51
|
Petersen MÅ, Rasmussen B, Andersen NN, Sauer SPA, Nielsen MB, Beeren SR, Pittelkow M. Molecular Switching in Confined Spaces: Effects of Encapsulating the DHA/VHF Photo-Switch in Cucurbiturils. Chemistry 2017; 23:17010-17016. [PMID: 28922509 DOI: 10.1002/chem.201703196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 11/05/2022]
Abstract
Confinement of reactive chemical species uniquely affects chemical reactivity by restricting the physical space available and by restricting access to interactions with the solvent. In Nature, for example, confined protein binding pockets govern processes following photoisomerization reactions and the isomerizations themselves. Here we describe the first example of a dihydroazulene/vinylheptafulvene (DHA/VHF) photo-switch functioning in water, and we show how its switching behavior is strongly influenced by supramolecular interactions with a series of cucurbit[n]uril (CB) host molecules. In CB7 inclusion complexes, the kinetics of the thermal VHF-to-DHA back-reaction is accelerated, while in CB8 inclusion complexes, the kinetics is slowed down as compared to the free photo-switch. The effect of the CB encapsulation of the photo-switch can be effectively canceled by introducing a guest that binds the CB more strongly. According to DFT calculations, a stabilization of the reactive s-cis VHF conformer relative to the s-trans VHF appears to be a contributing factor responsible for the accelerated back-reaction when encapsulated in CB7.
Collapse
Affiliation(s)
- Michael Å Petersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Brian Rasmussen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Nicolaj N Andersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bygning 207, 2800 Kgs., Lyngby, Denmark
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
52
|
Szefczyk B, Grabarek D, Walczak E, Andruniów T. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. J Comput Chem 2017; 38:1799-1810. [PMID: 28512740 DOI: 10.1002/jcc.24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 11/08/2022]
Abstract
This study provides gas-phase S1 excited-state geometries along with emission and adiabatic energies for methylated/demethylated and ring-locked analogues of protonated Schiff base retinal models comprising system of five conjugated double bonds (PSB5), using second order multiconfiguration perturbation theory (CASPT2). CASPT2 results serve as reference data to assess the performance of CC2 (second-order approximate coupled cluster singles and doubles) and a commonly used CASSCF/CASPT2 protocol, that is, complete active space self-consistent field (CASSCF) geometry optimization followed by CASPT2 energy calculation. We find that the CASSCF methodology fails to locate planar S1 minimum energy structures for four out of five investigated planar models in contrast to CC2 and CASPT2 methods. However, for those which were found: one planar and two twisted minima, there is an excellent agreement between CASSCF and CASPT2 results in terms of geometrical parameters, one-electron properties, as well as emission and adiabatic energies. CC2 performs well for in-plane S1 minima and their spectroscopic and electronic properties. However, this picture deteriorates for twisted minima. As expected, the CC2 description of the S2 electronic state, with strong multireference and significant double excitation character, is very poor, exhibiting errors in transition energies exceeding 1 eV. They may be substantially diminished by recalculating transition energies with CASPT2 method. Our work shows that CASSCF/CASPT2 and CC2 shortcomings may influence gas-phase retinal analogues' excited state description in a dramatic way. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Borys Szefczyk
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Dawid Grabarek
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland
| |
Collapse
|
53
|
Hung CC, Chen XR, Ko YK, Kobayashi T, Yang CS, Yabushita A. Schiff Base Proton Acceptor Assists Photoisomerization of Retinal Chromophores in Bacteriorhodopsin. Biophys J 2017. [PMID: 28636908 DOI: 10.1016/j.bpj.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels. Measurements indicated that the negative charge from the Schiff base proton acceptor residue D93 interacts with the ultrafast and substantial change of the electrostatic potential associated with chromophore isomerization. By contrast, the Schiff base proton donor assists the restructuring of the chromophore cavity hydrogen-bond network during the thermalization of the vibrational hot state. Second, the ultrafast dynamics of the wild-types of HwBR, HmBRI, and HmBRII were compared. Measurements demonstrated that the hydrogen-bond network in the extracellular region in HwBR and HmBRII slows the photoisomerization of retinal chromophores, and the negatively charged helices on the cytoplasmic side of HwBR and HmBRII accelerate the thermalization of the vibrational hot state of retinal chromophores. The similarity of the correlation spectra of the wild-type HmBRI and D104N mutant of HwBR indicates that inactivation of the Schiff base proton donor induces a positive charge on the helices of the cytoplasmic side.
Collapse
Affiliation(s)
- Chih-Chang Hung
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Xiao-Ru Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ying-Kuan Ko
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Takayoshi Kobayashi
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan; Research Center for Water Frontier Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao-Tung University, Hsinchu, Taiwan; Faculty of Engineering, Kanagawa University, Yokohama, Japan.
| |
Collapse
|
54
|
Bauer CA, Hansen A, Grimme S. The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. Chemistry 2017; 23:6150-6164. [DOI: 10.1002/chem.201604682] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Christoph Alexander Bauer
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Beringstr. 4 53115 Bonn Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn; Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
55
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
56
|
Mališ M, Novak J, Zgrablić G, Parmigiani F, Došlić N. Mechanism of ultrafast non-reactive deactivation of the retinal chromophore in non-polar solvents. Phys Chem Chem Phys 2017; 19:25970-25978. [DOI: 10.1039/c7cp03293e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counterion sensitive photodynamics of the retinal chromophore in solution.
Collapse
Affiliation(s)
- M. Mališ
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
- Centre Européen de Calcul Atomique et Moléculaire
| | - J. Novak
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| | - G. Zgrablić
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Politehnika Pula
| | - F. Parmigiani
- Elettra-Sincrotrone Treste
- T-ReX Laboratory
- Trieste
- Italy
- Department of Physics
| | - N. Došlić
- Department of Physical Chemistry
- Ruđer Bošković Institute
- 10000 Zagreb
- Croatia
| |
Collapse
|
57
|
Feldman TB, Smitienko OA, Shelaev IV, Gostev FE, Nekrasova OV, Dolgikh DA, Nadtochenko VA, Kirpichnikov MP, Ostrovsky MA. Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:296-305. [PMID: 27723489 DOI: 10.1016/j.jphotobiol.2016.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
Photochromic ultrafast reactions of bacteriorhodopsin (H. salinarum) and bovine rhodopsin were conducted with a femtosecond two-pump probe pulse setup with the time resolution of 20-25fs. The dynamics of the forward and reverse photochemical reactions for both retinal-containing proteins was compared. It is demonstrated that when retinal-containing proteins are excited by femtosecond pulses, dynamics pattern of the vibrational coherent wave packets in the course of the reaction is different for bacteriorhodopsin and visual rhodopsin. As shown in these studies, the low-frequencies that form a wave packets experimentally observed in the dynamics of primary products formation as a result of retinal photoisomerization have different intensities and are clearer for bovine rhodopsin. Photo-reversible reactions for both retinal proteins were performed from the stage of the relatively stable photointermediates that appear within 3-5ps after the light pulse impact. It is demonstrated that the efficiency of the reverse phototransition K-form→bacteriorhodopsin is almost five-fold higher than that of the Batho-intermediate→visual rhodopsin phototransition. The results obtained indicate that in the course of evolution the intramolecular mechanism of the chromophore-protein interaction in visual rhodopsin becomes more perfect and specific. The decrease in the probability of the reverse chromophore photoisomerization (all-trans→11-cis retinal) in primary photo-induced rhodopsin products causes an increase in the efficiency of the photoreception process.
Collapse
Affiliation(s)
- Tatiana B Feldman
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia.
| | - Olga A Smitienko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| | - Ivan V Shelaev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Fedor E Gostev
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Dmitriy A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Victor A Nadtochenko
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia; Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119991, Russia; Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov avenue 1, Chernogolovka, Moscow region 142432, Russia
| | - Mikhail P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya st. 16/10, Moscow 117997, Russia
| | - Mikhail A Ostrovsky
- Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st.4, Moscow 119334, Russia
| |
Collapse
|
58
|
Farag MH, Jansen TLC, Knoester J. Probing the Interstate Coupling near a Conical Intersection by Optical Spectroscopy. J Phys Chem Lett 2016; 7:3328-3334. [PMID: 27509384 DOI: 10.1021/acs.jpclett.6b01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conical intersections are points where adiabatic potential energy surfaces cross. The interstate coupling between the potential energy surfaces plays a crucial role in many processes associated with conical intersections. Still no method exists to measure this coupling driving the chemical reactions between the potential energy surfaces involved. In this Letter, using a generic model for photoisomerization, we propose a novel experimental approach to estimate the coupling that mixes the electronic states near a conical intersection. The approach is based on analyzing the vibrational wavepacket of the reactant in the adiabatic ground and excited electronic states. The nuclear wavepacket dynamics are extracted from linear absorption and two-dimensional electronic spectroscopy. Comparing the frequencies of the coupling mode in the adiabatic ground and excited states from models with and without coupling between the potential energy surfaces suggests an experimental tool to determine the interstate coupling.
Collapse
Affiliation(s)
- Marwa H Farag
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
59
|
Duan HG, Miller RJD, Thorwart M. Impact of Vibrational Coherence on the Quantum Yield at a Conical Intersection. J Phys Chem Lett 2016; 7:3491-3496. [PMID: 27547995 DOI: 10.1021/acs.jpclett.6b01551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the vibrationally coherent quantum dynamics of an electronic wave packet in the vicinity of a conical intersection within a three-state two-mode model. By transforming the coherent tuning and coupling modes into the bath, the underdamped dynamics of the resulting effective three-state model is solved efficiently by the numerically exact hierarchy equation of motion approach. The transient excited-state absorption and two-dimensional spectra reveal the impact of vibrational coherence on the relaxation pathways of the wave packet. We find that both the quantum yield and the isomerization rate are crucially influenced by the vibrational coherence of the wave packet. A less coherent wave packet can traverse the conical intersection more rapidly, while the resulting quantum yield is smaller. Finally, we show that repeated passages of the wave packet through the conical intersection can lead to measurable interference effects in the form of Stueckelberg oscillations.
Collapse
Affiliation(s)
- Hong-Guang Duan
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J Dwayne Miller
- Max Planck-Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
- The Departments of Chemistry and Physics, University of Toronto , 80 St. George Street, Toronto, M5S 3H6 Canada
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg , Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
60
|
El-Tahawy MMT, Nenov A, Garavelli M. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. J Chem Theory Comput 2016; 12:4460-75. [DOI: 10.1021/acs.jctc.6b00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohsen M. T. El-Tahawy
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Chemistry
Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica “G. Ciamician″, Universita’ degli Studi di Bologna, Via Selmi, 2 I - 40126 Bologna, Italy
- Université
de Lyon, Université Claude Bernard Lyon 1, ENS Lyon, Centre
Nationale de Recherche Scientifique, 46 allée d’Italie, 69007 Lyon Cedex 07, France
| |
Collapse
|
61
|
Ludwig A, Liberatore E, Herrmann J, Kasmi L, López-Tarifa P, Gallmann L, Rothlisberger U, Keller U, Lucchini M. Ultrafast Relaxation Dynamics of the Ethylene Cation C(2)H(4)+. J Phys Chem Lett 2016; 7:1901-6. [PMID: 27139223 DOI: 10.1021/acs.jpclett.6b00646] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a combined experimental and computational study of the relaxation dynamics of the ethylene cation. In the experiment, we apply an extreme-ultraviolet-pump/infrared-probe scheme that permits us to resolve time scales on the order of 10 fs. The photoionization of ethylene followed by an infrared (IR) probe pulse leads to a rich structure in the fragment ion yields reflecting the fast response of the molecule and its nuclei. The temporal resolution of our setup enables us to pinpoint an upper bound of the previously defined ethylene-ethylidene isomerization time to 30 ± 3 fs. Time-dependent density functional based trajectory surface hopping simulations show that internal relaxation between the first excited states and the ground state occurs via three different conical intersections. This relaxation unfolds on femtosecond time scales and can be probed by ultrashort IR pulses. Through this probe mechanism, we demonstrate a route to optical control of the important dissociation pathways leading to separation of H or H2.
Collapse
Affiliation(s)
- André Ludwig
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, EPFL , 1015 Lausanne, Switzerland
| | - Jens Herrmann
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| | - Lamia Kasmi
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| | - Pablo López-Tarifa
- Laboratory of Computational Chemistry and Biochemistry, EPFL , 1015 Lausanne, Switzerland
| | - Lukas Gallmann
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
- Institute of Applied Physics, University of Bern , 3012 Bern, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, EPFL , 1015 Lausanne, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| | - Matteo Lucchini
- Department of Physics, ETH Zurich , 8093 Zurich, Switzerland
| |
Collapse
|
62
|
Suomivuori CM, Lang L, Sundholm D, Gamiz-Hernandez AP, Kaila VRI. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry 2016; 22:8254-61. [DOI: 10.1002/chem.201505126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Carl-Mikael Suomivuori
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Lucas Lang
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Dage Sundholm
- Department of Chemistry; University of Helsinki; A.I. Virtanens plats 1, P.O. Box 55 FI-00014 Helsinki Finland
| | - Ana P. Gamiz-Hernandez
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department Chemie; Technische Universität München (TUM); Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
63
|
Grabarek D, Walczak E, Andruniów T. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. J Chem Theory Comput 2016; 12:2346-56. [DOI: 10.1021/acs.jctc.6b00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Elżbieta Walczak
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering
and Modelling Group, Wroclaw University of Technology, Wyb. Wyspianskiego
27, 50-370 Wroclaw, Poland
| |
Collapse
|
64
|
Demoulin B, El-Tahawy MMT, Nenov A, Garavelli M, Le Bahers T. Intramolecular photo-induced charge transfer in visual retinal chromophore mimics: electron density-based indices at the TD-DFT and post-HF levels. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1815-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Liu L, Liu J, Martinez TJ. Dynamical Correlation Effects on Photoisomerization: Ab Initio Multiple Spawning Dynamics with MS-CASPT2 for a Model trans-Protonated Schiff Base. J Phys Chem B 2016; 120:1940-9. [DOI: 10.1021/acs.jpcb.5b09838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Liu
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| | - Jian Liu
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Todd J. Martinez
- Department
of Chemistry and PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, United States
| |
Collapse
|
66
|
Eng J, Daniel C. Structural Properties and UV–Visible Absorption Spectroscopy of Retinal-pyridyl-CN Re(I) Carbonyl Bipyridine Complex: A Theoretical Study. J Phys Chem A 2015; 119:10645-53. [DOI: 10.1021/acs.jpca.5b08047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Eng
- Laboratoire de Chimie Quantique,
Institut de Chimie Strasbourg, UMR-7177 CNRS/Université de Strasbourg 1 Rue Blaise Pascal BP 296/R8, F-67008 STRASBOURG, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique,
Institut de Chimie Strasbourg, UMR-7177 CNRS/Université de Strasbourg 1 Rue Blaise Pascal BP 296/R8, F-67008 STRASBOURG, France
| |
Collapse
|
67
|
Bassolino G, Sovdat T, Soares Duarte A, Lim JM, Schnedermann C, Liebel M, Odell B, Claridge TDW, Fletcher SP, Kukura P. Barrierless Photoisomerization of 11-cis Retinal Protonated Schiff Base in Solution. J Am Chem Soc 2015; 137:12434-7. [DOI: 10.1021/jacs.5b06492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni Bassolino
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Tina Sovdat
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Alex Soares Duarte
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jong Min Lim
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Christoph Schnedermann
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Matz Liebel
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Barbara Odell
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy D. W. Claridge
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Stephen P. Fletcher
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philipp Kukura
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
68
|
Terpugov EL, Degtyareva OV. Photo-induced processes and the reaction dynamics of bacteriorhodopsin. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
69
|
Valsson O, Filippi C, Casida ME. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory. J Chem Phys 2015; 142:144104. [DOI: 10.1063/1.4916354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
70
|
Hynes JT. Molecules in Motion: Chemical Reaction and Allied Dynamics in Solution and Elsewhere. Annu Rev Phys Chem 2015; 66:1-20. [DOI: 10.1146/annurev-physchem-040214-121833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James T. Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309;
- Department of Chemistry, UMR ENS-CNRS-UPMC-8640, Ecole Normale Supérieure, Paris, France 75005
| |
Collapse
|
71
|
Sproviero EM. Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin. J Chem Theory Comput 2015; 11:1206-19. [PMID: 26579769 DOI: 10.1021/ct500612n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Direct examination of experimental NMR parameters combined with electronic structure analysis was used to provide a first-principle interpretation of NMR experiments and give a precise evaluation of how the electronic perturbation of the protein environment affects the electronic properties of the retinylidene chromophere in rhodopsin. To this end, we pursued a theoretical analysis using a combination of tools including quantum mechanics/molecular mechanics (QM/MM) at the Density Functional Theory (DFT) level, in conjunction with gauge independent atomic orbital (GIAO) calculations of (13)C NMR chemical shieldings and (1)J(CC) spin-spin coupling constants obtained with the Coupled Perturbed DFT (CPDFT) method. The opsin effect on the retinylidene chromophere is interpreted as an inductive effect of Glu-113 which readjusts the weighting factors of resonance substructures of the conjugated chain of the chromophere. These changes give a rationalization to the alternating effect of the (13)C chemical shifts magnitudes when comparing the retinylidene chromophere in the presence and absence of the protein environment. Conversely, perturbation of π orbitals has little to no effect over (1)J (13)C-(13)C spin-spin coupling constants, as they are mainly dominated by the Fermi contact term, and hence the counteraion effect is restricted to the vicinity of the perturbation. Thus, the apparent contradiction between experimental findings based on chemical shifts (deep penetration) and one-bond J-couplings (localized effects of the protonated Schiff base at the chain terminus) is in fact a consequence of different properties responding differently to the same external perturbation.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia , 600 South 43rd Street, Philadelphia, Pennsylvania 19104-4495, United States
| |
Collapse
|
72
|
Alfinito E, Reggiani L. Mechanisms responsible for the photocurrent in bacteriorhodopsin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032702. [PMID: 25871139 DOI: 10.1103/physreve.91.032702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 06/04/2023]
Abstract
Recently, there has been growing interest in the electrical properties of bacteriorhodopsin (bR), a protein belonging to the transmembrane protein family. Several experiments pointed out the role of green light in enhancing the current flow in nanolayers of bR, thus confirming potential applications of this protein in the field of optoelectronics. By contrast, the mechanisms underlying the charge transfer and the associated photocurrent are still far from being understood at a microscopic level. To take into account the structure-dependent nature of the current, in a previous set of papers we suggested a mechanism of sequential tunneling among neighboring amino acids. As a matter of fact, when irradiated with green light, bR undergoes a conformational change at a molecular level. Thus, the role played by the protein tertiary-structure in modeling the charge transfer cannot be neglected. The aim of this paper is to go beyond previous models, in the framework of a new branch of electronics we call proteotronics, which exploits the ability of using proteins as reliable, well-understood materials for the development of novel bioelectronic devices. In particular, the present approach assumes that the conformational change is not the unique transformation the protein undergoes when irradiated by light. Instead, the light can also promote an increase of the protein state free energy that, in turn, should modify its internal degree of connectivity. This phenomenon is here described by the change of the value of an interaction radius associated with the physical interactions among amino acids. The implemented model enables us to achieve a better agreement between theory and experiments in the region of a low applied bias by preserving the level of agreement at high values of applied bias. Furthermore, results provide new insights on the mechanisms responsible for bR photoresponse.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| | - Lino Reggiani
- Dipartimento di Matematica e Fisica, "Ennio de Giorgi," Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| |
Collapse
|
73
|
Abstract
Rhodopsin is a key light-sensitive protein expressed exclusively in rod photoreceptor cells of the retina. Failure to express this transmembrane protein causes a lack of rod outer segment formation and progressive retinal degeneration, including the loss of cone photoreceptor cells. Molecular studies of rhodopsin have paved the way to understanding a large family of cell-surface membrane proteins called G protein-coupled receptors (GPCRs). Work started on rhodopsin over 100 years ago still continues today with substantial progress made every year. These activities underscore the importance of rhodopsin as a prototypical GPCR and receptor required for visual perception-the fundamental process of translating light energy into a biochemical cascade of events culminating in vision.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | | |
Collapse
|
74
|
Cheminal A, Léonard J, Kim SY, Jung KH, Kandori H, Haacke S. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2015; 17:25429-39. [DOI: 10.1039/c5cp04353k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counter-intuitive photochemistry: in Anabaena Sensory Rhodopsin, the retinal 13-cis isomer isomerizes much faster than all-trans ASR, but with a 3-times lower quantum yield.
Collapse
Affiliation(s)
- Alexandre Cheminal
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - So-Young Kim
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Hideki Kandori
- Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| |
Collapse
|
75
|
Coughlan NJA, Adamson BD, Gamon L, Catani K, Bieske EJ. Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base. Phys Chem Chem Phys 2015; 17:22623-31. [DOI: 10.1039/c5cp03611a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isomers of the retinal protonated Schiff base are separated and probed using laser radiation in a tandem ion mobility spectrometer yielding isomer-specific electronic spectra.
Collapse
Affiliation(s)
| | - B. D. Adamson
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - L. Gamon
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - K. Catani
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - E. J. Bieske
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
76
|
Polli D, Rivalta I, Nenov A, Weingart O, Garavelli M, Cerullo G. Tracking the primary photoconversion events in rhodopsins by ultrafast optical spectroscopy. Photochem Photobiol Sci 2015; 14:213-28. [DOI: 10.1039/c4pp00370e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the most recent experimental and computational efforts aimed at exposing the very early phases of the ultrafast isomerization in visual Rhodopsins and we discuss future advanced experiments and calculations.
Collapse
Affiliation(s)
- D. Polli
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| | - I. Rivalta
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - A. Nenov
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - O. Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- Universitätsstr. 1
- 40225 Düsseldorf
- Germany
| | - M. Garavelli
- Université de Lyon
- CNRS
- Institut de Chimie de Lyon
- École Normale Supérieure de Lyon
- F-69364 Lyon Cedex 07
| | - G. Cerullo
- IFN-CNR
- Dipartimento di Fisica
- Politecnico di Milano
- 20133 Milano
- Italy
| |
Collapse
|
77
|
Human infrared vision is triggered by two-photon chromophore isomerization. Proc Natl Acad Sci U S A 2014; 111:E5445-54. [PMID: 25453064 DOI: 10.1073/pnas.1410162111] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments.
Collapse
|
78
|
Punwong C, Owens J, Martínez TJ. Direct QM/MM Excited-State Dynamics of Retinal Protonated Schiff Base in Isolation and Methanol Solution. J Phys Chem B 2014; 119:704-14. [DOI: 10.1021/jp5038798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chutintorn Punwong
- Department
of Physics, Faculty of Science, and Trace
Analysis and Biosensor Research Center, Prince of Songkla University, Songkhla 90112, Thailand
| | - Jane Owens
- Department
of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Todd J. Martínez
- Department
of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
79
|
Shelaev IV, Mozgovaya MN, Smitienko OA, Gostev FE, Fel’dman TB, Nadtochenko VA, Sarkisov OM, Ostrovskii MA. Femtosecond dynamics of primary processes in visual pigment rhodopsin. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2014. [DOI: 10.1134/s1990793114040101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
80
|
Di Donato M, Segado Centellas M, Lapini A, Lima M, Avila F, Santoro F, Cappelli C, Righini R. Combination of transient 2D-IR experiments and ab initio computations sheds light on the formation of the charge-transfer state in photoexcited carbonyl carotenoids. J Phys Chem B 2014; 118:9613-30. [PMID: 25050938 DOI: 10.1021/jp505473j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excited state dynamics of carbonyl carotenoids is very complex because of the coupling of single- and doubly excited states and the possible involvement of intramolecular charge-transfer (ICT) states. In this contribution we employ ultrafast infrared spectroscopy and theoretical computations to investigate the relaxation dynamics of trans-8'-apo-β-carotenal occurring on the picosecond time scale, after excitation in the S2 state. In a (slightly) polar solvent like chloroform, one-dimensional (T1D-IR) and two-dimensional (T2D-IR) transient infrared spectroscopy reveal spectral components with characteristic frequencies and lifetimes that are not observed in nonpolar solvents (cyclohexane). Combining experimental evidence with an analysis of CASPT2//CASSCF ground and excited state minima and energy profiles, complemented with TDDFT calculations in gas phase and in solvent, we propose a photochemical decay mechanism for this system where only the bright single-excited 1Bu(+) and the dark double-excited 2Ag(-) states are involved. Specifically, the initially populated 1Bu(+) relaxes toward 2Ag(-) in 200 fs. In a nonpolar solvent 2Ag(-) decays to the ground state (GS) in 25 ps. In polar solvents, distortions along twisting modes of the chain promote a repopulation of the 1Bu(+) state which then quickly relaxes to the GS (18 ps in chloroform). The 1Bu(+) state has a high electric dipole and is the main contributor to the charge-transfer state involved in the dynamics in polar solvents. The 2Ag(-) → 1Bu(+) population transfer is evidenced by a cross peak on the T2D-IR map revealing that the motions along the same stretching of the conjugated chain on the 2Ag(-) and 1Bu(+) states are coupled.
Collapse
Affiliation(s)
- Mariangela Di Donato
- LENS (European Laboratory for Nonlinear Spectroscopy) via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
Gozem S, Mirzakulova E, Schapiro I, Melaccio F, Glusac KD, Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew Chem Int Ed Engl 2014; 53:9870-5. [DOI: 10.1002/anie.201404011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 01/24/2023]
|
83
|
Gozem S, Mirzakulova E, Schapiro I, Melaccio F, Glusac KD, Olivucci M. A Conical Intersection Controls the Deactivation of the Bacterial Luciferase Fluorophore. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
84
|
Walter C, Ruetzel S, Diekmann M, Nuernberger P, Brixner T, Engels B. Photoisomerization among ring-open merocyanines. II. A computational study. J Chem Phys 2014; 140:224311. [DOI: 10.1063/1.4881259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
85
|
Gozem S, Melaccio F, Valentini A, Filatov M, Huix-Rotllant M, Ferré N, Frutos LM, Angeli C, Krylov AI, Granovsky AA, Lindh R, Olivucci M. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. J Chem Theory Comput 2014; 10:3074-84. [PMID: 26588278 DOI: 10.1021/ct500154k] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.
Collapse
Affiliation(s)
- Samer Gozem
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States
| | - Federico Melaccio
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| | - Alessio Valentini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy.,Departamento de Química Física, Universidad de Alcalá , E-28871 Alcalá de Henares, Madrid, Spain
| | - Michael Filatov
- Institut für Physikalische und Theoretische Chemie, Universität Bonn , Beringstrasse 4, 53115 Bonn, Germany
| | - Miquel Huix-Rotllant
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , Marseille, France
| | - Nicolas Ferré
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire , Marseille, France
| | - Luis Manuel Frutos
- Departamento de Química Física, Universidad de Alcalá , E-28871 Alcalá de Henares, Madrid, Spain
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara , via Fossato di Mortara 17, I-44121 Ferrara, Italy
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | | | - Roland Lindh
- Department of Chemistry - Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden
| | - Massimo Olivucci
- Department of Chemistry, Bowling Green State University , Bowling Green, Ohio 43403, United States.,Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena , via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
86
|
Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin. J Phys Chem B 2014; 118:8396-405. [PMID: 24794143 PMCID: PMC4216198 DOI: 10.1021/jp502538m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump-probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques.
Collapse
|
87
|
Mehler M, Scholz F, Ullrich SJ, Mao J, Braun M, Brown LJ, Brown RCD, Fiedler SA, Becker-Baldus J, Wachtveitl J, Glaubitz C. The EF loop in green proteorhodopsin affects conformation and photocycle dynamics. Biophys J 2014; 105:385-97. [PMID: 23870260 DOI: 10.1016/j.bpj.2013.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
The proteorhodopsin family consists of retinal proteins of marine bacterial origin with optical properties adjusted to their local environments. For green proteorhodopsin, a highly specific mutation in the EF loop, A178R, has been found to cause a surprisingly large redshift of 20 nm despite its distance from the chromophore. Here, we analyze structural and functional consequences of this EF loop mutation by time-resolved optical spectroscopy and solid-state NMR. We found that the primary photoreaction and the formation of the K-like photo intermediate is almost pH-independent and slower compared to the wild-type, whereas the decay of the K-intermediate is accelerated, suggesting structural changes within the counterion complex upon mutation. The photocycle is significantly elongated mainly due to an enlarged lifetime of late photo intermediates. Multidimensional MAS-NMR reveals mutation-induced chemical shift changes propagating from the EF loop to the chromophore binding pocket, whereas dynamic nuclear polarization-enhanced (13)C-double quantum MAS-NMR has been used to probe directly the retinylidene conformation. Our data show a modified interaction network between chromophore, Schiff base, and counterion complex explaining the altered optical and kinetic properties. In particular, the mutation-induced distorted structure in the EF loop weakens interactions, which help reorienting helix F during the reprotonation step explaining the slower photocycle. These data lead to the conclusion that the EF loop plays an important role in proton uptake from the cytoplasm but our data also reveal a clear interaction pathway between the EF loop and retinal binding pocket, which might be an evolutionary conserved communication pathway in retinal proteins.
Collapse
Affiliation(s)
- Michaela Mehler
- Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Bassolino G, Sovdat T, Liebel M, Schnedermann C, Odell B, Claridge TD, Kukura P, Fletcher SP. Synthetic Control of Retinal Photochemistry and Photophysics in Solution. J Am Chem Soc 2014; 136:2650-8. [DOI: 10.1021/ja4121814] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giovanni Bassolino
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Tina Sovdat
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matz Liebel
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Christoph Schnedermann
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Barbara Odell
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy D.W. Claridge
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Philipp Kukura
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Stephen P. Fletcher
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
89
|
Rivalta I, Nenov A, Garavelli M. Modelling retinal chromophores photoisomerization: from minimal models in vacuo to ultimate bidimensional spectroscopy in rhodopsins. Phys Chem Chem Phys 2014; 16:16865-79. [DOI: 10.1039/c3cp55211j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling of retinal photoisomerization in different environments is reviewed and ultimate ultrafast electronic spectroscopy is proposed for obtaining new insights.
Collapse
Affiliation(s)
- Ivan Rivalta
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| | - Artur Nenov
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
- 40126 Bologna, Italy
| | - Marco Garavelli
- Université de Lyon
- CNRS
- 69364 Lyon, Cedex 07, France
- Dipartimento di Chimica “Giacomo Ciamician”
- Università di Bologna
| |
Collapse
|
90
|
Rodríguez-Hernández F, Martínez-Mesa A, Uranga-Piña L. Hybrid quantum–classical study of the non-adiabatic cis–trans photoisomerization in a model polyatomic molecule. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2013.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
91
|
Robb MA. In This Molecule There Must Be a Conical Intersection. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800256-8.00003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
92
|
Qu Z, Liu C. A non-adiabatic dynamics study of octatetraene: The radiationless conversion from S2 to S1. J Chem Phys 2013; 139:244304. [PMID: 24387367 DOI: 10.1063/1.4853715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zexing Qu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Chungen Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
93
|
The Interplay of Nuclear and Electron Wavepacket Motion in the Control of Molecular Processes: A Theoretical Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-45290-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
94
|
Zhou P, Liu J, Han K, He G. The photoisomerization of 11-cis-retinal protonated schiff base in gas phase: Insight from spin-flip density functional theory. J Comput Chem 2013; 35:109-20. [DOI: 10.1002/jcc.23463] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/12/2013] [Accepted: 09/24/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Panwang Zhou
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| | - Guozhong He
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 Liaoning People's Republic of China
| |
Collapse
|
95
|
Cheminal A, Léonard J, Kim S, Jung KH, Kandori H, Haacke S. Steady state emission of the fluorescent intermediate of Anabaena Sensory Rhodopsin as a function of light adaptation conditions. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
96
|
Walczak E, Szefczyk B, Andruniów T. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods. J Chem Theory Comput 2013; 9:4915-27. [DOI: 10.1021/ct400423u] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elżbieta Walczak
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Borys Szefczyk
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Wroclaw University of Technology, Institute of Physical & Theoretical Chemistry, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
97
|
Gozem S, Melaccio F, Lindh R, Krylov AI, Granovsky AA, Angeli C, Olivucci M. Mapping the Excited State Potential Energy Surface of a Retinal Chromophore Model with Multireference and Equation-of-Motion Coupled-Cluster Methods. J Chem Theory Comput 2013; 9:4495-506. [DOI: 10.1021/ct400460h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Federico Melaccio
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| | - Roland Lindh
- Department
of Chemistry, Ångström, the Theoretical Chemistry Programme, POB 518, SE-751 20 Uppsala, Sweden
| | - Anna I. Krylov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | | | - Celestino Angeli
- Dipartimento
di Chimica, Università di Ferrara, via Borsari 46, I-44121 Ferrara, Italy
| | - Massimo Olivucci
- Department
of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, I-53100 Siena, Italy
| |
Collapse
|
98
|
Yu Y, Wu L, Zou X, Dai X, Liu K, Su H. Time-Resolved and Mechanistic Study of the Photochemical Uncaging Reaction of the o-Hydroxycinnamic Caged Compound. J Phys Chem A 2013; 117:7767-75. [DOI: 10.1021/jp403323h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youqing Yu
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lidan Wu
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoran Zou
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaojuan Dai
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kunhui Liu
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongmei Su
- Beijing National
Laboratory for Molecular Sciences
(BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
99
|
Segarra-Martí J, Coto PB, Rubio M, Roca-Sanjuán D, Merchán M. Towards the understanding at the molecular level of the structured-water absorption and fluorescence spectra: a fingerprint of π-stacked water. Mol Phys 2013. [DOI: 10.1080/00268976.2013.794980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Pedro B. Coto
- a Instituto de Ciencia Molecular , Universitat de València , Valencia , Spain
| | - Mercedes Rubio
- a Instituto de Ciencia Molecular , Universitat de València , Valencia , Spain
| | - Daniel Roca-Sanjuán
- a Instituto de Ciencia Molecular , Universitat de València , Valencia , Spain
| | - Manuela Merchán
- a Instituto de Ciencia Molecular , Universitat de València , Valencia , Spain
| |
Collapse
|
100
|
Janke C, Scholz F, Becker-Baldus J, Glaubitz C, Wood PG, Bamberg E, Wachtveitl J, Bamann C. Photocycle and vectorial proton transfer in a rhodopsin from the eukaryote Oxyrrhis marina. Biochemistry 2013; 52:2750-63. [PMID: 23586665 DOI: 10.1021/bi301412n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Retinylidene photoreceptors are ubiquitously present in marine protists as first documented by the identification of green proteorhodopsin (GPR). We present a detailed investigation of a rhodopsin from the protist Oxyrrhis marina (OR1) with respect to its spectroscopic properties and to its vectorial proton transport. Despite its homology to GPR, OR1's features differ markedly in its pH dependence. Protonation of the proton acceptor starts at pH below 4 and is sensitive to the ionic conditions. The mutation of a conserved histidine H62 did not influence the pK(a) value in a similar manner as in other proteorhodopsins where the charged histidine interacts with the proton acceptor forming the so-called His-Asp cluster. Mutational and pH-induced effects were further reflected in the temporal behavior upon light excitation ranging from femtoseconds to seconds. The primary photodynamics exhibits a high sensitivity to the environment of the proton acceptor D100 that are correlated to the different initial states. The mutation of the H62 does not affect photoisomerization at neutral pH. This is in agreement with NMR data indicating the absence of the His-Asp cluster. The subsequent steps in the photocycle revealed protonation reactions at the Schiff base coupled to proton pumping even at low pH. The main electrogenic steps are associated with the reprotonation of the Schiff base and internal proton donor. Hence, OR1 shows a different theme of the His-Asp organization where the low pK(a) of the proton acceptor is not dominated by this interaction, but by other electrostatic factors.
Collapse
Affiliation(s)
- Christian Janke
- Max-Planck-Institut für Biophysik, Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|