51
|
Luzhna L, Kutanzi K, Kovalchuk O. Gene expression and epigenetic profiles of mammary gland tissue: Insight into the differential predisposition of four rat strains to mammary gland cancer. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 779:39-56. [DOI: 10.1016/j.mrgentox.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 12/29/2022]
|
52
|
50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 2014; 16:258-64. [PMID: 25549891 DOI: 10.1038/nrm3931] [Citation(s) in RCA: 610] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 1964, Vincent Allfrey and colleagues reported the identification of histone acetylation and with deep insight proposed a regulatory role for this protein modification in transcription regulation. Subsequently, histone acetyltransferases (HATs), histone deacetylases (HDACs) and acetyl-Lys-binding proteins were identified as transcription regulators, thereby providing compelling evidence for his daring hypothesis. During the past 15 years, reversible protein acetylation and its modifying enzymes have been implicated in many cellular functions beyond transcription regulation. Here, we review the progress accomplished during the past 50 years and discuss the future of protein acetylation.
Collapse
|
53
|
Shin J, Ming GL, Song H. Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nat Neurosci 2014; 17:1463-75. [PMID: 25349913 DOI: 10.1038/nn.3814] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/14/2014] [Indexed: 02/07/2023]
Abstract
The mammalian brain is an evolutionary marvel in which engraving and re-engraving of cellular states enable complex information processing and lifelong maintenance. Understanding the mechanisms by which neurons alter and maintain their molecular signatures during information processing is a fundamental goal of neuroscience. Next-generation sequencing (NGS) technology is rapidly transforming the ability to probe the molecular basis of neuronal function. NGS can define not only the complete molecular signatures of cells by transcriptome analyses but also the cascade of events that induce or maintain such signatures by epigenetic analyses. Here we offer some general and practical information to demystify NGS technology and highlight its potential to the neuroscience field. We start with discussion of the complexity of the nervous system, then introduce various applications of NGS with practical considerations and describe basic principles underlying various NGS technologies. Finally, we discuss emerging NGS-related technologies for the neuroscience field.
Collapse
Affiliation(s)
- Jaehoon Shin
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guo-li Ming
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hongjun Song
- 1] Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [3] Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [4] The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Affiliation(s)
- Juan Ausió
- Department; of Biochemistry and Microbiology; University of Victoria; Victoria BC Canada
| |
Collapse
|
55
|
Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J Proteomics 2014; 113:162-77. [PMID: 25452131 DOI: 10.1016/j.jprot.2014.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/10/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. BIOLOGICAL SIGNIFICANCE Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to establish the interplay between PTMs of linker and core histones in order to fully understand chromatin regulation. A protein sequence alignment summarizing the PTMs found to date in chicken, mouse, rat and humans showed that, while many of the modified positions were conserved between these species, the type of modification often varied depending on the species or the cellular type. This finding suggests an important role for the PTMs in the regulation of linker histone functions.
Collapse
Affiliation(s)
- Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Rita Lopez
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Inma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
56
|
González-Prieto JM, Rosas-Quijano R, Domínguez A, Ruiz-Herrera J. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence. Fungal Genet Biol 2014; 71:86-95. [PMID: 25242418 DOI: 10.1016/j.fgb.2014.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene.
Collapse
Affiliation(s)
- Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Raymundo Rosas-Quijano
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tam. 88710, Mexico; Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico
| | - Angel Domínguez
- Departamento de Microbiología y Genética, CIETUS, IBSAL, Universidad de Salamanca, 37007 Salamanca, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N, Unidad Irapuato, Irapuato, Gto. 36500, Mexico.
| |
Collapse
|
57
|
Sheikh BN. Crafting the brain - role of histone acetyltransferases in neural development and disease. Cell Tissue Res 2014; 356:553-73. [PMID: 24788822 DOI: 10.1007/s00441-014-1835-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023]
Abstract
The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Division of Development and Cancer, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Victoria, Australia,
| |
Collapse
|
58
|
Khan MA, Dixit K, Moinuddin, Arif Z, Alam K. Studies on peroxynitrite-modified H1 histone: Implications in systemic lupus erythematosus. Biochimie 2014; 97:104-13. [DOI: 10.1016/j.biochi.2013.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
|
59
|
Tabbaa ZM, Zheng Y, Daftary GS. KLF11 epigenetically regulates glycodelin-A, a marker of endometrial biology via histone-modifying chromatin mechanisms. Reprod Sci 2013; 21:319-28. [PMID: 24060634 DOI: 10.1177/1933719113503407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endometrial biology is characterized by programmed proliferation and differentiation that is synchronous with ovarian folliculogenesis to maximize the chance of pregnancy. Glycodelin-A, an endometrial secretory protein, promotes pregnancy mostly through immunomodulatory mechanisms. Glycodelin-A is repressed during the proliferative and early secretory phase and activated thereafter. Progesterone activates glycodelin via the Sp1 (Specificity Protein 1) transactivator. We identify a novel role for Kruppel-like transcription factor 11 (KLF11) as a glycodelin-A repressor. Although KLF11 bound 2 distinct regulatory elements, it regulated glycodelin promoter activity differentially through each element. Whereas KLF11 weakly activated glycodelin promoter activity via a region that also bound Sp1, the dominant effect of KLF11 was repression of promoter activity, messenger RNA (mRNA), and protein expression via a novel, specific binding element. KLF11 mediated this repression by recruiting the SIN3/histone deacetylase (HDAC) corepressor complex to the glycodelin promoter. KLF11 may solely, or by competing with Sp1, repress glycodelin-A levels and thereby influence its role in the endometrium.
Collapse
Affiliation(s)
- Zaid M Tabbaa
- 1Laboratory of Translational Epigenetics in Reproduction, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
60
|
Abstract
A number of pharmacological agents are currently available for the induction of the fetal hemoglobin (Hb F) to treat the patients with sickle cell disease and beta-thalassemia. In the present review, we summarized the investigation and development of these Hb F-inducing agents and introduced histone deacetylase inhibitors as the new strategy to induce Hb F to treat the hemoglobin disorders
Collapse
Affiliation(s)
- Hua Cao
- Division of Medical Genetics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
61
|
Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 2013; 123:3-13. [PMID: 23996014 DOI: 10.1007/s00412-013-0435-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/17/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array-array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.
Collapse
|
62
|
Shimahara H, Hirano T, Ohya K, Matsuta S, Seeram SS, Tate SI. Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2. FEBS Open Bio 2013; 3:184-91. [PMID: 23772392 PMCID: PMC3668530 DOI: 10.1016/j.fob.2013.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023] Open
Abstract
Interactions between the nucleosome and the non-histone chromosomal proteins (HMGN1 and HMGN2) were studied by circular dichroism (CD) spectroscopy to elucidate structural changes in the nucleosome induced by HMGN binding. Unlike previous studies that used a nucleosome extracted from living cells, in this study we utilized a nucleosome reconstituted from unmodified recombinant histones synthesized in Escherichia coli and a 189-bp synthetic DNA fragment harboring a nucleosome positioning sequence. This DNA fragment consists of 5′-TATAAACGCC-3′ repeats that has a high affinity to the histone octamer. A nucleosome containing a unique octamer-binding sequence at a specific location on the DNA was produced at sufficiently high yield for spectroscopic analysis. CD data have indicated that both HMGN1 and HMGN2 can increase the winding angle of the nucleosome DNA, but the extent of the structural changes induced by these proteins differs significantly. This suggests HMGN1 and HMGN2 would have different abilities to facilitate nucleosome remodeling. A nucleosome was reconstituted from recombinant histones and a synthetic DNA. Nucleosomes were produced at sufficiently high yield for spectroscopic analysis. A nucleosome with and without HMGN proteins was analyzed using CD spectroscopy. CD data indicate that HMGN proteins increase the winding angle of the nucleosome DNA. HMGN1 and HMGN2 may have different abilities to facilitate nucleosome remodeling.
Collapse
Key Words
- CD
- CD, circular dichroism
- HMG, high mobility group
- HMGN
- HMGN1 HMGN2, non-histone chromosomal proteins
- IPTG, isopropyl-β-d-galactopyranoside
- LB, Luria–Bertani
- MNase, micrococcal nuclease
- NMR, nuclear magnetic resonance
- Nucleosome
- PCR, polymerase chain reaction
- RP-HPLC, reverse phase high performance liquid chromatography
- Reconstitution
- SDS–PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Unmodified recombinant histones
- phH2A, phH2B, phH3, and phH4, vectors for the gene expression of all four recombinant human core histones H2A, H2B, H3, and H4, respectively
Collapse
Affiliation(s)
- Hideto Shimahara
- Corresponding author. Tel.: +81 761 51 1478; fax: +81 761 51 1455.
| | | | | | | | | | | |
Collapse
|
63
|
Hizume K, Araki S, Hata K, Prieto E, Kundu TK, Yoshikawa K, Takeyasu K. Nano-scale analyses of the chromatin decompaction induced by histone acetylation. ACTA ACUST UNITED AC 2013; 73:149-63. [PMID: 22572182 DOI: 10.1679/aohc.73.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The acetylation of histone tails is a key factor in the maintenance of chromatin dynamics and cellular homeostasis. The hallmark of active chromatin is the hyper-acetylation of histones, which appears to result in a more open chromatin structure. Although short nucleosomal arrays have been studied, the structural dynamics of relatively long acetylated chromatin remain unclear. We have analyzed in detail the structure of long hyper-acetylated chromatin fibers using atomic force microscopy (AFM). Hyper-acetylated chromatin fibers isolated from nuclei that had been treated with Trichostatin A (TSA), an inhibitor of histone deacetylase, were found to be thinner than those from untreated nuclei. The acetylated chromatin fibers were more easily spread out of nuclei by high-salt treatment, implying that hyper-acetylation facilitates the release of chromatin fibers from compact heterochromatin regions. Chromatin fibers reconstituted in vitro from core histones and linker histone H1 became thinner upon acetylation. AFM imaging indicated that the gyration radius of the nucleosomal fiber increased after acetylation and that the hyper-acetylated nucleosomes did not aggregate at high salt concentrations, in contrast to the behavior of non-acetylated nucleosomal arrays, suggesting that acetylation increases long-range repulsions between nucleosomes. Based on these data, we considered a simple coarse grained model, which underlines the effect of remaining electric charges inside the chromatin fiber.
Collapse
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University. Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
64
|
Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication. J Virol 2012; 86:11287-300. [PMID: 22875975 DOI: 10.1128/jvi.01468-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.
Collapse
|
65
|
Histone H3 lysine 4 methylation marks postreplicative human cytomegalovirus chromatin. J Virol 2012; 86:9817-27. [PMID: 22761369 DOI: 10.1128/jvi.00581-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the nuclei of permissive cells, human cytomegalovirus genomes form nucleosomal structures initially resembling heterochromatin but gradually switching to a euchromatin-like state. This switch is characterized by a decrease in histone H3 K9 methylation and a marked increase in H3 tail acetylation and H3 K4 methylation across the viral genome. We used ganciclovir and a mutant virus encoding a reversibly destabilized DNA polymerase to examine the impact of DNA replication on histone modification dynamics at the viral chromatin. The changes in H3 tail acetylation and H3 K9 methylation proceeded in a DNA replication-independent fashion. In contrast, the increase in H3 K4 methylation proved to depend widely on viral DNA synthesis. Consistently, labeling of nascent DNA using "click chemistry" revealed preferential incorporation of methylated H3 K4 into viral (but not cellular) chromatin during or following DNA replication. This study demonstrates largely selective epigenetic tagging of postreplicative human cytomegalovirus chromatin.
Collapse
|
66
|
Conrath U. Molecular aspects of defence priming. TRENDS IN PLANT SCIENCE 2011; 16:524-31. [PMID: 21782492 DOI: 10.1016/j.tplants.2011.06.004] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/11/2011] [Accepted: 06/14/2011] [Indexed: 05/18/2023]
Abstract
Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism.
Collapse
Affiliation(s)
- Uwe Conrath
- Plant Biochemistry & Molecular Biology Group, Department of Plant Physiology, RWTH Aachen University, D-52056 Aachen, Germany.
| |
Collapse
|
67
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
68
|
Montel F, Castelnovo M, Menoni H, Angelov D, Dimitrov S, Faivre-Moskalenko C. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study. Nucleic Acids Res 2010; 39:2571-9. [PMID: 21138962 PMCID: PMC3074153 DOI: 10.1093/nar/gkq1254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The ‘remodels structure of chromatin’ (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes.
Collapse
Affiliation(s)
- Fabien Montel
- Université de Lyon, Laboratoire de Physique, CNRS UMR 5672, Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
69
|
Jaskiewicz M, Conrath U, Peterhänsel C. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 2010; 12:50-5. [PMID: 21132017 DOI: 10.1038/embor.2010.186] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 11/09/2022] Open
Abstract
Priming of defence genes for amplified response to secondary stress can be induced by application of the plant hormone salicylic acid or its synthetic analogue acibenzolar S-methyl. In this study, we show that treatment with acibenzolar S-methyl or pathogen infection of distal leaves induce chromatin modifications on defence gene promoters that are normally found on active genes, although the genes remain inactive. This is associated with an amplified gene response on challenge exposure to stress. Mutant analyses reveal a tight correlation between histone modification patterns and gene priming. The data suggest a histone memory for information storage in the plant stress response.
Collapse
Affiliation(s)
- Michal Jaskiewicz
- Department of Botany, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52056, Germany
| | | | | |
Collapse
|
70
|
Albaugh BN, Arnold KM, Denu JM. KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism. Chembiochem 2010; 12:290-8. [PMID: 21243716 DOI: 10.1002/cbic.201000438] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Indexed: 12/22/2022]
Abstract
Post-translational modifications of histones elicit structural and functional changes within chromatin that regulate various epigenetic processes. Epigenetic mechanisms rely on enzymes whose activities are driven by coenzymes and metabolites from intermediary metabolism. Lysine acetyltransferases (KATs) catalyze the transfer of acetyl groups from acetyl-CoA to epsilon amino groups. Utilization of this critical metabolite suggests these enzymes are modulated by the metabolic status of the cell. This review highlights studies linking KATs to metabolism. We cover newly identified acyl modifications (propionylation and butyrylation), discuss the control of KAT activity by cellular acetyl-CoA levels, and provide insights into how acetylation regulates metabolic proteins. We conclude with a discussion of the current approaches to identifying novel KATs and their metabolic substrates.
Collapse
Affiliation(s)
- Brittany N Albaugh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
71
|
|
72
|
Kou CYC, Lau SLY, Au KW, Leung PY, Chim SSC, Fung KP, Waye MMY, Tsui SKW. Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun 2010; 400:278-83. [PMID: 20735989 DOI: 10.1016/j.bbrc.2010.08.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022]
Abstract
The relationship between DNA methylation, histone modifications and terminal differentiation in cardiomyocytes was investigated in this study. The upregulation of methylation-related proteins, including DNA methyltransferase (DNMT) 1, methyl-CpG binding domain proteins 1, 2 and 3, and the increase in global methylation during rat neonatal heart development were observed. Moreover, an increase in DNA synthesis and a delay in differentiation were found in 5-azacytidine (5-azaC)-treated cardiomyocytes. Increase in acetylation of H3-K9, H4-K5, H4-K8 and methylation of H3-K4 suggested a more accessible chromatin structure in 5-azaC-treated cells. Furthermore, methyl-CpG-binding protein 2 was found to be upregulated in differentiated cardiomyocytes. Overexpression of this protein resulted in an increase of global methylation levels. Therefore, we suggest that a hypermethylated genome and a more compact chromatin structure are formed during terminal differentiation of cardiomyocytes.
Collapse
Affiliation(s)
- Cecy Ying-Chuck Kou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Szerlong HJ, Prenni JE, Nyborg JK, Hansen JC. Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. J Biol Chem 2010; 285:31954-64. [PMID: 20720004 DOI: 10.1074/jbc.m110.148718] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Condensation of chromatin into higher order structures is mediated by intra- and interfiber nucleosome-nucleosome interactions. Our goals in this study were to determine the impact specific activator-dependent histone acetylation had on chromatin condensation and to ascertain whether acetylation-induced changes in chromatin condensation were related to changes in RNA polymerase II (RNAPII) activity. To accomplish this, an in vitro model system was constructed in which the purified transcriptional activators, Tax and phosphorylated CREB (cAMP-response element-binding protein), recruited the p300 histone acetyltransferase to nucleosomal templates containing the human T-cell leukemia virus type-1 promoter sequences. We find that activator-dependent p300 histone acetylation disrupted both inter- and intrafiber nucleosome-nucleosome interactions and simultaneously led to enhanced RNAPII transcription from the decondensed model chromatin. p300 histone acetyltransferase activity had two distinct components: non-targeted, ubiquitous activity in the absence of activators and activator-dependent activity targeted primarily to promoter-proximal nucleosomes. Mass spectrometry identified several unique p300 acetylation sites on nucleosomal histone H3 (H3K9, H3K27, H3K36, and H3K37). Collectively, our data have important implications for understanding both the mechanism of RNAPII transcriptional regulation by chromatin and the molecular determinants of higher order chromatin structure.
Collapse
Affiliation(s)
- Heather J Szerlong
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | |
Collapse
|
74
|
Sprigg L, Li A, Choy FYM, Ausió J. Interaction of Daunomycin with Acetylated Chromatin. J Med Chem 2010; 53:6457-65. [DOI: 10.1021/jm1007853] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lyndsay Sprigg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Andra Li
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | - Francis Y. M. Choy
- Department of Biology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
- Center for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
- Center for Biomedical Research, University of Victoria, Victoria, British Columbia, V8W 3N5, Canada
| |
Collapse
|
75
|
Simeó CG, Kurtz K, Rotllant G, Chiva M, Ribes E. Sperm ultrastructure of the spider crab Maja brachydactyla (Decapoda: Brachyura). J Morphol 2010; 271:407-17. [PMID: 19885919 DOI: 10.1002/jmor.10806] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus.
Collapse
|
76
|
Raghuram N, Carrero G, Stasevich TJ, McNally JG, Th'ng J, Hendzel MJ. Core histone hyperacetylation impacts cooperative behavior and high-affinity binding of histone H1 to chromatin. Biochemistry 2010; 49:4420-31. [PMID: 20411992 DOI: 10.1021/bi100296z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linker histones stabilize higher order chromatin structures and limit access to proteins involved in DNA-dependent processes. Core histone acetylation is thought to modulate H1 binding. In the current study, we employed kinetic modeling of H1 recovery curves obtained during fluorescence recovery after photobleaching (FRAP) experiments to determine the impact of core histone acetylation on the different variants of H1. Following brief treatments with histone deacetylase inhibitor, most variants showed no change in H1 dynamics. A change in mobility was detected only when longer treatments were used to induce high levels of histone acetylation. This hyperacetylation imparted marked changes in the dynamics of low-affinity H1 population, while conferring variant-specific changes in the mobility of H1 molecules that were strongly bound. Both the C-terminal domain (CTD) and globular domain were responsible for this differential response to TSA. Furthermore, we found that neither the CTD nor the globular domain, by themselves, undergoes a change in kinetics following hyperacetylation. This led us to conclude that hyperacetylation of core histones affects the cooperative nature of low-affinity H1 binding, with some variants undergoing a predicted decrease of almost 2 orders of magnitude.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
The double-stranded DNA genomes of herpesviruses exist in at least three alternative global chromatin states characterised by distinct nucleosome content. When encapsidated in virus particles, the viral DNA is devoid of any nucleosomes. In contrast, within latently infected nuclei herpesvirus genomes are believed to form regular nucleosomal structures resembling cellular chromatin. Finally, during productive infection nuclear viral DNA appears to adopt a state of intermediate chromatin formation with irregularly spaced nucleosomes. Nucleosome occupancy coupled with posttranslational histone modifications and other epigenetic marks may contribute significantly to the extent and timing of transcription from the viral genome and, consequently, to the outcome of infection. Recent research has provided first insights into the viral and cellular mechanisms that either maintain individual herpesvirus chromatin states or mediate transition between them. Here, we summarise and discuss both early work and new developments pointing towards common principles pertinent to the dynamic structure and epigenetic regulation of herpesvirus chromatin. Special emphasis is given to the emerging similarities in nucleosome assembly and disassembly processes on herpes simplex virus type 1 and human cytomegalovirus genomes over the course of the viral productive replication cycle and during the switch between latent and lytic infectious stages.
Collapse
Affiliation(s)
- Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | | | | |
Collapse
|
78
|
Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 2009; 277:599-604. [PMID: 20015078 DOI: 10.1111/j.1742-4658.2009.07504.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the most obscure phenomena in modern biology is the near genome-wide displacement of histones that occurs during the postmeiotic phases of spermatogenesis in many species. Here we review the literature to show that, during spermatogenic differentiation, three major molecular mechanisms come together to 'prepare' the nucleosomes for facilitated disassembly and histone removal.
Collapse
Affiliation(s)
- Jonathan Gaucher
- INSERM, U823, Université Joseph Fourier, Institut Albert Bonniot, Grenoble, France
| | | | | | | | | | | |
Collapse
|
79
|
Herpes simplex virus VP16, but not ICP0, is required to reduce histone occupancy and enhance histone acetylation on viral genomes in U2OS osteosarcoma cells. J Virol 2009; 84:1366-75. [PMID: 19939931 DOI: 10.1128/jvi.01727-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.
Collapse
|
80
|
Stewart MD, Wong J. Nuclear receptor repression: regulatory mechanisms and physiological implications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:235-59. [PMID: 20374706 DOI: 10.1016/s1877-1173(09)87007-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to associate with corepressors and to inhibit transcription is an intrinsic property of most members of the nuclear receptor (NR) superfamily. NRs induce transcriptional repression by recruiting multiprotein corepressor complexes. Nuclear receptor corepressor (NCoR) and silencing mediator of retinoic and thyroid receptors (SMRT) are the most well characterized corepressor complexes and mediate repression for virtually all NRs. In turn, corepressor complexes repress transcription because they either contain or associate with chromatin modifying enzymes. These include histone deacetylases, histone H3K4 demethylases, histone H3K9 or H3K27 methyltransferases, and ATP-dependent chromatin remodeling factors. Two types of NR-interacting corepressors exist. Ligand-independent corepressors, like NCoR/SMRT, bind to unliganded or antagonist-bound NRs, whereas ligand-dependent corepressors (LCoRs) associate with NRs in the presence of agonist. Therefore, LCoRs may serve to attenuate NR-mediated transcriptional activation. Somewhat unexpectedly, classical coactivators may also function as "corepressors" to mediate repression by agonist-bound NRs. In this chapter, we will discuss the various modes and mechanisms of repression by NRs as well as discuss the known physiological functions of NR-mediated repression.
Collapse
Affiliation(s)
- M David Stewart
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
81
|
Ishibashi T, Dryhurst D, Rose KL, Shabanowitz J, Hunt DF, Ausió J. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 2009; 48:5007-17. [PMID: 19385636 DOI: 10.1021/bi900196c] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purified histone H2A.Z from chicken erythrocytes and a sodium butyrate-treated chicken erythroleukemic cell line was used as a model system to identify the acetylation sites (K4, K7, K11, K13, and K15) and quantify their distribution in this vertebrate histone variant. To understand the role played by acetylation in the modulation of the H2A.Z nucleosome core particle (NCP) stability and conformation, an extensive analysis was conducted on NCPs reconstituted from acetylated forms of histones, including H2A.Z and recombinant H2A.Z (K/Q) acetylation mimic mutants. Although the overall global acetylation of core histones destabilizes the NCP, we found that H2A.Z stabilizes the NCP regardless of its state of acetylation. Interestingly and quite unexpectedly, we found that the change in NCP conformation induced by global histone acetylation is dependent on H2A/H2A.Z acetylation. This suggests that acetylated H2A variants act synergistically with the acetylated forms of the core histone complement to alter the particle conformation. Furthermore, the simultaneous occurrence of H2A.Z and H2A in heteromorphic NCPs that most likely occurs in vivo slightly destabilizes the NCP, but only in the presence of acetylation.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Biochemistry and Microbiology and The Center for Biomedical Research, University of Victoria, Petch Building, Victoria, BC, Canada V8W 3P6
| | | | | | | | | | | |
Collapse
|
82
|
Kurtz K, Saperas N, Ausió J, Chiva M. Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:149-63. [PMID: 19132734 DOI: 10.1002/jez.b.21271] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have chosen three species (Sparus aurata, Dicentrarchus labrax, and Monodonta turbinata) that represent different transition patterns in the composition and structure of spermiogenic nuclei. The transition patterns of these species are representative of spermiogenesis in a large number of animal species. We analyze: (a) nuclear protein exchange; (b) chromatin condensation pattern; and (c) histone acetylation during spermiogenic development. In the simplest spermiogenesis histones and nucleosomes remain in mature sperm. Chromatin of spermatids is organized into 20 nm granules, simultaneous with a nuclear volume reduction. The granules coalesce in the final stage of spermiogenesis. Granular chromatin is correlated with acetylation of histones H3 and H4, whereas final coalescence is associated with histone deacetylation. We also studied two other spermiogenesis where a basic protein substitutes histones. Each species has a very different substituting protein. One has a typical protamine of 34 amino acids; the other has a sperm nuclear basic proteins (SNBP) of 106 amino acids. In both, the structural transitions and histone acetylation pattern are similar: in early spermiogenesis chromatin is organized into 20 nm granules, and histones are significantly acetylated, while the nuclear volume decreases. Subsequently, acetylated histones are displaced by the protamine or SNBP. Histone substitution causes chromatin remodelling and additional reduction in nuclear volume. We analyze these three cases together with earlier works and propose that the formation of 20 nm granules containing acetylated H3 and H4 accomplishes the minimum functional requirement to be considered the most evolutionarily ancestral chromatin conformation preceding condensation in animal spermiogenesis.
Collapse
Affiliation(s)
- Kathryn Kurtz
- Department of Physiological Sciences II, Faculty of Medicine, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
83
|
Syed SH, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J, Faivre-Moskalenko C, Dimitrov S, Angelov D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 2009; 37:4684-95. [PMID: 19506029 PMCID: PMC2724287 DOI: 10.1093/nar/gkp473] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this work we have studied the properties of the novel mouse histone variant H2AL2. H2AL2 was used to reconstitute nucleosomes and the structural and functional properties of these particles were studied by a combination of biochemical approaches, atomic force microscopy (AFM) and electron cryo-microscopy. DNase I and hydroxyl radical footprinting as well as micrococcal and exonuclease III digestion demonstrated an altered structure of the H2AL2 nucleosomes all over the nucleosomal DNA length. Restriction nuclease accessibility experiments revealed that the interactions of the H2AL2 histone octamer with the ends of the nucleosomal DNA are highly perturbed. AFM imaging showed that the H2AL2 histone octamer was complexed with only ∼130 bp of DNA. H2AL2 reconstituted trinucleosomes exhibited a type of a ‘beads on a string’ structure, which was quite different from the equilateral triangle 3D organization of conventional H2A trinucleosomes. The presence of H2AL2 affected both the RSC and SWI/SNF remodeling and mobilization of the variant particles. These unusual properties of the H2AL2 nucleosomes suggest a specific role of H2AL2 during mouse spermiogenesis.
Collapse
Affiliation(s)
- Sajad Hussain Syed
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Eukaryotic DNA is packaged into a nucleoprotein structure known as chromatin, which is comprised of DNA, histones, and nonhistone proteins. Chromatin structure is highly dynamic, and can shift from a transcriptionally inactive state to an active form in response to intra- and extracellular signals. A major factor in chromatin architecture is the covalent modification of histones through the addition of chemical moieties, such as acetyl, methyl, ubiquitin, and phosphate groups. The acetylation of the amino-terminal tails of histones is a process that is highly conserved in eukaryotes, and was one of the earliest histone modifications characterized. Since its identification in 1964, a large body of evidence has accumulated demonstrating that histone acetylation plays an important role in transcription. Despite our ever-growing understanding of the nuclear processes involved in nucleosome acetylation, however, the exact biochemical mechanisms underlying the downstream effects of histone acetylation have yet to be fully elucidated. To date, histone acetylation has been proposed to function in 2 nonmutually exclusive manners: by directly altering chromatin structure, and by acting as a molecular tag for the recruitment of chromatin-modifying complexes. Here, we discuss recent research focusing on these 2 potential roles of histone acetylation and clarify what we actually know about the function of this modification.
Collapse
Affiliation(s)
- Jennifer K Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BCV6T1Z3, Canada
| | | |
Collapse
|
85
|
Yang Y, Lyubartsev AP, Korolev N, Nordenskiöld L. Computer modeling reveals that modifications of the histone tail charges define salt-dependent interaction of the nucleosome core particles. Biophys J 2009; 96:2082-94. [PMID: 19289035 DOI: 10.1016/j.bpj.2008.10.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/19/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022] Open
Abstract
Coarse-grained Langevin molecular dynamics computer simulations were conducted for systems that mimic solutions of nucleosome core particles (NCPs). The NCP was modeled as a negatively charged spherical particle representing the complex of DNA and the globular part of the histones combined with attached strings of connected charged beads modeling the histone tails. The size, charge, and distribution of the tails relative to the core were built to match real NCPs. Three models of NCPs were constructed to represent different extents of covalent modification on the histone tails: (nonmodified) recombinant (rNCP), acetylated (aNCP), and acetylated and phosphorylated (paNCP). The simulation cell contained 10 NCPs in a dielectric continuum with explicit mobile counterions and added salt. The NCP-NCP interaction is decisively dependent on the modification state of the histone tails and on salt conditions. Increasing the monovalent salt concentration (KCl) from salt-free to physiological concentration leads to NCP aggregation in solution for rNCP, whereas NCP associates are observed only occasionally in the system of aNCPs. In the presence of divalent salt (Mg(2+)), rNCPs form dense stable aggregates, whereas aNCPs form aggregates less frequently. Aggregates are formed via histone-tail bridging and accumulation of counterions in the regions of NCP-NCP contacts. The paNCPs do not show NCP-NCP interaction upon addition of KCl or in the presence of Mg(2+). Simulations for systems with a gradual substitution of K(+) for Mg(2+), to mimic the Mg(2+) titration of an NCP solution, were performed. The rNCP system showed stronger aggregation that occurred at lower concentrations of added Mg(2+), compared to the aNCP system. Additional molecular dynamics simulations performed with a single NCP in the simulation cell showed that detachment of the tails from the NCP core was modest under a wide range of salt concentrations. This implies that salt-induced tail dissociation of the histone tails from the globular NCP is not in itself a major factor in NCP-NCP aggregation. The approximation of coarse-graining, with respect to the description of the NCP as a sphere with uniform charge distribution, was tested in control simulations. A more detailed description of the NCP did not change the main features of the results. Overall, the results of this work are in agreement with experimental data reported for NCP solutions and for chromatin arrays.
Collapse
Affiliation(s)
- Ye Yang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
86
|
McBryant SJ, Klonoski J, Sorensen TC, Norskog SS, Williams S, Resch MG, Toombs JA, Hobdey SE, Hansen JC. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: roles of amino acid sequence, domain length, and charge density. J Biol Chem 2009; 284:16716-16722. [PMID: 19395382 DOI: 10.1074/jbc.m109.011288] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mg(2+)-dependent oligomerization of nucleosomal arrays is correlated with higher order folding transitions that stabilize chromosome structure beyond the 30-nm diameter fiber. In the present studies, we have employed a novel mutagenesis-based approach to identify the macromolecular determinants that control H4 N-terminal domain (NTD) function during oligomerization. Core histones were engineered in which 1) the H2A, H2B, and H3 NTDs were swapped onto the H4 histone fold; 2) the length of the H4 NTD and the H2A NTD on the H4 histone fold, were increased; 3) the charge density of the NTDs on the H4 histone fold was increased or decreased; and 4) the H4 NTD was placed on the H2B histone fold. Model nucleosomal arrays were assembled from wild type and mutant core histone octamers, and Mg(2+)-dependent oligomerization was characterized. The results demonstrated that the H2B and H3 NTDs could replace the H4 NTD, as could the H2A NTD if it was duplicated to the length of the native H4 NTD. Arrays oligomerized at lower salt concentrations as the length of the NTD on the H4 histone fold was increased. Mutations that decreased the NTD charge density required more Mg(2+) to oligomerize, whereas mutants that increased the charge density required less salt. Finally, the H4 NTD functioned differently when attached to the H2B histone fold than the H4 histone fold. These studies have revealed new insights into the biochemical basis for H4 NTD effects on genome architecture as well as the protein chemistry that underlies the function of the intrinsically disordered H4 NTD.
Collapse
Affiliation(s)
- Steven J McBryant
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Joshua Klonoski
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Troy C Sorensen
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Sarah S Norskog
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Sere Williams
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Michael G Resch
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - James A Toombs
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Sarah E Hobdey
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Jeffrey C Hansen
- From the Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870.
| |
Collapse
|
87
|
Kurtz K, Ausió J, Chiva M. Preliminary study of sperm chromatin characteristics of the brachyuran crab Maja brachydactyla. Histones and nucleosome-like structures in decapod crustacean sperm nuclei previously described without SNBPs. Tissue Cell 2009; 41:334-44. [PMID: 19324386 DOI: 10.1016/j.tice.2009.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/03/2009] [Accepted: 02/20/2009] [Indexed: 10/20/2022]
Abstract
An interesting characteristic of decapod crustacean sperm nuclei is that they do not contain highly packaged chromatin. In the present study we re-examine the presence of DNA-interacting proteins in sperm nuclei of the brachyuran Maja brachydactyla. Although previous reports have indicated that, unlike the majority of sperm cells, DNA of decapod sperm is not organized by basic proteins, in this work we show that: (1) histones are present in sperm of M. brachydactyla; (2) histones are associated with sperm DNA; (3) histone H3 appears in lower proportions than the other core histones, while histone H2B appears in higher proportions; and (4) histone H3 in sperm nuclei is acetylated. This work complements a previous study of sperm histones of Cancer pagurus and supports the suggestion that decapod crustacean sperm chromatin deserves further attention.
Collapse
Affiliation(s)
- K Kurtz
- Department of Physiological Sciences II, University of Barcelona, Campus Belvitge, Pavelló de Govern, 4a-Planta, Hospitalet de Llobregat 08907, Barcelona, Spain.
| | | | | |
Collapse
|
88
|
Hizume K, Nakai T, Araki S, Prieto E, Yoshikawa K, Takeyasu K. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array. Ultramicroscopy 2009; 109:868-73. [PMID: 19328628 DOI: 10.1016/j.ultramic.2009.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.
Collapse
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
89
|
Kurtz K, Martínez-Soler F, Ausió J, Chiva M. Histones and nucleosomes in Cancer sperm (Decapod: Crustacea) previously described as lacking basic DNA-associated proteins: a new model of sperm chromatin. J Cell Biochem 2009; 105:574-84. [PMID: 18655193 DOI: 10.1002/jcb.21857] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To date several studies have been carried out which indicate that DNA of crustacean sperm is neither bound nor organized by basic proteins and, contrary to the rest of spermatozoa, do not contain highly packaged chromatin. Since this is the only known case of this type among metazoan cells, we have re-examined the composition, and partially the structure, of the mature sperm chromatin of Cancer pagurus, which has previously been described as lacking basic DNA-associated proteins. The results we present here show that: (a) sperm DNA of C. pagurus is bound by histones forming nucleosomes of 170 base pairs, (b) the ratio [histones/DNA] in sperm of two Cancer species is 0.5 and 0.6 (w/w). This ratio is quite lower than the proportion [proteins/DNA] that we found in other sperm nuclei with histones or protamines, whose value is from 1.0 to 1.2 (w/w), (c) histone H4 is highly acetylated in mature sperm chromatin of C. pagurus. Other histones (H3 and H2B) are also acetylated, though the level is much lower than that of histone H4. The low ratio of histones to DNA, along with the high level of acetylation of these proteins, explains the non-compact, decondensed state of the peculiar chromatin in the sperm studied here. In the final section we offer an explanation for the necessity of such decondensed chromatin during gamete fertilization of this species.
Collapse
Affiliation(s)
- Kathryn Kurtz
- Faculty of Medicine, Department of Physiological Sciences II, University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
90
|
Dekker J. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 2008; 283:34532-40. [PMID: 18930918 PMCID: PMC2596406 DOI: 10.1074/jbc.m806479200] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
The higher order arrangement of nucleosomes and the level of compaction of the chromatin fiber play important roles in the control of gene expression and other genomic activities. Analysis of chromatin in vitro has suggested that under near physiological conditions chromatin fibers can become highly compact and that the level of compaction can be modulated by histone modifications. However, less is known about the organization of chromatin fibers in living cells. Here, we combine chromosome conformation capture (3C) data with distance measurements and polymer modeling to determine the in vivo mass density of a transcriptionally active 95-kb GC-rich domain on chromosome III of the yeast Saccharomyces cerevisiae. In contrast to previous reports, we find that yeast does not form a compact fiber but that chromatin is extended with a mass per unit length that is consistent with a rather loose arrangement of nucleosomes. Analysis of 3C data from a neighboring AT-rich chromosomal domain indicates that chromatin in this domain is more compact, but that mass density is still well below that of a canonical 30 nm fiber. Our approach should be widely applicable to scale 3C data to real spatial dimensions, which will facilitate the quantification of the effects of chromatin modifications and transcription on chromatin fiber organization.
Collapse
Affiliation(s)
- Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-0103, USA.
| |
Collapse
|
91
|
The H4 tail domain participates in intra- and internucleosome interactions with protein and DNA during folding and oligomerization of nucleosome arrays. Mol Cell Biol 2008; 29:538-46. [PMID: 19001093 DOI: 10.1128/mcb.01343-08] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The condensation of nucleosome arrays into higher-order secondary and tertiary chromatin structures likely involves long-range internucleosomal interactions mediated by the core histone tail domains. We have characterized interarray interactions mediated by the H4 tail domain, known to play a predominant role in the formation of such structures. We find that the N-terminal end of the H4 tail mediates interarray contacts with DNA during self-association of oligonucleosome arrays similar to that found previously for the H3 tail domain. However, a site near the histone fold domain of H4 participates in a distinct set of interactions, contacting both DNA and H2A in condensed structures. Moreover, we also find that H4-H2A interactions occur via an intra- as well as an internucleosomal fashion, supporting an additional intranucleosomal function for the tail. Interestingly, acetylation of the H4 tail has little effect on interarray interactions by itself but overrides the strong stimulation of interarray interactions induced by linker histones. Our results indicate that the H4 tail facilitates secondary and tertiary chromatin structure formation via a complex array of potentially exclusive interactions that are distinct from those of the H3 tail domain.
Collapse
|
92
|
Abstract
SummaryOogenesis is a critical event in the formation of female gametes, whose role in development is to transfer genomic information to the next generation. During this process, the gene expression pattern changes dramatically concomitant with genome remodelling, while genomic information is stably maintained. The aim of the present study was to investigate the chromatin architecture in newt oocytes. Using fluorescence microscopy, as well as transmission electron microscopy (TEM), immunohistochemical method and RE-ChIP assay, some peculiar aspects of chromatin and chromosome organization and evolution in crested newt oogenesis were investigated. We focussed our investigations on detection of certain epigenetic modifications (H4 hyperacetylation, H2A ubiquitinylation and cytosine methylation) at the rRNA gene (18S–5.8S–28S) promoter region. Our findings suggest that there is an involvement of some epigenetic modifications as well as of linker histone variants in chromatin architecture dynamics during crested newt oogenesis.
Collapse
|
93
|
Herpes simplex virus ICP0 promotes both histone removal and acetylation on viral DNA during lytic infection. J Virol 2008; 82:12030-8. [PMID: 18842720 DOI: 10.1128/jvi.01575-08] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During lytic infection, the genome of herpes simplex virus 1 (HSV-1) is associated with limited levels of histones but does not form a regular repeating nucleosomal structure. However, the previous observation that chromatin remodeling factors are recruited into viral replication compartments indicates that chromatin remodeling plays a role in HSV-1 gene expression and DNA replication. In this study we demonstrate the presence of histone H3 on HSV-1 DNA early in infection at levels equivalent to those found on a cellular gene. The proportion of viral DNA associated with histone H3 decreases at later times postinfection, independently of either viral DNA replication or transcription. We demonstrate that an immediate-early protein, infected cell protein 0 (ICP0), is required for both a reduction in the proportion of HSV-1 DNA associating with histone H3 and an increase in histone acetylation. This study provides evidence that ICP0 directly alters the chromatin structure of the HSV-1 genome during lytic infection, and this system will serve as a useful model for the reduction of histone load in higher eukaryotes.
Collapse
|
94
|
MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol Cell Biol 2008; 28:4734-44. [PMID: 18519584 DOI: 10.1128/mcb.00588-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the MBD4 glycosylase to excise a mismatched base from DNA has been assessed in vitro using DNA substrates with different extents of cytosine methylation, in the presence or absence of reconstituted nucleosomes. Despite the enhanced ability of MBD4 to bind to methylated cytosines, the efficiency of its glycosylase activity on T/G mismatches was slightly dependent on the extent of methylation of the DNA substrate. The reduction in activity caused by competitor DNA was likewise unaffected by the methylation status of the substrate or the competitor. Our results also show that MBD4 efficiently processed T/G mismatches within the nucleosome. Furthermore, the glycolytic activity of the enzyme was not affected by the positioning of the mismatch within the nucleosome. However, histone hyperacetylation facilitated the efficiency with which the bases were excised from the nucleosome templates, irrespective of the position of the mismatch relative to the pseudodyad axis of symmetry of the nucleosome.
Collapse
|
95
|
Lafon-Hughes L, Di Tomaso MV, Méndez-Acuña L, Martínez-López W. Chromatin-remodelling mechanisms in cancer. Mutat Res 2008; 658:191-214. [PMID: 18403253 DOI: 10.1016/j.mrrev.2008.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 02/06/2023]
Abstract
Chromatin-remodelling mechanisms include DNA methylation, histone-tail acetylation, poly-ADP-ribosylation, and ATP-dependent chromatin-remodelling processes. Some epigenetic modifications among others have been observed in cancer cells, namely (1) local DNA hypermethylation and global hypomethylation, (2) alteration in histone acetylation/deacetylation balance, (3) increased or decreased poly-ADP-ribosylation, and (4) failures in ATP-dependent chromatin-remodelling mechanisms. Moreover, these alterations can influence the response to classical anti-tumour treatments. Drugs targeting epigenetic alterations are under development. Currently, DNA methylation and histone deacetylase inhibitors are in use in cancer therapy, and poly-ADP-ribosylation inhibitors are undergoing clinical trials. Epigenetic therapy is gaining in importance in pharmacology as a new tool to improve anti-cancer therapies.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Genetic Toxicology Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | |
Collapse
|
96
|
Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 2007; 8:983-94. [PMID: 18037899 DOI: 10.1038/nrm2298] [Citation(s) in RCA: 798] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various chemical modifications on histones and regions of associated DNA play crucial roles in genome management by binding specific factors that, in turn, serve to alter the structural properties of chromatin. These so-called effector proteins have typically been studied with the biochemist's paring knife--the capacity to recognize specific chromatin modifications has been mapped to an increasing number of domains that frequently appear in the nuclear subset of the proteome, often present in large, multisubunit complexes that bristle with modification-dependent binding potential. We propose that multivalent interactions on a single histone tail and beyond may have a significant, if not dominant, role in chromatin transactions.
Collapse
|
97
|
Caterino TL, Hayes JJ. Chromatin structure depends on what's in the nucleosome's pocket. Nat Struct Mol Biol 2007; 14:1056-8. [DOI: 10.1038/nsmb1107-1056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
98
|
Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol 2007; 374:563-79. [PMID: 17949749 PMCID: PMC2279226 DOI: 10.1016/j.jmb.2007.09.059] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022]
Abstract
Alteration of chromatin structure by chromatin modifying and remodelling activities is a key stage in the regulation of many nuclear processes. These activities are frequently interlinked, and many chromatin remodelling enzymes contain motifs that recognise modified histones. Here we adopt a peptide ligation strategy to generate specifically modified chromatin templates and used these to study the interaction of the Chd1, Isw2 and RSC remodelling complexes with differentially acetylated nucleosomes. Specific patterns of histone acetylation are found to alter the rate of chromatin remodelling in different ways. For example, histone H3 lysine 14 acetylation acts to increase recruitment of the RSC complex to nucleosomes. However, histone H4 tetra-acetylation alters the spectrum of remodelled products generated by increasing octamer transfer in trans. In contrast, histone H4 tetra-acetylation was also found to reduce the activity of the Chd1 and Isw2 remodelling enzymes by reducing catalytic turnover without affecting recruitment. These observations illustrate a range of different means by which modifications to histones can influence the action of remodelling enzymes.
Collapse
Affiliation(s)
- Helder Ferreira
- Division of Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
99
|
Nightingale KP, Baumann M, Eberharter A, Mamais A, Becker PB, Boyes J. Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of V(D)J recombination. Nucleic Acids Res 2007; 35:6311-21. [PMID: 17881376 PMCID: PMC2094086 DOI: 10.1093/nar/gkm650] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted chromatin remodelling is essential for many nuclear processes, including the regulation of V(D)J recombination. ATP-dependent nucleosome remodelling complexes are important players in this process whose activity must be tightly regulated. We show here that histone acetylation regulates nucleosome remodelling complex activity to boost RAG cutting during the initiation of V(D)J recombination. RAG cutting requires nucleosome mobilization from recombination signal sequences. Histone acetylation does not stimulate nucleosome mobilization per se by CHRAC, ACF or their catalytic subunit, ISWI. Instead, we find the more open structure of acetylated chromatin regulates the ability of nucleosome remodelling complexes to access their nucleosome templates. We also find that bromodomain/acetylated histone tail interactions can contribute to this targeting at limited concentrations of remodelling complex. We therefore propose that the changes in higher order chromatin structure associated with histone acetylation contribute to the correct targeting of nucleosome remodelling complexes and this is a novel way in which histone acetylation can modulate remodelling complex activity.
Collapse
Affiliation(s)
- Karl P. Nightingale
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthias Baumann
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Anton Eberharter
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adamantios Mamais
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter B. Becker
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Joan Boyes
- Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK, Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK, Adolf Butenandt Institute for Molecular Biology, Schillerstrasse 44, D-80336 Munich, Germany and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- *To whom correspondence should be addressed. 44 113 343 314744 113 343 3167
| |
Collapse
|
100
|
Eirín-López JM, Ishibashi T, Ausió J. H2A.Bbd: a quickly evolving hypervariable mammalian histone that destabilizes nucleosomes in an acetylation-independent way. FASEB J 2007; 22:316-26. [PMID: 17726088 DOI: 10.1096/fj.07-9255com] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular evolutionary analyses revealed that histone H2A.Bbd is a highly variable quickly evolving mammalian replacement histone variant, in striking contrast to all other histones. At the nucleotide level, this variability appears to be the result of a larger amount of nonsynonymous variation, which affects to a lesser extent, the structural domain of the protein comprising the histone fold. The resulting amino acid sequence diversity can be predicted to affect the internucleosomal and intranucleosomal histone interactions. Our phylogenetic analysis has allowed us to identify several of the residues involved. The biophysical characterization of nucleosomes reconstituted with recombinant mouse H2A.Bbd and their comparison to similar data obtained with human H2A.Bbd clearly support this notion. Despite the high interspecific amino acid sequence variability, all of the H2A.Bbd variants exert similar structural effects at the nucleosome level, which result in an unfolded highly unstable nucleoprotein complex. Such structure resembles that previously described for the highly dynamically acetylated nucleosomes associated with transcriptionally active regions of the genome. Nevertheless, the structure of nucleosome core particles reconstituted from H2A.Bbd is not affected by the presence of a hyperacetylated histone complement. This suggests that replacement by H2A.Bbd provides an alternative mechanism to unfold chromatin structure, possibly in euchromatic regions, in a way that is not dependent on acetylation.
Collapse
Affiliation(s)
- José María Eirín-López
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 258a, Victoria, BC, Canada V8W 3P6
| | | | | |
Collapse
|