses
- Department of Chemistry, Tamkang University, Tamsui 251, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui 251, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Probiotic Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Chi-Yuan Chou
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
89
|
Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018; 152:101-114. [PMID: 29702446 PMCID: PMC5986712 DOI: 10.1016/j.ejmech.2018.04.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Many cancers have the tumor suppressor p53 inactivated by mutation, making reactivation of mutant p53 with small molecules a promising strategy for the development of novel anticancer therapeutics. The oncogenic p53 mutation Y220C, which accounts for approximately 100,000 cancer cases per year, creates an extended surface crevice in the DNA-binding domain, which destabilizes p53 and causes denaturation and aggregation. Here, we describe the structure-guided design of a novel class of small-molecule Y220C stabilizers and the challenging synthetic routes developed in the process. The synthesized chemical probe MB710, an aminobenzothiazole derivative, binds tightly to the Y220C pocket and stabilizes p53-Y220C in vitro. MB725, an ethylamide analogue of MB710, induced selective viability reduction in several p53-Y220C cancer cell lines while being well tolerated in control cell lines. Reduction of viability correlated with increased and selective transcription of p53 target genes such as BTG2, p21, PUMA, FAS, TNF, and TNFRSF10B, which promote apoptosis and cell cycle arrest, suggesting compound-mediated transcriptional activation of the Y220C mutant. Our data provide a framework for the development of a class of potent, non-toxic compounds for reactivating the Y220C mutant in anticancer therapy.
Collapse
Affiliation(s)
- Matthias G J Baud
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Matthias R Bauer
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Lorena Verduci
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Felix A Dingler
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Ketan J Patel
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Deeptee Horil Roy
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Andreas C Joerger
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom; German Cancer Consortium (DKTK), German Cancer Center (DKFZ), 69120 Heidelberg, Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| | - Alan R Fersht
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
90
|
Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018; 38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022]
Abstract
The tumor suppressive transcription factor p53 regulates a wide array of cellular processes that confer upon cells an essential protection against cancer development. Wild-type p53 regulates gene expression by directly binding to DNA in a sequence-specific manner. p53 missense mutations are the most common mutations in malignant cells and can be regarded as synonymous with anticancer drug resistance and poor prognosis. The current review provides an overview of how the extraordinary variety of more than 2000 different mutant p53 proteins, known as the p53 mutome, affect the interaction of p53 with DNA. We discuss how the classification of p53 mutations to loss of function (LOF), gain of function (GOF), and dominant-negative (DN) inhibition of a remaining wild-type allele, hides a complex p53 mutation spectrum that depends on the distinctive nature of each mutant protein, requiring different therapeutic strategies for each mutant p53 protein. We propose to regard the different mutant p53 categories as continuous variables, that may not be independent of each other. In particular, we suggest here to consider GOF mutations as a special subset of LOF mutations, especially when mutant p53 binds to DNA through cooperation with other transcription factors, and we present a model for GOF mechanism that consolidates many observations on the GOF phenomenon. We review how novel mutant p53 targeting approaches aim to restore a wild-type-like DNA interaction and to overcome resistance to cancer therapy.
Collapse
Affiliation(s)
- Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, 35037 Marburg, Germany.
| | - Tali E Haran
- Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
91
|
APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 2018; 9:439. [PMID: 29670092 PMCID: PMC5906465 DOI: 10.1038/s41419-018-0463-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
The TP53 tumor suppressor gene is frequently inactivated in human tumors by missense mutations in the DNA binding domain. TP53 mutations lead to protein unfolding, decreased thermostability and loss of DNA binding and transcription factor function. Pharmacological targeting of mutant p53 to restore its tumor suppressor function is a promising strategy for cancer therapy. The mutant p53 reactivating compound APR-246 (PRIMA-1Met) has been successfully tested in a phase I/IIa clinical trial. APR-246 is converted to the reactive electrophile methylene quinuclidinone (MQ), which binds covalently to p53 core domain. We identified cysteine 277 as a prime binding target for MQ in p53. Cys277 is also essential for MQ-mediated thermostabilization of wild-type, R175H and R273H mutant p53, while both Cys124 and Cys277 are required for APR-246-mediated functional restoration of R175H mutant p53 in living tumor cells. These findings may open opportunities for rational design of novel mutant p53-targeting compounds.
Collapse
|
92
|
Du Z, Yu J, Li F, Deng L, Wu F, Huang X, Bergstrand J, Widengren J, Dong C, Ren J. In Situ Monitoring of p53 Protein and MDM2 Protein Interaction in Single Living Cells Using Single-Molecule Fluorescence Spectroscopy. Anal Chem 2018; 90:6144-6151. [DOI: 10.1021/acs.analchem.8b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | - Jan Bergstrand
- Experimental Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, 106 91, Sweden
| | - Jerker Widengren
- Experimental Biomolecular
Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, 106 91, Sweden
| | | | | |
Collapse
|
93
|
Gomes AS, Trovão F, Andrade Pinheiro B, Freire F, Gomes S, Oliveira C, Domingues L, Romão MJ, Saraiva L, Carvalho AL. The Crystal Structure of the R280K Mutant of Human p53 Explains the Loss of DNA Binding. Int J Mol Sci 2018; 19:ijms19041184. [PMID: 29652801 PMCID: PMC5979565 DOI: 10.3390/ijms19041184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/29/2023] Open
Abstract
The p53 tumor suppressor is widely found to be mutated in human cancer. This protein is regarded as a molecular hub regulating different cell responses, namely cell death. Compelling data have demonstrated that the impairment of p53 activity correlates with tumor development and maintenance. For these reasons, the reactivation of p53 function is regarded as a promising strategy to halt cancer. In the present work, the recombinant mutant p53R280K DNA binding domain (DBD) was produced for the first time, and its crystal structure was determined in the absence of DNA to a resolution of 2.0 Å. The solved structure contains four molecules in the asymmetric unit, four zinc(II) ions, and 336 water molecules. The structure was compared with the wild-type p53 DBD structure, isolated and in complex with DNA. These comparisons contributed to a deeper understanding of the mutant p53R280K structure, as well as the loss of DNA binding related to halted transcriptional activity. The structural information derived may also contribute to the rational design of mutant p53 reactivating molecules with potential application in cancer treatment.
Collapse
Affiliation(s)
- Ana Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Filipa Trovão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Benedita Andrade Pinheiro
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Filipe Freire
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Sara Gomes
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carla Oliveira
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Maria João Romão
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Lucília Saraiva
- LAQV-REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.
| | - Ana Luísa Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
94
|
MDMX acidic domain inhibits p53 DNA binding in vivo and regulates tumorigenesis. Proc Natl Acad Sci U S A 2018; 115:E3368-E3377. [PMID: 29581299 DOI: 10.1073/pnas.1719090115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The MDM2 homolog MDMX oncoprotein is indispensable for inhibition of p53 during normal embryonic development and malignant transformation, yet how MDMX harnesses p53 functions is unclear. In addition to a canonical N-terminal p53-binding domain, recent work suggests the central acidic domain of MDMX regulates p53 interaction through intramolecular mimicry and engages in second-site interaction with the p53 core domain in vitro. To test the physiological relevance of these interactions, we generated an MDMX knockin mouse having substitutions in a conserved WW motif necessary for these functions (W201S/W202G). Notably, MDMXSG cells have normal p53 level but increased p53 DNA binding and target gene expression, and rapidly senesce. In vivo, MDMXSG inhibits early-phase disease in Eµ-Myc transgenic mice but accelerates the onset of lethal lymphoma and shortens overall survival. Therefore, MDMX is an important regulator of p53 DNA binding, which complements the role of MDM2 in regulating p53 level. Furthermore, the results suggest that the WW motif has dual functions that regulate p53 and inhibit Myc-driven lymphomas independent of p53.
Collapse
|
95
|
Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non-Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing. Neoplasia 2018; 20:256-262. [PMID: 29454261 PMCID: PMC5849803 DOI: 10.1016/j.neo.2017.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic functions that enable them to promote invasion, metastasis, proliferation, and cell survival. Identifying the discrete TP53 mutations in tumor cells may help direct therapies that are more effective. In this study, we identified the frequency of individual TP53 mutations in patients with colon adenocarcinoma (48%), non–small cell lung carcinoma (NSCLC) (36%), and glioma/glioblastoma (28%) at our institution using next-generation sequencing. We also identified the occurrence of somatic mutations in numerous actionable genes including BRAF, EGFR, KRAS, IDH1, and PIK3CA that occurred concurrently with these TP53 mutations. Of the 480 tumors examined that contained one or more mutations in the TP53 gene, 219 were colon adenocarcinomas, 215 were NSCLCs, and 46 were gliomas/glioblastomas. Among the patients positive for TP53 mutations diagnosed with colon adenocarcinoma, 50% also showed at least one mutation in pathogenic genes of which 14% were BRAF, 33% were KRAS, and 3% were NRAS. Forty-seven percent of NSCLC patients harboring TP53 mutations also had a mutation in at least one actionable pathogenic variant with the following frequencies: BRAF: 4%, EGFR: 10%, KRAS: 28%, and PIK3CA: 4%. Fifty-two percent of patients diagnosed with glioma/glioblastoma with a positive TP53 mutation had at least one concurrent mutation in a known pathogenic gene of which 9% were CDKN2A, 41% were IDH1, and 11% were PIK3CA.
Collapse
|
96
|
Betancor-Fernández I, Timson DJ, Salido E, Pey AL. Natural (and Unnatural) Small Molecules as Pharmacological Chaperones and Inhibitors in Cancer. Handb Exp Pharmacol 2018; 245:155-190. [PMID: 28993836 DOI: 10.1007/164_2017_55] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mutations causing single amino acid exchanges can dramatically affect protein stability and function, leading to disease. In this chapter, we will focus on several representative cases in which such mutations affect protein stability and function leading to cancer. Mutations in BRAF and p53 have been extensively characterized as paradigms of loss-of-function/gain-of-function mechanisms found in a remarkably large fraction of tumours. Loss of RB1 is strongly associated with cancer progression, although the molecular mechanisms by which missense mutations affect protein function and stability are not well known. Polymorphisms in NQO1 represent a remarkable example of the relationships between intracellular destabilization and inactivation due to dynamic alterations in protein ensembles leading to loss of function. We will review the function of these proteins and their dysfunction in cancer and then describe in some detail the effects of the most relevant cancer-associated single amino exchanges using a translational perspective, from the viewpoints of molecular genetics and pathology, protein biochemistry and biophysics, structural, and cell biology. This will allow us to introduce several representative examples of natural and synthetic small molecules applied and developed to overcome functional, stability, and regulatory alterations due to cancer-associated amino acid exchanges, which hold the promise for using them as potential pharmacological cancer therapies.
Collapse
Affiliation(s)
- Isabel Betancor-Fernández
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Eduardo Salido
- Centre for Biomedical Research on Rare Diseases (CIBERER), Hospital Universitario de Canarias, Tenerife, 38320, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, 18071, Spain.
| |
Collapse
|
97
|
Muller P, Chan JM, Simoncik O, Fojta M, Lane DP, Hupp T, Vojtesek B. Evidence for allosteric effects on p53 oligomerization induced by phosphorylation. Protein Sci 2017; 27:523-530. [PMID: 29124793 DOI: 10.1002/pro.3344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/22/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022]
Abstract
p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)-binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the "activating" C-terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked-immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild-type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the "unfolded" conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Juliana M Chan
- p53 Laboratory (A*STAR), Singapore, 138648, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Oliver Simoncik
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 612 65, Czech Republic
| | - David P Lane
- p53 Laboratory (A*STAR), Singapore, 138648, Singapore
| | - Ted Hupp
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic.,Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signaling Unit, University of Edinburgh, Edinburgh, EH4 2XR, United Kingdom
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| |
Collapse
|
98
|
de Oliveira GA, Silva JL. The push-and-pull hypothesis in protein unfolding, misfolding and aggregation. Biophys Chem 2017; 231:20-26. [DOI: 10.1016/j.bpc.2017.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
99
|
Wang Z, Peng S, Jiang N, Wang A, Liu S, Xie H, Guo L, Cai Q, Niu Y. Prognostic and clinicopathological value of p53 expression in renal cell carcinoma: a meta-analysis. Oncotarget 2017; 8:102361-102370. [PMID: 29254251 PMCID: PMC5731961 DOI: 10.18632/oncotarget.21971] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Background The prognostic value of p53 expression in renal cell carcinoma (RCC) had been investigated in previous studies; however, the results remain inconsistent. This study was performed to investigate the prognostic and clinicopathological significance of p53 protein expression in RCC. Materials and Methods Literature was identified from PubMed, Embase, Web of Science, and Cochrane database, which investigated the relationships between p53 expression and outcomes. Hazard ratios (HRs) for survival outcomes and odds ratios (ORs) for clinical parameters associated with p53 were extracted from eligible studies. Heterogeneity was assessed using the I2 value. The fixed-effects model was used if there was no evidence of heterogeneity; otherwise, the random-effects model was used. Publication bias was evaluated using Begg's funnel plots and Egger's regression test. Results A total of 2,013 patients from 22 studies were included in the meta-analysis. The results showed that p53 positive expression is associated with poor overall survival (OS) (HR = 2.17, 95% confidence [CI]: 1.51–3.13) and cancer-specific survival (CSS) (HR = 1.59, 95% CI: 1.19–2.12) in RCC. In addition, p53 positive expression was closely correlated with TNM stage (III/IV vs. I/II: OR = 2.51, 95% CI: 1.05–6.00), Fuhrman grade (III/IV vs. I/II: OR = 1.80, 95% CI: 1.24–2.63), and distant metastasis (M1 vs. M0: OR = 1.70, 95% CI: 1.16–2.49), but not related to lymph node involvement (N1 vs. N0: OR = 1.32, 95% CI: 0.80–2.18), primary tumor stage (pT3/pT4 vs. pT1/pT2: OR = 1.16, 95% CI: 0.88–1.53), and sex (n = 2, male vs. female, OR = 1.09, 95% CI: 0.70–1.68). Conclusions This study suggests that p53 positive expression is correlated with poor prognosis and advanced clinicopathological features in patients with RCC, which indicates that p53 is a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Zhun Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuanghe Peng
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ning Jiang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Aixiang Wang
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuguang Liu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hui Xie
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Linpei Guo
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qiliang Cai
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yuanjie Niu
- Departments of Urology, Tianjin Institute of Urology, The second Hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
100
|
Baeissa H, Benstead-Hume G, Richardson CJ, Pearl FMG. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget 2017; 8:21290-21304. [PMID: 28423505 PMCID: PMC5400584 DOI: 10.18632/oncotarget.15514] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/07/2017] [Indexed: 01/25/2023] Open
Abstract
Background The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. Results In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains We find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. Conclusions By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation. We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).
Collapse
Affiliation(s)
- Hanadi Baeissa
- School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | | | |
Collapse
|