51
|
Alrefaei YN, Okatcha TI, Skinner DE, Brindley PJ. Progress with schistosome transgenesis. Mem Inst Oswaldo Cruz 2012; 106:785-93. [PMID: 22124549 DOI: 10.1590/s0074-02762011000700002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Collapse
Affiliation(s)
- Yousef Noori Alrefaei
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
52
|
Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJH, Witt H, Croul S, Bouffet E, Fults DW, Eberhart CG, Garzia L, Van Meter T, Zagzag D, Jabado N, Schwartzentruber J, Majewski J, Scheetz TE, Pfister SM, Korshunov A, Li XN, Scherer SW, Cho YJ, Akagi K, MacDonald TJ, Koster J, McCabe MG, Sarver AL, Collins VP, Weiss WA, Largaespada DA, Collier LS, Taylor MD. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 2012; 482:529-33. [PMID: 22343890 PMCID: PMC3288636 DOI: 10.1038/nature10825] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Abstract
Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.
Collapse
Affiliation(s)
- Xiaochong Wu
- Arthur and Sonia Labatt Brain Tumour Research Center, Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The mobility of class II transposable elements (DNA transposons) can be experimentally controlled by separating the two functional components of the transposon: the terminal inverted repeat sequences that flank a gene of interest to be mobilized and the transposase protein that can be conditionally supplied to drive the transposition reaction. Thus, a DNA molecule of interest (e.g., a fluorescent marker, an shRNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be stably integrated into the genome in a regulated and highly efficient manner. Sleeping Beauty (SB) was the first transposon ever shown capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering in vertebrate species, including transgenesis, insertional mutagenesis, and therapeutic somatic gene, transfer both ex vivo and in vivo. This methodological paradigm opened up a number of avenues for genome manipulations for basic and applied research. This review highlights the state-of-the-art in SB transposon technology in diverse genetic applications with special emphasis on the transposon as well as transposase vectors currently available in the SB transposon toolbox.
Collapse
Affiliation(s)
- Ismahen Ammar
- Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
54
|
Remobilization of Sleeping Beauty transposons in the germline of Xenopus tropicalis. Mob DNA 2011; 2:15. [PMID: 22115366 PMCID: PMC3271037 DOI: 10.1186/1759-8753-2-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/24/2011] [Indexed: 12/03/2022] Open
Abstract
Background The Sleeping Beauty (SB) transposon system has been used for germline transgenesis of the diploid frog, Xenopus tropicalis. Injecting one-cell embryos with plasmid DNA harboring an SB transposon substrate together with mRNA encoding the SB transposase enzyme resulted in non-canonical integration of small-order concatemers of the transposon. Here, we demonstrate that SB transposons stably integrated into the frog genome are effective substrates for remobilization. Results Transgenic frogs that express the SB10 transposase were bred with SB transposon-harboring animals to yield double-transgenic 'hopper' frogs. Remobilization events were observed in the progeny of the hopper frogs and were verified by Southern blot analysis and cloning of the novel integrations sites. Unlike the co-injection method used to generate founder lines, transgenic remobilization resulted in canonical transposition of the SB transposons. The remobilized SB transposons frequently integrated near the site of the donor locus; approximately 80% re-integrated with 3 Mb of the donor locus, a phenomenon known as 'local hopping'. Conclusions In this study, we demonstrate that SB transposons integrated into the X. tropicalis genome are effective substrates for excision and re-integration, and that the remobilized transposons are transmitted through the germline. This is an important step in the development of large-scale transposon-mediated gene- and enhancer-trap strategies in this highly tractable developmental model system.
Collapse
|
55
|
Wilber A, Ulloa Montoya F, Hammer L, Moriarity BS, Geurts AM, Largaespada DA, Verfaillie CM, McIvor RS, Lakshmipathy U. Efficient non-viral integration and stable gene expression in multipotent adult progenitor cells. Stem Cells Int 2011; 2011:717069. [PMID: 21977042 PMCID: PMC3184415 DOI: 10.4061/2011/717069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/01/2011] [Accepted: 06/15/2011] [Indexed: 01/11/2023] Open
Abstract
Non-viral integrating systems, PhiC31 phage integrase (ϕC31), and Sleeping Beauty transposase (SB), provide an effective method for ex vivo gene delivery into cells. Here, we used a plasmid-encoding GFP and neomycin phosphotransferase along with recognition sequences for both ϕC31 and SB integrating systems to demonstrate that both systems effectively mediated integration in cultured human fibroblasts and in rat multipotent adult progenitor cells (rMAPC). Southern blot analysis of G418-resistant rMAPC clones showed a 2-fold higher number of SB-mediated insertions per clone compared to ϕC31. Sequence identification of chromosomal junction sites indicated a random profile for SB-mediated integrants and a more restricted profile for ϕC31 integrants. Transgenic rMAPC generated with both systems maintained their ability to differentiate into liver and endothelium albeit with marked attenuation of GFP expression. We conclude that both SB and ϕC31 are effective non-viral integrating systems for genetic engineering of MAPC in basic studies of stem cell biology.
Collapse
Affiliation(s)
- Andrew Wilber
- Center for Genome Engineering, Gene Therapy Program, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
57
|
Gallardo-Gálvez JB, Méndez T, Béjar J, Alvarez MC. Endogenous transposases affect differently Sleeping Beauty and Frog Prince transposons in fish cells. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:695-705. [PMID: 21120677 DOI: 10.1007/s10126-010-9331-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Fish cells stably expressing exogenous genes have potential applications in the production of fish recombinant proteins, gene-function studies, gene-trapping, and the production of transgenic fish. However, expression of a gene of interest after random integration may be difficult to predict or control. In the past decade, major contributions have been made in vertebrate-gene transfer, by using tools derived from DNA transposons. Among them, the Sleeping Beauty (SB) and Frog Prince (FP) transposons, derived, respectively, from fish and frog genomes, mediate transposition in a large variety of cells, although with different efficiency. This study was aimed at assessing the activities of the SB and the FP transposases in fish cell lines from genetically distant species (CHSE-214, RTG-2, BF-2, EPC, and SAF-1). Their transpositional ability was evaluated by the plasmid-based excision assay, the colony formation assay, and the footprint patterns. The results reveal that while both transposases are active in all cell lines, the transposition rates and the precision of the transposition are overall higher with FP than SB. Our results also indicated a key role of cell-specific host factors in transposition, which was associated with the presence of Tc1-like endogenous transposases; this effect was more accentuated in the two salmonid cell lines transfected with SB. This result agrees with previous studies supporting the use of transposons in heterologous organisms to prevent from genomic instability and from impeding the precise activity of the exogenous transposase.
Collapse
|
58
|
Doyle A, McGarry MP, Lee NA, Lee JJ. The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 2011; 21:327-49. [PMID: 21800101 DOI: 10.1007/s11248-011-9537-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 07/04/2011] [Indexed: 11/24/2022]
Abstract
The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual's gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care.
Collapse
Affiliation(s)
- Alfred Doyle
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, MCCRB; Cr2-206, Mayo Clinic Arizona, 13400 E. Shea Blvd., Scottsdale, AZ 85259, USA
| | | | | | | |
Collapse
|
59
|
Landrette SF, Xu T. Somatic genetics empowers the mouse for modeling and interrogating developmental and disease processes. PLoS Genet 2011; 7:e1002110. [PMID: 21814514 PMCID: PMC3140981 DOI: 10.1371/journal.pgen.1002110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With recent advances in genomic technologies, candidate human disease genes are being mapped at an accelerated pace. There is a clear need to move forward with genetic tools that can efficiently validate these mutations in vivo. Murine somatic mutagenesis is evolving to fulfill these needs with tools such as somatic transgenesis, humanized rodents, and forward genetics. By combining these resources one is not only able to model disease for in vivo verification, but also to screen for mutations and pathways integral to disease progression and therapeutic intervention. In this review, we briefly outline the current advances in somatic mutagenesis and discuss how these new tools, especially the piggyBac transposon system, can be applied to decipher human biology and disease.
Collapse
Affiliation(s)
- Sean F. Landrette
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
| | - Tian Xu
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, Connecticut, United States of America
- Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Center for Biomedical Research, School of Life Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
60
|
KONG QR, LIU ZH. Inheritance and expression stability of transgene in transgenic animals. YI CHUAN = HEREDITAS 2011; 33:504-11. [DOI: 10.3724/sp.j.1005.2011.00504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Moldt B, Miskey C, Staunstrup NH, Gogol-Döring A, Bak RO, Sharma N, Mátés L, Izsvák Z, Chen W, Ivics Z, Mikkelsen JG. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther 2011; 19:1499-510. [PMID: 21468003 DOI: 10.1038/mt.2011.47] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been previously shown that integrase-defective HIV-1-based gene vectors can serve, with moderate efficiency, as substrate for DNA transposition by a transiently expressed Sleeping Beauty (SB) transposase. Here, we describe the enhanced gene transfer properties of a HIV-1/SB hybrid vector that allows efficient DNA transposition, facilitated by the hyperactive SB100X transposase, from vector DNA intermediates in primary human cells. Potent transposase-dependent integration of genetic cargo carried by the hybrid HIV-1/SB vector (up to 160-fold above background) is reported in human cell lines as well as in primary human fibroblasts and keratinocytes. The efficiency of transgene integration in context of the newly developed hybrid vector is comparable with that of conventional lentiviral vectors (LVs). Integration profiles of integrating HIV-1-derived vectors and SB transposons mobilized from LVs are investigated by deep sequencing of a large number of integration sites. A significant bias of lentiviral integrations in genes is reported, confirming that biological properties of the viral integration machinery facilitate preferred insertion into actively transcribed genomic regions. In sharp contrast, lentiviral insertions catalyzed by the SB100X transposase are far more random with respect to genes. Based on these properties, HIV-1/SB vectors may become valuable tools for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Brian Moldt
- Department of Human Genetics, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Ruf S, Symmons O, Uslu VV, Dolle D, Hot C, Ettwiller L, Spitz F. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nat Genet 2011; 43:379-86. [DOI: 10.1038/ng.790] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/16/2011] [Indexed: 01/29/2023]
|
63
|
Grabundzija I, Izsvák Z, Ivics Z. Insertional engineering of chromosomes with Sleeping Beauty transposition: an overview. Methods Mol Biol 2011; 738:69-85. [PMID: 21431720 DOI: 10.1007/978-1-61779-099-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Novel genetic tools and mutagenesis strategies based on the Sleeping Beauty (SB) transposable element are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of its inherent capacity to insert into DNA, the SB transposon can be developed into powerful tools for chromosomal manipulations. Mutagenesis screens based on SB have numerous advantages including high throughput and easy identification of mutated alleles. Forward genetic approaches based on insertional mutagenesis by engineered SB transposons have the advantage of providing insight into genetic networks and pathways based on phenotype. Indeed, the SB transposon has become a highly instrumental tool to induce tumors in experimental animals in a tissue-specific -manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with SB transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models.
Collapse
|
64
|
Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 2010; 1:25. [PMID: 21138556 PMCID: PMC3016246 DOI: 10.1186/1759-8753-1-25] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/07/2010] [Indexed: 12/16/2022] Open
Abstract
Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons) can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (sh)RNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB) was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB), discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
65
|
Genome organization influences partner selection for chromosomal rearrangements. Trends Genet 2010; 27:63-71. [PMID: 21144612 DOI: 10.1016/j.tig.2010.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/22/2022]
Abstract
Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the genome. With the advent of novel high-throughput approaches, detailed genome integrity and folding maps are becoming available. Integrating these data with knowledge of experimentally induced DNA recombination strongly suggests that partner choice in chromosomal rearrangement primarily follows the three-dimensional conformation of the genome. Local rearrangements are favored over distal and interchromosomal rearrangements. This is seen for neutral rearrangements, but not necessarily for rearrangements that drive oncogenesis. The recurrent detection of tumorigenic rearrangements probably reflects their exceptional capacity to confer growth advantage to the rare cells that contain them. The abundant presence of neutral rearrangements suggests that somatic genome variation is also common in healthy tissue.
Collapse
|
66
|
Rad R, Rad L, Wang W, Cadinanos J, Vassiliou G, Rice S, Campos LS, Yusa K, Banerjee R, Li MA, de la Rosa J, Strong A, Lu D, Ellis P, Conte N, Yang FT, Liu P, Bradley A. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 2010; 330:1104-7. [PMID: 20947725 PMCID: PMC3719098 DOI: 10.1126/science.1193004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposons are mobile DNA segments that can disrupt gene function by inserting in or near genes. Here, we show that insertional mutagenesis by the PiggyBac transposon can be used for cancer gene discovery in mice. PiggyBac transposition in genetically engineered transposon-transposase mice induced cancers whose type (hematopoietic versus solid) and latency were dependent on the regulatory elements introduced into transposons. Analysis of 63 hematopoietic tumors revealed that PiggyBac is capable of genome-wide mutagenesis. The PiggyBac screen uncovered many cancer genes not identified in previous retroviral or Sleeping Beauty transposon screens, including Spic, which encodes a PU.1-related transcription factor, and Hdac7, a histone deacetylase gene. PiggyBac and Sleeping Beauty have different integration preferences. To maximize the utility of the tool, we engineered 21 mouse lines to be compatible with both transposon systems in constitutive, tissue- or temporal-specific mutagenesis. Mice with different transposon types, copy numbers, and chromosomal locations support wide applicability.
Collapse
Affiliation(s)
- Roland Rad
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Lena Rad
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Wei Wang
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Juan Cadinanos
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) Avda. Richard Grandío s/n Oviedo, 33193 Spain
| | - George Vassiliou
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Stephen Rice
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Lia S. Campos
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Kosuke Yusa
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Meng Amy Li
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Jorge de la Rosa
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA) Avda. Richard Grandío s/n Oviedo, 33193 Spain
| | - Alexander Strong
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Dong Lu
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Peter Ellis
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Fang Tang Yang
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Pentao Liu
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute Genome Campus Hinxton/Cambridge CB10 1SA United Kingdom
| |
Collapse
|
67
|
de Silva S, Mastrangelo MA, Lotta LT, Burris CA, Izsvák Z, Ivics Z, Bowers WJ. Herpes simplex virus/Sleeping Beauty vector-based embryonic gene transfer using the HSB5 mutant: loss of apparent transposition hyperactivity in vivo. Hum Gene Ther 2010; 21:1603-13. [PMID: 20507234 DOI: 10.1089/hum.2010.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sleeping Beauty (SB) transposon system has been successfully used as a gene delivery tool in nonviral and viral vector platforms. Since its initial reconstruction, a series of hyperactive mutants of SB have been generated. Questions remain as to whether the enhanced in vitro activities of these SB transposase mutants translate to the in vivo setting, and whether such increased integration efficiencies will ultimately compromise the safety profile of the transposon platform by raising the risk of genomic insertional mutagenesis. Herein, we compared the in vivo impact of a herpes simplex virus (HSV) amplicon-vectored "wild-type" SB transposase (SB10) and a "hyperactive" SB mutant (HSB5), codelivered in utero with the HSVT-βgeo transposable reporter amplicon vector to embryonic day 14.5 C57BL/6 mice. The SB10 and HSB5 transposases do not disparately affect the viability and development of injected mouse embryos. Quantitation of brain-resident βgeo expression on postnatal day 21 revealed that mice receiving HSB5 exhibited only a trending increase in transgene expression compared with the SB10-infused group, an outcome that did not mirror the marked enhancement of HSB5-mediated transposition observed in vitro. These findings indicate that in vivo application of hyperactive SB mutants, although not differentially genotoxic to the developing mouse embryo, does not necessarily provide a significant therapeutic advantage over the employment of a lesser active SB when delivered in the context of the HSV/SB amplicon platform.
Collapse
Affiliation(s)
- Suresh de Silva
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
de Silva S, Lotta LT, Burris CA, Bowers WJ. Virion-associated cofactor high-mobility group DNA-binding protein-1 facilitates transposition from the herpes simplex virus/Sleeping Beauty amplicon vector platform. Hum Gene Ther 2010; 21:1615-22. [PMID: 20568967 DOI: 10.1089/hum.2010.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of the integration-competent, herpes simplex virus/Sleeping Beauty (HSV/SB) amplicon vector platform has created a means to efficiently and stably deliver therapeutic transcription units (termed "transgenons") to neurons within the mammalian brain. Furthermore, an investigation into the transposition capacity of the HSV/SB vector system revealed that the amplicon genome provides an optimal substrate for the transposition of transgenons at least 12 kb in length [de Silva, S., Mastrangelo, M.A., Lotta, L.T., Jr., Burris, C.A., Federoff, H.J., and Bowers, W.J. ( 2010 ). Gene Ther. 17, 424-431]. These results prompted an investigation into the factors that may contribute toward efficient transposition from the HSV/SB amplicon. One of the cellular cofactors known to play a key role during SB-mediated transposition is the high-mobility group DNA-binding protein-1 (HMGB1). Our present investigation into the role of HMGB1 during amplicon-based transposition revealed that transposition is not strictly dependent on the presence of cellular HMGB1, contrary to what had been previously demonstrated with plasmid-based SB transposition. We have shown for the first time that during amplicon preparation, biologically active HMGB1 derived from the packaging cell line is copackaged into amplicon vector particles. As a result, HSV/SB amplicon virions arrive prearmed with HMGB1 protein at levels sufficient for facilitating SB-mediated transposition in the transduced mammalian cell.
Collapse
Affiliation(s)
- Suresh de Silva
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Recently, it has become possible to mobilize the Tc1/mariner transposon, Sleeping Beauty (SB), in mouse somatic cells at frequencies high enough to induce cancer. Tumours result from SB insertional mutagenesis of cancer genes, thus facilitating the identification of the genes and signalling pathways that drive tumour formation. A conditional SB transposition system has also been developed that makes it possible to limit where SB mutagenesis occurs, providing a means to selectively model many types of human cancer. SB mutagenesis has already identified a large collection of known cancer genes in addition to a plethora of new candidate cancer genes and potential drug targets.
Collapse
Affiliation(s)
- Neal G Copeland
- Genomics and Genetics Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore 138673
| | | |
Collapse
|
70
|
Abstract
The laboratory rat is rapidly gaining momentum as a mammalian genetic model organism. Although traditional forward genetic approaches are well established, recent technological developments have enabled efficient gene targeting and mutant generation. Here we outline the current status, possibilities and application of these techniques in the rat.
Collapse
Affiliation(s)
- Ruben van Boxtel
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
71
|
Kong J, Wang F, Brenton JD, Adams DJ. Slingshot: a PiggyBac based transposon system for tamoxifen-inducible 'self-inactivating' insertional mutagenesis. Nucleic Acids Res 2010; 38:e173. [PMID: 20688953 PMCID: PMC2952874 DOI: 10.1093/nar/gkq658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a self-inactivating PiggyBac transposon system for tamoxifen inducible insertional mutagenesis from a stably integrated chromosomal donor. This system, which we have named 'Slingshot', utilizes a transposon carrying elements for both gain- and loss-of-function screens in vitro. We show that the Slingshot transposon can be efficiently mobilized from a range of chromosomal loci with high inducibility and low background generating insertions that are randomly dispersed throughout the genome. Furthermore, we show that once the Slingshot transposon has been mobilized it is not remobilized producing stable clonal integrants in all daughter cells. To illustrate the efficacy of Slingshot as a screening tool we set out to identify mediators of resistance to puromycin and the chemotherapeutic drug vincristine by performing genetrap screens in mouse embryonic stem cells. From these genome-wide screens we identified multiple independent insertions in the multidrug resistance transporter genes Abcb1a/b and Abcg2 conferring resistance to drug treatment. Importantly, we also show that the Slingshot transposon system is functional in other mammalian cell lines such as human HEK293, OVCAR-3 and PE01 cells suggesting that it may be used in a range of cell culture systems. Slingshot represents a flexible and potent system for genome-wide transposon-mediated mutagenesis with many potential applications.
Collapse
Affiliation(s)
- Jun Kong
- Experimental Cancer Genetics, Welcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | |
Collapse
|
72
|
Bender AM, Collier LS, Rodriguez FJ, Tieu C, Larson JD, Halder C, Mahlum E, Kollmeyer TM, Akagi K, Sarkar G, Largaespada DA, Jenkins RB. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 2010; 70:3557-65. [PMID: 20388773 PMCID: PMC2862088 DOI: 10.1158/0008-5472.can-09-4674] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Sleeping Beauty (SB) transposon system has been used as an insertional mutagenesis tool to identify novel cancer genes. To identify glioma-associated genes, we evaluated tumor formation in the brain tissue from 117 transgenic mice that had undergone constitutive SB-mediated transposition. Upon analysis, 21 samples (18%) contained neoplastic tissue with features of high-grade astrocytomas. These tumors expressed glial markers and were histologically similar to human glioma. Genomic DNA from SB-induced astrocytoma tissue was extracted and transposon insertion sites were identified. Insertions in the growth factor gene Csf1 were found in 13 of the 21 tumors (62%), clustered in introns 5 and 8. Using reverse transcription-PCR, we documented increased Csf1 RNAs in tumor versus adjacent normal tissue, with the identification of transposon-terminated Csf1 mRNAs in astrocytomas with SB insertions in intron 8. Analysis of human glioblastomas revealed increased levels of Csf1 RNA and protein. Together, these results indicate that SB-insertional mutagenesis can identify high-grade astrocytoma-associated genes and they imply an important role for CSF1 in the development of these tumors.
Collapse
Affiliation(s)
- Aaron M. Bender
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Lara S. Collier
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison,WI 53705
| | - Fausto J. Rodriguez
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Christina Tieu
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Jon D. Larson
- The Arnold and Mabel Beckman Center for Genome Engineering and Masonic Cancer Center,University of Minnesota, Minneapolis, Minnesota 55455
| | - Chandralekha Halder
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Eric Mahlum
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Thomas M. Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - Keiko Akagi
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland 21702
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210
| | - Gobinda Sarkar
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| | - David A. Largaespada
- The Arnold and Mabel Beckman Center for Genome Engineering and Masonic Cancer Center,University of Minnesota, Minneapolis, Minnesota 55455
| | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota 55905
| |
Collapse
|
73
|
Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts. Mol Biol Rep 2010; 38:151-61. [DOI: 10.1007/s11033-010-0089-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
|
74
|
Yergeau DA, Kelley CM, Kuliyev E, Zhu H, Sater AK, Wells DE, Mead PE. Remobilization of Tol2 transposons in Xenopus tropicalis. BMC DEVELOPMENTAL BIOLOGY 2010; 10:11. [PMID: 20096115 PMCID: PMC2848417 DOI: 10.1186/1471-213x-10-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 01/22/2010] [Indexed: 12/05/2022]
Abstract
Background The Class II DNA transposons are mobile genetic elements that move DNA sequence from one position in the genome to another. We have previously demonstrated that the naturally occurring Tol2 element from Oryzias latipes efficiently integrates its corresponding non-autonomous transposable element into the genome of the diploid frog, Xenopus tropicalis. Tol2 transposons are stable in the frog genome and are transmitted to the offspring at the expected Mendelian frequency. Results To test whether Tol2 transposons integrated in the Xenopus tropicalis genome are substrates for remobilization, we injected in vitro transcribed Tol2 mRNA into one-cell embryos harbouring a single copy of a Tol2 transposon. Integration site analysis of injected embryos from two founder lines showed at least one somatic remobilization event per embryo. We also demonstrate that the remobilized transposons are transmitted through the germline and re-integration can result in the generation of novel GFP expression patterns in the developing tadpole. Although the parental line contained a single Tol2 transposon, the resulting remobilized tadpoles frequently inherit multiple copies of the transposon. This is likely to be due to the Tol2 transposase acting in discrete blastomeres of the developing injected embryo during the cell cycle after DNA synthesis but prior to mitosis. Conclusions In this study, we demonstrate that single copy Tol2 transposons integrated into the Xenopus tropicalis genome are effective substrates for excision and random re-integration and that the remobilized transposons are transmitted through the germline. This is an important step in the development of 'transposon hopping' strategies for insertional mutagenesis, gene trap and enhancer trap screens in this highly tractable developmental model organism.
Collapse
Affiliation(s)
- Donald A Yergeau
- Department of Pathology, St, Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Germ line gene transposition technology has been used to generate "libraries" of flies and worms carrying genomewide mutations. Phenotypic screening and DNA sequencing of such libraries provide functional information resulting from insertional events in target genes. There is also a great need to have a fast and efficient way to generate mouse mutants in vivo to model developmental defects and human diseases. Here we describe an optimized mammalian germ line transposition system active during early mouse spermatogenesis using the Minos transposon. Transposon-positive progeny carry on average more than 2 new transpositions, and 45 to 100% of the progeny carry an insertion in a gene. The optimized Minos-based system was tested in a small rapid dominant functional screen to identify mutated genes likely to cause measurable cardiovascular "disease" phenotypes in progeny/embryos. Importantly this system allows rapid screening for modifier genes.
Collapse
|
76
|
|
77
|
Abstract
Gene trapping in mouse embryonic stem (ES) cells is an efficient method for the mutagenesis of the mammalian genome. Insertion of a gene trap vector disrupts gene function, reports gene expression, and provides a convenient tag for the identification of the insertion site. The trap vector can be delivered to ES cells by electroporation of a plasmid, by retroviral infection, or by transposon-mediated insertion. Recent developments in trapping technology involve the utilization of site-specific recombination sites, which allow the induced modification of trap alleles in vitro and in vivo. Gene trapping strategies have also been successfully developed to screen for genes that are acting in specific biological pathways. In this chapter, we review different applications of gene trapping, and we provide detailed experimental protocols for gene trapping in ES cells by retroviral and transposon gene trap vectors.
Collapse
Affiliation(s)
- Roland H Friedel
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
78
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
79
|
Abstract
The resurrection of the Sleeping Beauty (SB) transposon from molecularly extinct salmonid transposons at the end of last century opened the door for mouse geneticists to develop various transposon-based genetic tool kits, which had already been proven instrumental in Drosophila and other invertebrate model organisms. Since then, transposon technologies have been successfully applied to many aspects of functional genomics, in combination with various well-established tools of mouse genetics including transgenesis and gene targeting. In the SB system, a substantial fraction of the transposition events occurs on the same chromosome, predominantly within 3-4 megabases, while the remainder occurs between different chromosomes in a genome-wide manner. By taking advantage of the two types of transposition, we have developed applications of the SB system for genome-wide mutagenesis as well as region-specific functional analysis of the mouse genome.
Collapse
|
80
|
Yang W, Jin K, Xie X, Li D, Yang J, Wang L, Gu N, Zhong Y, Sun LV. Development of a database system for mapping insertional mutations onto the mouse genome with large-scale experimental data. BMC Genomics 2009; 10 Suppl 3:S7. [PMID: 19958505 PMCID: PMC2788394 DOI: 10.1186/1471-2164-10-s3-s7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. RESULTS This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. CONCLUSION MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University.
Collapse
Affiliation(s)
- Wenwei Yang
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Transposable elements are DNA segments with the unique ability to move about in the genome. This inherent feature can be exploited to harness these elements as gene vectors for genome manipulation. Transposon-based genetic strategies have been established in vertebrate species over the last decade, and current progress in this field suggests that transposable elements will serve as indispensable tools. In particular, transposons can be applied as vectors for somatic and germline transgenesis, and as insertional mutagens in both loss-of-function and gain-of-function forward mutagenesis screens. In addition, transposons will gain importance in future cell-based clinical applications, including nonviral gene transfer into stem cells and the rapidly developing field of induced pluripotent stem cells. Here we provide an overview of transposon-based methods used in vertebrate model organisms with an emphasis on the mouse system and highlight the most important considerations concerning genetic applications of the transposon systems.
Collapse
|
82
|
Collier LS, Adams DJ, Hackett CS, Bendzick LE, Akagi K, Davies MN, Diers MD, Rodriguez FJ, Bender AM, Tieu C, Matise I, Dupuy AJ, Copeland NG, Jenkins NA, Hodgson JG, Weiss WA, Jenkins RB, Largaespada DA. Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 2009; 69:8429-37. [PMID: 19843846 PMCID: PMC2771123 DOI: 10.1158/0008-5472.can-09-1760] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Sleeping Beauty (SB) transposon system has been used as a somatic mutagen to identify candidate cancer genes. In previous studies, efficient leukemia/lymphoma formation on an otherwise wild-type genetic background occurred in mice undergoing whole-body mobilization of transposons, but was accompanied by high levels of embryonic lethality. To explore the utility of SB for large-scale cancer gene discovery projects, we have generated mice that carry combinations of different transposon and transposase transgenes. We have identified a transposon/transposase combination that promotes highly penetrant leukemia/lymphoma formation on an otherwise wild-type genetic background, yet does not cause embryonic lethality. Infiltrating gliomas also occurred at lower penetrance in these mice. SB-induced or accelerated tumors do not harbor large numbers of chromosomal amplifications or deletions, indicating that transposon mobilization likely promotes tumor formation by insertional mutagenesis of cancer genes, and not by promoting wide-scale genomic instability. Cloning of transposon insertions from lymphomas/leukemias identified common insertion sites at known and candidate novel cancer genes. These data indicate that a high mutagenesis rate can be achieved using SB without high levels of embryonic lethality or genomic instability. Furthermore, the SB system could be used to identify new genes involved in lymphomagenesis/leukemogenesis.
Collapse
Affiliation(s)
- Lara S. Collier
- Department of Genetics, Cell Biology and Development; Masonic Cancer Center; University of Minnesota; Minneapolis, MN
| | | | | | - Laura E. Bendzick
- Department of Genetics, Cell Biology and Development; Masonic Cancer Center; University of Minnesota; Minneapolis, MN
| | - Keiko Akagi
- Mouse Cancer Genetics Program; National Cancer Institute at Frederick; Frederick, MD
| | - Michael N. Davies
- Department of Genetics, Cell Biology and Development; Masonic Cancer Center; University of Minnesota; Minneapolis, MN
| | - Miechaleen D. Diers
- Department of Genetics, Cell Biology and Development; Masonic Cancer Center; University of Minnesota; Minneapolis, MN
| | | | - Aaron M. Bender
- Division of Experimental Pathology; Mayo Clinic; Rochester, MN
| | - Christina Tieu
- Division of Experimental Pathology; Mayo Clinic; Rochester, MN
| | - Ilze Matise
- Masonic Cancer, Center Histopathology Core; University of Minnesota; Minneapolis, MN
| | - Adam J. Dupuy
- Department of Anatomy and Cell Biology; University of Iowa; Iowa City, IA
| | | | | | | | | | | | - David A. Largaespada
- Department of Genetics, Cell Biology and Development; Masonic Cancer Center; University of Minnesota; Minneapolis, MN
| |
Collapse
|
83
|
de Silva S, Mastrangelo MA, Lotta LT, Burris CA, Federoff HJ, Bowers WJ. Extending the transposable payload limit of Sleeping Beauty (SB) using the Herpes Simplex Virus (HSV)/SB amplicon-vector platform. Gene Ther 2009; 17:424-31. [PMID: 19865178 DOI: 10.1038/gt.2009.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of a viral vector to safely deliver and stably integrate large transgene units (transgenons), which not only include one or several therapeutic genes, but also requisite native transcriptional regulatory elements, would be of significant benefit for diseases presently refractory to available technologies. The herpes simplex virus type-1 (HSV-1) amplicon vector has the largest known payload capacity of approximately 130 kb, but its episomal maintenance within the transduced cell nucleus and induction of host cell silencing mechanisms limits the duration of the delivered therapeutic gene(s). Our laboratory developed an integration-competent version of the HSV-1 amplicon by adaptation of the Sleeping Beauty (SB) transposon system, which significantly extends transgene expression in vivo. The maximum size limit of the amplicon-vectored transposable element remains unknown, but previously published plasmid-centric studies have established that DNA segments longer than 6-kb are inefficiently transposed. Here, we compared the transposition efficiency of SB transposase in the context of both the HSV amplicon vector as well as the HSV amplicon plasmid harboring 7 and 12-kb transposable reporter transgene units. Our results indicate that the transposition efficiency of the 12-kb transposable unit via SB transposase was significantly reduced as compared with the 7-kb transposable unit when the plasmid version of the HSV amplicon was used. However, the packaged HSV amplicon vector form provided a more amenable platform from which the 12-kb transposable unit was mobilized at efficiency similar to that of the 7-kb transposable unit via the SB transposase. Overall, our results indicate that SB is competent in stably integrating transgenon units of at least 12 kb in size within the human genome upon delivery of the platform via HSV amplicons.
Collapse
Affiliation(s)
- S de Silva
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
84
|
Liang Q, Kong J, Stalker J, Bradley A. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis 2009; 47:404-8. [PMID: 19391106 DOI: 10.1002/dvg.20508] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Sleeping Beauty and PiggyBac DNA transposon systems have recently been developed as tools for insertional mutagenesis. We have compared the chromosomal mobilization efficiency and insertion site preference of the two transposons mobilized from the same donor site in mouse embryonic stem (ES) cells under conditions in which there were no selective constraints on the transposons' insertion sites. Compared with Sleeping Beauty, PiggyBac exhibits higher transposition efficiencies, no evidence for local hopping and a significant bias toward reintegration in intragenic regions, which demonstrate its utility for insertional mutagenesis. Although Sleeping Beauty had no detectable genomic bias with respect to insertions in genes or intergenic regions, both Sleeping Beauty and PiggyBac transposons displayed preferential integration into actively transcribed loci.
Collapse
|
85
|
Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009; 138:1096-108. [PMID: 19766564 PMCID: PMC3977044 DOI: 10.1016/j.cell.2009.07.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
Abstract
A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
86
|
Kondrychyn I, Garcia-Lecea M, Emelyanov A, Parinov S, Korzh V. Genome-wide analysis of Tol2 transposon reintegration in zebrafish. BMC Genomics 2009; 10:418. [PMID: 19737393 PMCID: PMC2753552 DOI: 10.1186/1471-2164-10-418] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Tol2, a member of the hAT family of transposons, has become a useful tool for genetic manipulation of model animals, but information about its interactions with vertebrate genomes is still limited. Furthermore, published reports on Tol2 have mainly been based on random integration of the transposon system after co-injection of a plasmid DNA harboring the transposon and a transposase mRNA. It is important to understand how Tol2 would behave upon activation after integration into the genome. RESULTS We performed a large-scale enhancer trap (ET) screen and generated 338 insertions of the Tol2 transposon-based ET cassette into the zebrafish genome. These insertions were generated by remobilizing the transposon from two different donor sites in two transgenic lines. We found that 39% of Tol2 insertions occurred in transcription units, mostly into introns. Analysis of the transposon target sites revealed no strict specificity at the DNA sequence level. However, Tol2 was prone to target AT-rich regions with weak palindromic consensus sequences centered at the insertion site. CONCLUSION Our systematic analysis of sequential remobilizations of the Tol2 transposon from two independent sites within a vertebrate genome has revealed properties such as a tendency to integrate into transcription units and into AT-rich palindrome-like sequences. This information will influence the development of various applications involving DNA transposons and Tol2 in particular.
Collapse
Affiliation(s)
- Igor Kondrychyn
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Marta Garcia-Lecea
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
| | - Alexander Emelyanov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Sergey Parinov
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Temasek Life Sciences Laboratory, Singapore
| | - Vladimir Korzh
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
87
|
Xue X, Huang X, Nodland SE, Mátés L, Ma L, Izsvák Z, Ivics Z, LeBien TW, McIvor RS, Wagner JE, Zhou X. Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood 2009; 114:1319-30. [PMID: 19414858 DOI: 10.1182/blood-2009-03-210005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here we report stable gene transfer in cord blood-derived CD34(+) hematopoietic stem cells using a hyperactive nonviral Sleeping Beauty (SB) transposase (SB100X). In colony-forming assays, SB100X mediated the highest efficiency (24%) of stable Discosoma sp red fluorescent protein (DsRed) reporter gene transfer in committed hematopoietic progenitors compared with both the early-generation hyperactive SB11 transposase and the piggyBac transposon system (1.23% and 3.8%, respectively). In vitro differentiation assays further demonstrated that SB100X-transfected CD34(+) cells can develop into DsRed(+) CD4(+)CD8(+) T (3.17%-21.84%; median, 7.97%), CD19(+) B (3.83%-18.66%; median, 7.84%), CD56(+)CD3(-) NK (3.53%-79.98%; median, 7.88%), and CD33(+) myeloid (7.59%-15.63%; median, 9.48%) cells. SB100X-transfected CD34(+) cells achieved approximately 46% engraftment in NOD-scid IL2gammac(null) (NOG) mice. Twelve weeks after transplantation, 0.57% to 28.96% (median, 2.79%) and 0.49% to 34.50% (median, 5.59%) of total human CD45(+) cells in the bone marrow and spleen expressed DsRed, including CD19(+) B, CD14(+) monocytoid, and CD33(+) myeloid cell lineages. Integration site analysis revealed SB transposon sequences in the human chromosomes of in vitro differentiated T, B, NK, and myeloid cells, as well as in human CD45(+) cells isolated from bone marrow and spleen of transplanted NOG mice. Our results support the continuing development of SB-based gene transfer into human hematopoietic stem cells as a modality for gene therapy.
Collapse
Affiliation(s)
- Xingkui Xue
- Division of Pediatric Blood and Marrow Transplantation, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Demattei MV, Thomas X, Carnus E, Augé-Gouillou C, Renault S. Site-directed integration of transgenes: transposons revisited using DNA-binding-domain technologies. Genetica 2009; 138:531-40. [PMID: 19662501 DOI: 10.1007/s10709-009-9390-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/14/2009] [Indexed: 11/30/2022]
Abstract
In the last 20 years, tools derived from DNA transposons have made major contributions to genetic studies from gene delivery to gene discovery. Various complementary and fairly ubiquitous DNA vehicles have been developed. Although many transposons are efficient DNA vehicles, they appear to have limited ability to target specific sequences, since all that is required at the integration locus is the presence of a short 2- to 4-bp sequence. Consequently, insertions mediated by transposon-based vectors occur somewhat randomly. In the past 5 years, strategies have emerged to enhance the site-specificity of transposon-based vectors, and to avoid random integrations. The first proposes that new target site specificity could be grafted onto a transposase by adding a new DNA-binding domain. Alternative strategies consist of indirectly targeting either the transposase or the transposon to a chosen genomic locus. The most important information available about each strategy are presented, and limitations and future prospects are discussed.
Collapse
|
89
|
A transposon-based chromosomal engineering method to survey a large cis-regulatory landscape in mice. Nat Genet 2009; 41:946-52. [DOI: 10.1038/ng.397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 05/12/2009] [Indexed: 11/08/2022]
|
90
|
Largaespada DA. Transposon-mediated mutagenesis of somatic cells in the mouse for cancer gene identification. Methods 2009; 49:282-6. [PMID: 19607923 DOI: 10.1016/j.ymeth.2009.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 06/18/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022] Open
Abstract
To successfully treat cancer we will likely need a much more detailed understanding of the genes and pathways meaningfully altered in individual cancer cases. One method for achieving this goal is to derive cancers in model organisms using unbiased forward genetic screens that allow cancer gene candidate discovery. We have developed a method using a "cut-and-paste" DNA transposon system called Sleeping Beauty (SB) to perform forward genetic screens for cancer genes in mice. Although the approach is conceptually similar to the use of replication competent retroviruses for cancer gene identification, the SB system promises to allow such screens in tissues previously not amenable to forward genetic screens such as the gastrointestinal tract, brain, and liver. This article describes the strains useful for SB-based screens for cancer genes in mice and how they are deployed in an experiment.
Collapse
Affiliation(s)
- David A Largaespada
- Masonic Cancer Center University of Minnesota, Department of Genetics, Arnold and Mabel Beckman Center for Genome Engineering, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
91
|
Nguyen D, Xu T. The expanding role of mouse genetics for understanding human biology and disease. Dis Model Mech 2009; 1:56-66. [PMID: 19048054 DOI: 10.1242/dmm.000232] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has taken about 100 years since the mouse first captured our imagination as an intriguing animal for it to become the premier genetic model organism. An expanding repertoire of genetic technology, together with sequencing of the genome and biological conservation, place the mouse at the foremost position as a model to decipher mechanisms underlying biological and disease processes. The combined approaches of embryonic stem cell-based technologies, chemical and insertional mutagenesis have enabled the systematic interrogation of the mouse genome with the aim of creating, for the first time, a library of mutants in which every gene is disrupted. The hope is that phenotyping the mutants will reveal novel and interesting phenotypes that correlate with genes, to define the first functional map of a mammalian genome. This new milestone will have a great impact on our understanding of mammalian biology, and could significantly change the future of medical diagnosis and therapeutic development, where databases can be queried in silico for potential drug targets or underlying genetic causes of illnesses. Emerging innovative genetic strategies, such as somatic genetics, modifier screens and humanized mice, in combination with whole-genome mutagenesis will dramatically broaden the utility of the mouse. More significantly, allowing genome-wide genetic interrogations in the laboratory, will liberate the creativity of individual investigators and transform the mouse as a model for making original discoveries and establishing novel paradigms for understanding human biology and disease.
Collapse
Affiliation(s)
- Duc Nguyen
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | | |
Collapse
|
92
|
Wang W, Bradley A, Huang Y. A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genes Dev 2009; 19:667-73. [PMID: 19233961 PMCID: PMC2665785 DOI: 10.1101/gr.085621.108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/22/2009] [Indexed: 01/27/2023]
Abstract
Cultured mouse or human embryonic stem (ES) cells provide access to all of the genes required to elaborate the fundamental components and physiological systems of a mammalian cell. Chemical or insertional mutagenesis of Blm-deficient mouse ES cells can be used to generate genome-wide libraries of homozygous mutant ES cells, which are the substrates for conducting phenotype-driven loss-of-function genetic screens. However, the existing insertional mutation libraries are limited by incomplete genomic coverage. In this study, we have explored the use of piggyBac (PB) transposon-mediated mutagenesis to extend the genomic coverage of mutation libraries in Blm-deficient ES cells. A library composed of 14,000 individual gene-trap clones was generated and a recessive genetic screen conducted to identify cells with defects in DNA mismatch repair (MMR) genes. Independent mutations in all known genes of the pathway Msh2, Msh6, Pms2, and Mlh1 were recovered in these screens. The genomic coverage in this library confirms its utility as a new genetic resource for conducting recessive genetic screens in mammalian cells.
Collapse
Affiliation(s)
- Wei Wang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Yue Huang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
93
|
Ni J, Clark KJ, Fahrenkrug SC, Ekker SC. Transposon tools hopping in vertebrates. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 7:444-53. [PMID: 19109308 DOI: 10.1093/bfgp/eln049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the past decade, tools derived from DNA transposons have made major contributions to vertebrate genetic studies from gene delivery to gene discovery. Multiple, highly complementary systems have been developed, and many more are in the pipeline. Judging which DNA transposon element will work the best in diverse uses from zebrafish genetic manipulation to human gene therapy is currently a complex task. We have summarized the major transposon vector systems active in vertebrates, comparing and contrasting known critical biochemical and in vivo properties, for future tool design and new genetic applications.
Collapse
Affiliation(s)
- Jun Ni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
94
|
Huang X, Wilber A, McIvor RS, Zhou X. DNA transposons for modification of human primary T lymphocytes. Methods Mol Biol 2009; 506:115-126. [PMID: 19110623 DOI: 10.1007/978-1-59745-409-4_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Genetic modification of peripheral blood T lymphocytes (PBL) or hematopoietic stem cells (HSC) has been shown to be promising in the treatment of cancer (Nat Rev Cancer 3:35-45, 2003), transplant complications (Curr Opin Hematol 5:478-482, 1998), viral infections (Science 285:546-551, 1999), and immunodeficiencies (Nat Rev Immunol 2:615-621, 2002). There are also significant implications for the study of T cell biology (J Exp Med 191:2031-2037, 2000). Currently, there are three types of vectors that are commonly used for introducing genes into human primary T cells: oncoretroviral vectors, lentiviral vectors, and naked DNA. Oncoretroviral vectors transduce and integrate only in dividing cells. However, it has been shown that extended ex vivo culture, required by oncoretroviral-mediated gene transfer, may alter the biologic properties of T cells (Nat Med 4:775-780, 1998; Int Immunol 9:1073- 1083, 1997; Hum Gene Ther 11:1151-1164, 2001; Blood 15:1165-1173, 2002; Proc Natl Acad Sci U S A, 1994). HIV-1-derived lentiviral vectors have been shown to transduce a variety of slowly dividing or nondividing cells, including unstimulated T lymphocytes (Blood 96:1309-1316, 2000; Gene Ther 7:596-604, 2000; Blood 101:2167-2174, 2002; Hum Gene Ther 14:1089-1105, 2003). However, achieving effective gene transfer and expression using lentivirus vectors can be complex, and there is at least a perceived risk associated with clinical application of a vector based on a human pathogen (i.e., HIV-1). Recently it has been found that oncoretroviral and lentiviral vectors show a preference for integration into regulatory sequences and active genes, respectively (Cell 110:521-529, 2002; Science 300:1749-1751, 2003). Additionally, insertional mutagenesis has become a serious concern, after several patients treated with an oncoretroviral vector for X-linked SCID developed a leukemia-like syndrome associated with activation of the LMO2 oncogene (Science 302:415-419, 2003). Naked DNA-based genetic engineering of human T lymphocytes also requires T cells to be activated prior to gene transfer (Mol Ther 1:49-55, 2000; Blood 101:1637-1644, 2003; Blood 107:2643-2652, 2006). In addition, random integration by electroporation is of low efficiency. We have recently reported that the Sleeping Beauty transposon system can efficiently mediate stable transgene expression in human primary T cells without prior T cell activation (Blood 107:483-491, 2006). This chapter describes methodology for the introduction of SB transposons into human T cell cultures with subsequent integration and stable long-term expression at noticeably high efficiency for a nonviral gene transfer system.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pediatrics, The Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
95
|
van Boxtel R, Toonen PW, Verheul M, van Roekel HS, Nijman IJ, Guryev V, Cuppen E. Improved generation of rat gene knockouts by target-selected mutagenesis in mismatch repair-deficient animals. BMC Genomics 2008; 9:460. [PMID: 18840264 PMCID: PMC2567347 DOI: 10.1186/1471-2164-9-460] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/07/2008] [Indexed: 01/15/2023] Open
Abstract
Background The laboratory rat (Rattus norvegicus) is one of the preferred model organisms in physiological and pharmacological research, although the availability of specific genetic models, especially gene knockouts, is limited. N-ethyl-N-nitrosourea (ENU)-driven target-selected mutagenesis is currently the most successful method in rats, although it is still very laborious and expensive. Results As ENU-induced DNA damage is normally recognized by the mismatch repair (MMR) system, we hypothesized that the effectiveness of the target-selected mutagenesis approach could be improved by using a MMR-deficient genetic background. Indeed, Msh6 knockout rats were found to be more sensitive to ENU treatment and the germ line mutation rate was boosted more than two-fold to 1 mutation per 585 kb. In addition, the molecular mutation spectrum was found to be changed in favor of generating knockout-type alleles by ~20%, resulting in an overall increase in efficiency of ~2.5 fold. The improved effectiveness was demonstrated by high throughput mutation discovery in 70 Mb of sequence in a set of only 310 mutant F1 rats. This resulted in the identification of 89 mutations of which four introduced a premature stopcodon and 64 resulted in amino acid changes. Conclusion Taken together, we show that the use of a MMR-deficient background considerably improves ENU-driven target-selected mutagenesis in the rat, thereby reducing animal use as well as screening costs. The use of a mismatch repair-deficient genetic background for improving mutagenesis and target-selected knockout efficiency is in principle applicable to any organism of interest.
Collapse
Affiliation(s)
- Ruben van Boxtel
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Cancer Genomics Center, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
96
|
Adams DJ, van der Weyden L. Contemporary approaches for modifying the mouse genome. Physiol Genomics 2008; 34:225-38. [PMID: 18559964 PMCID: PMC2519963 DOI: 10.1152/physiolgenomics.90242.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/11/2008] [Indexed: 12/05/2022] Open
Abstract
The mouse is a premiere experimental organism that has contributed significantly to our understanding of vertebrate biology. Manipulation of the mouse genome via embryonic stem (ES) cell technology makes it possible to engineer an almost limitless repertoire of mutations to model human disease and assess gene function. In this review we outline recent advances in mouse experimental genetics and provide a "how-to" guide for those people wishing to access this technology. We also discuss new technologies, such as transposon-mediated mutagenesis, and resources of targeting vectors and ES cells, which are likely to dramatically accelerate the pace with which we can assess gene function in vivo, and the progress of forward and reverse genetic screens in mice.
Collapse
Affiliation(s)
- David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
97
|
Abstract
Transposon systems are widely used for generating mutations in various model organisms. PiggyBac (PB) has recently been shown to transpose efficiently in the mouse germ line and other mammalian cell lines. To facilitate PB's application in mammalian genetics, we characterized the properties of the PB transposon in mouse embryonic stem (ES) cells. We first measured the transposition efficiencies of PB transposon in mouse embryonic stem cells. We next constructed a PB/SB hybrid transposon to compare PB and Sleeping Beauty (SB) transposon systems and demonstrated that PB transposition was inhibited by DNA methylation. The excision and reintegration rates of a single PB from two independent genomic loci were measured and its ability to mutate genes with gene trap cassettes was tested. We examined PB's integration site distribution in the mouse genome and found that PB transposition exhibited local hopping. The comprehensive information from this study should facilitate further exploration of the potential of PB and SB DNA transposons in mammalian genetics.
Collapse
|
98
|
Takeda J, Izsvák Z, Ivics Z. Insertional mutagenesis of the mouse germline with Sleeping Beauty transposition. Methods Mol Biol 2008; 435:109-25. [PMID: 18370071 DOI: 10.1007/978-1-59745-232-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Efficient linking of primary DNA sequence information to gene functions in vertebrate models requires that genetic modifications and their effects are analyzed in an efficacious, controlled, and scalable manner. Thus, to facilitate analysis of gene function, new genetic tools and strategies are currently under development. Transposable elements, by virtue of their inherent ability to insert into DNA, can be developed into useful tools for chromosomal manipulations. Mutagenesis screens based on transposable elements have numerous advantages as they can be applied in vivo and are therefore phenotype-driven, and molecular analysis of the mutations is straightforward. Current progress in this field indicates that transposable elements will serve as indispensable tools in the genetic toolkit of vertebrate models. Here, we provide experimental protocols for the construction, functional testing, and application of the Sleeping Beauty transposon for insertional mutagenesis of the mouse germline.
Collapse
Affiliation(s)
- Junji Takeda
- Center for Advanced Science and Innovation & Department of Social and Environmental Medicine, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
99
|
Abstract
Several recent papers describe pilot screens establishing enhancer and gene trap methodologies for use in fish. They have proven these approaches by characterizing genes with novel and sometimes unexpected expression patterns. The resulting fish lines with tissue-specific GFP expression patterns are now being used in further developmental genetics experiments, enhancing the value of fish models for exploring novel biological phenomena. Both Tol2 and Sleeping Beauty transposon systems have been successfully adapted for the construction of enhancer and gene trap vectors. This review summarizes the results presented in these papers and compares this first generation of trap vectors. Future challenges and perspectives for wider use of these methodologies are also discussed.
Collapse
Affiliation(s)
- Darius Balciunas
- Arnold and Mabel Beckman Center for Transposon Research, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
100
|
Kong BW, Carlson DF, Fahrenkrug SC, Foster DN. Application of the Sleeping Beauty transposon system to avian cells. Anim Genet 2008; 39:180-6. [DOI: 10.1111/j.1365-2052.2008.01702.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|