51
|
Rogatsky I, Zarember KA, Yamamoto KR. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 2001; 20:6071-83. [PMID: 11689447 PMCID: PMC125702 DOI: 10.1093/emboj/20.21.6071] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 09/09/2001] [Accepted: 09/09/2001] [Indexed: 11/13/2022] Open
Abstract
To investigate determinants of specific transcriptional regulation, we measured factor occupancy and function at a response element, col3A, associated with the collagenase-3 gene in human U2OS osteosarcoma cells; col3A confers activation by phorbol esters, and repression by glucocorticoid and thyroid hormones. The subunit composition and activity of AP-1, which binds col3A, paralleled the intracellular level of cFos, which is modulated by phorbol esters and glucocorticoids. In contrast, a similar AP-1 site at the collagenase-1 gene, not inducible in U2OS cells, was not bound by AP-1. The glucocorticoid receptor (GR) associated with col3A through protein-protein interactions with AP-1, regardless of AP-1 subunit composition, and repressed transcription. TIF2/GRIP1, reportedly a coactivator for GR and the thyroid hormone receptor (TR), was recruited to col3A and potentiated GR-mediated repression in the presence of a GR agonist but not antagonist. GRIP1 mutants deficient in GR binding and coactivator functions were also defective for corepression, and a GRIP1 fragment containing the GR-interacting region functioned as a dominant-negative for repression. In contrast, repression by TR was unaffected by GRIP1. Thus, the composition of regulatory complexes, and the biological activities of the bound factors, are dynamic and dependent on cell and response element contexts. Cofactors such as GRIP1 probably contain distinct surfaces for activation and repression that function in a context-dependent manner.
Collapse
Affiliation(s)
| | - Kol A. Zarember
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, HSW1201, San Francisco, CA 94143-0450, USA
Present address: Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA Corresponding author e-mail:
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 513 Parnassus Avenue, HSW1201, San Francisco, CA 94143-0450, USA
Present address: Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA Corresponding author e-mail:
| |
Collapse
|
52
|
Abstract
Transcriptional repressors are usually viewed as proteins that bind to promoters in a way that impedes subsequent binding of RNA polymerase. Although this repression mechanism is found at several promoters, there is a growing list of repressors that inhibit transcription initiation in other ways. For example, several repressors allow the simultaneous binding of RNA polymerase to the promoter, but interfere with subsequent events of the initiation process, eventually inhibiting transcription initiation. The recent increase in the number of repressors for which the repression mechanism has been characterized in detail has shown an amazing variety of strategies to repress transcription initiation. It is not surprising to find that the repression mechanism used is usually exquisitely adapted to the characteristics of the promoter and of the repressor involved.
Collapse
Affiliation(s)
- F Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049-, Madrid, Spain.
| |
Collapse
|
53
|
Trautwein G, Gerischer U. Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 2001; 183:873-81. [PMID: 11208784 PMCID: PMC94953 DOI: 10.1128/jb.183.3.873-881.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2000] [Accepted: 11/13/2000] [Indexed: 11/20/2022] Open
Abstract
Protocatechuate degradation is accomplished in a multistep inducible catabolic pathway in Acinetobacter sp. strain ADP1. The induction is brought about by the transcriptional regulator PcaU in concert with the inducer protocatechuate. PcaU, a member of the new IclR family of transcriptional regulators, was shown to play a role in the activation of transcription at the promoter for the structural pca genes, leaving open the participation of additional activators. In this work we show that there is no PcaU-independent transcriptional activation at the pca gene promoter. The minimal inducer concentration leading to an induction response is 10(-5) M protocatechuate. The extent of expression of the pca genes was observed to depend on the nature of the inducing carbon source, and this is assumed to be caused by different internal levels of protocatechuate in the cells. The basal level of expression was shown to be comparatively high and to vary depending on the noninducing carbon source independent of PcaU. In addition to the activating function, in vivo results suggest a repressing function for PcaU at the pca gene promoter in the absence of an elevated inducer concentration. Expression at the pcaU gene promoter is independent of the growth condition but is subject to strong negative autoregulation. We propose a model in which PcaU exerts a repressor function both at its own promoter and at the structural gene promoter and in addition functions as an activator of transcription at the structural gene promoter at elevated inducer concentration.
Collapse
Affiliation(s)
- G Trautwein
- Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | | |
Collapse
|
54
|
Studitsky V, Brodolin K, Liu Y, Mirzabekov A. Topography of lacUV5 initiation complexes. Nucleic Acids Res 2001; 29:854-61. [PMID: 11160910 PMCID: PMC30381 DOI: 10.1093/nar/29.3.854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2000] [Accepted: 11/29/2000] [Indexed: 11/13/2022] Open
Abstract
Formation of a transcriptionally competent open complex is a highly regulated multistep process involving at least two intermediates. The rate of formation and stability of the intermediate complexes often determine promoter strength. However, the detailed mechanism of formation of the open complex and the high resolution structures of these intermediates are not known. In this study the structures of the open and intermediate complexes formed on the lacUV5 promoter by Escherichia coli RNA polymerase were analyzed using 'zero length' DNA-protein cross-linking. In both the open and the intermediate complexes the core subunits (ss' and ss) interact with lacUV5 DNA in a similar way, forming DNA-protein contacts flanking the initiation site. At the same time, the recognition (sigma(70)) subunit closely interacts with the promoter only in the open complex. In combination with our previous results, the data suggest that during promoter recognition contacts of the sigma subunit with core RNA polymerase and promoter DNA are rearranged in concert. These rearrangements constitute a landmark of transition from the intermediate to the open complex, identifying the sigma subunit as a key player directing formation of the open complex.
Collapse
Affiliation(s)
- V Studitsky
- Department of Biochemistry and Molecular Biology, Room 5123, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
55
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
56
|
Mavrothalassitis G, Ghysdael J. Proteins of the ETS family with transcriptional repressor activity. Oncogene 2000; 19:6524-32. [PMID: 11175368 DOI: 10.1038/sj.onc.1204045] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETS proteins form one of the largest families of signal-dependent transcriptional regulators, mediating cellular proliferation, differentiation and tumorigenesis. Most of the known ETS proteins have been shown to activate transcription. However, four ETS proteins (YAN, ERF, NET and TEL) can act as transcriptional repressors. In three cases (ERF, NET and TEL) distinct repression domains have been identified and there are indications that NET and TEL may mediate transcription via Histone Deacetylase recruitment. All four proteins appear to be regulated by MAPKs, though for YAN and ERF this regulation seems to be restricted to ERKs. YAN, ERF and TEL have been implicated in cellular proliferation although there are indications suggesting a possible involvement of YAN and TEL in differentiation as well. Other ETS-domain proteins have been shown to repress transcription in a context specific manner, and there are suggestions that the ETS DNA-binding domain may act as a transcriptional repressor. Transcriptional repression by ETS domain proteins adds an other level in the orchestrated regulation by this diverse family of transcription factors that often recognize similar if not identical binding sites on DNA and are believed to regulate critical genes in a variety of biological processes. Definitive assessment of the importance of this novel regulatory level will require the identification of ETS proteins target genes and the further analysis of transcriptional control and biological function of these proteins in defined pathways.
Collapse
Affiliation(s)
- G Mavrothalassitis
- School of Medicine, University of Crete and IMBB-FORTH, Voutes, Heraklion, Crete 714-09, Greece
| | | |
Collapse
|
57
|
Dove SL, Huang FW, Hochschild A. Mechanism for a transcriptional activator that works at the isomerization step. Proc Natl Acad Sci U S A 2000; 97:13215-20. [PMID: 11087868 PMCID: PMC27205 DOI: 10.1073/pnas.97.24.13215] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activators in prokaryotes have been shown to stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a postbinding step known as the isomerization step. Evidence suggests that activators that affect initial binding can work by a cooperative binding mechanism by making energetically favorable contacts with RNAP, but the mechanism by which activators affect the isomerization step is unclear. A well-studied example of an activator that normally exerts its effect exclusively on the isomerization step is the bacteriophage lambda cI protein (lambdacI), which has been shown genetically to interact with the C-terminal region of the final sigma(70) subunit of RNAP. We show here that the interaction between lambdacI and final sigma can stimulate transcription even when the relevant portion of final sigma is transplanted to another subunit of RNAP. This activation depends on the ability of lambdacI to stabilize the binding of the transplanted final sigma moiety to an ectopic -35 element. Based on these and previous findings, we discuss a simple model that explains how an activator's ability to stabilize the binding of an RNAP subdomain to the DNA can account for its effect on either the initial binding of RNAP to a promoter or the isomerization step.
Collapse
Affiliation(s)
- S L Dove
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
58
|
Jana NK, Deb S, Bhattacharyya B, Mandal NC, Roy S. A study of energetics of cooperative interaction using a mutant lambda-repressor. PROTEIN ENGINEERING 2000; 13:629-33. [PMID: 11054457 DOI: 10.1093/protein/13.9.629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A lambda-repressor mutant, S228N, which is defective in tetramer formation in the free state but retains full cooperativity, was studied in detail. Isolated single operator-bound S228N repressor shows association properties similar to those of the wild-type repressor. Fluorescence anisotropy studies with dansyl chloride-labeled repressor show a dimer-monomer dissociation constant of around 10(-5) M. The structure of the mutant repressor was studied by circular dichroism, acrylamide quenching and sulfhydryl reactivity at protein concentrations of < or =10(-6) M, where it is predominantly monomeric. The results suggest no significant perturbations in the structure of the S228N mutant repressor from that of the wild-type repressor. Urea denaturation studies also indicate no significant change in the stability of the repressor. The results were used to calculate energetics of loop formation in the cooperative binding process.
Collapse
Affiliation(s)
- N K Jana
- Department of Biochemistry and Department of Biophysics, Bose Institute, Acharya J. C. Bose Birth Centenary Building, P 1/12 C.I.T Scheme VII M, Calcutta 700 054, India
| | | | | | | | | |
Collapse
|
59
|
Chen Q, Kadner RJ. Effect of altered spacing between uhpT promoter elements on transcription activation. J Bacteriol 2000; 182:4430-6. [PMID: 10913075 PMCID: PMC94613 DOI: 10.1128/jb.182.16.4430-4436.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacterial promoters possess multiple sites for binding of transcriptional activator proteins. The uhpT promoter, which controls expression of the sugar phosphate transport system in Escherichia coli, possesses multiple sites for its specific activator protein, UhpA, and a single site for binding of the global regulator, the catabolite gene activator protein (CAP). The binding of UhpA to the uhpT promoter was determined by DNase protection assays; UhpA displayed different affinities for the target sites. The upstream or strong sites, between positions -80 and -50, exhibited a higher affinity for UhpA than did the downstream or weak sites, between positions -50 and -32, adjoining the RNA polymerase-binding site. Phosphorylation of UhpA strongly increased its affinity for both sites. To examine the possible roles of the two sets of UhpA-binding sites, a series of insertion and deletion mutations were introduced at the boundary between them, as suggested from the positions that were protected by UhpA against hydroxyl radical cleavage. Deletions extended in the direction of the weak sites. The insertion or deletion of one helical turn of DNA resulted in the loss of promoter activity and of occupancy by UhpA of the remaining weak-site sequences but was accompanied by normal occupancy of the strong site and no change in the gel retardation behavior of the promoter fragments. However, the deletion of two helical turns of DNA, i.e., 20, 21, or 22 bp, resulted in the novel appearance of UhpA-independent expression and in an additional level of expression that was dependent on UhpA but independent of an inducing signal. The UhpA-independent promoter activity was shown to result from activation by CAP at its more proximal position. UhpA-dependent activity under noninducing conditions appears to result from the binding of unphosphorylated UhpA to the strong sites, which are now in the position normally occupied by the weak sites. Thus, regulated phosphorylation of the response regulator UhpA enhances its occupancy of the weak sites where favorable contacts can allow the binding of RNA polymerase to the promoter.
Collapse
Affiliation(s)
- Q Chen
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908-0734, USA
| | | |
Collapse
|
60
|
Xu J, Koudelka GB. Mutually exclusive utilization of P(R) and P(RM) promoters in bacteriophage 434 O(R). J Bacteriol 2000; 182:3165-74. [PMID: 10809696 PMCID: PMC94503 DOI: 10.1128/jb.182.11.3165-3174.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Establishment and maintenance of a lysogen of the lambdoid bacteriophage 434 require that the 434 repressor both activate transcription from the P(RM) promoter and repress transcription from the divergent P(R) promoter. Several lines of evidence indicate that the 434 repressor activates initiation of P(RM) transcription by occupying a binding site adjacent to the P(RM) promoter and directly contacting RNA polymerase. The overlapping architecture of the P(RM) and P(R) promoters suggests that an RNA polymerase bound at P(R) may repress P(RM) transcription initiation. Hence, part of the stimulatory effect of the 434 repressor may be relief of interference between RNA polymerase binding to the P(RM) promoter and to the P(R) promoter. Consistent with this proposal, we show that the repressor cannot activate P(RM) transcription if RNA polymerase binds at P(R) prior to addition of the 434 repressor. However, unlike the findings with the related lambda phage, formation of RNA polymerase promoter complexes at P(RM) and at P(R) apparently are mutually exclusive. We find that the RNA polymerase-mediated inhibition of repressor-stimulated P(RM) transcription requires the presence of an open complex at P(R). Taken together, these results indicate that establishment of an open complex at P(R) directly prevents formation of an RNA polymerase-P(RM) complex.
Collapse
Affiliation(s)
- J Xu
- Department of Biological Sciences, State University of New York at Buffalo, New York 14260, USA
| | | |
Collapse
|
61
|
Abstract
The Drosophila Groucho (Gro) protein is the prototype for a large family of corepressors, examples of which are found in most metazoans. This family includes the human transducin-like Enhancer of split (TLE) proteins. As corepressors, Gro/TLE family proteins do not bind to DNA directly, but rather are recruited to the template by DNA-bound repressor proteins. Gro/TLE family proteins are required for many developmental processes, including lateral inhibition, segmentation, sex determination, dorsal/ventral pattern formation, terminal pattern formation, and eye development. These proteins are characterized by a conserved N-terminal glutamine-rich domain and a conserved C-terminal WD-repeat domain. The primary role of the glutamine-rich domain is apparently to mediate tetramerization, while the WD-repeat domain may mediate interactions with DNA-bound repressors. The glutamine rich and WD-repeat domains are separated by a less conserved region containing domains that have been implicated in transcriptional repression and nuclear localization. In addition to encoding full-length Gro/TLE family proteins, most metazoan genomes encode truncated family members that contain the N-terminal oligomerization domain, but lack the C-terminal WD-repeat domain. These truncated proteins may negatively regulate full-length Gro/TLE proteins, perhaps by sequestering them in non-productive complexes. Gro/TLE family proteins probably repress transcription by multiple mechanisms. For example, a glycine/proline-rich domain in the central variable region functions to recruit the histone deacetylase Rpd3 to the template. This histone deacetylase then presumably silences transcription by altering local chromatin structure. Other repression domains in Gro may function in a histone deacetylase-independent manner. Many aspects of Gro/TLE protein function remain to be explored, including the possible post-translational regulation of Gro/TLE activity as well as the mechanisms by which Gro/TLE proteins direct repression at a distance.
Collapse
Affiliation(s)
- G Chen
- Department of Chemistry and Biochemistry University of California, Los Angeles 90095-1569, USA
| | | |
Collapse
|
62
|
de la Hoz AB, Ayora S, Sitkiewicz I, Fernández S, Pankiewicz R, Alonso JC, Ceglowski P. Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc Natl Acad Sci U S A 2000; 97:728-33. [PMID: 10639147 PMCID: PMC15398 DOI: 10.1073/pnas.97.2.728] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription initiation of the copy-number control and better-than-random segregation genes of the broad-host-range and low-copy-number plasmid pSM19035 are subjected to repression by the autoregulated pSM19035-encoded omega product in Bacillus subtilis cells. The promoters of the copS (Pcop1 and Pcop2), delta (Pdelta), and omega (Pomega) genes have been mapped. These promoters are embedded in a set of either seven copies of a 7-bp direct repeat or in a block consisting of two 7-bp direct repeats and one 7-bp inverted repeat; the blocks are present either two or three times. The cooperative binding of omega protein to the repeats on the Pcop1, Pcop2, Pdelta, and Pomega promoters represses transcription initiation by a mechanism that does not exclude sigma(A)RNAP from the promoters. These results indicate that omega protein regulates plasmid maintenance by controlling the copy number on the one hand and by regulating the amount of proteins required for better-than-random segregation on the other hand.
Collapse
Affiliation(s)
- A B de la Hoz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
63
|
Celis RT. Repression and activation of arginine transport genes in Escherichia coli K 12 by the ArgP protein. J Mol Biol 1999; 294:1087-95. [PMID: 10600368 DOI: 10.1006/jmbi.1999.3308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli K 12, arginine modulates the functioning of the arginine transport system. Cells grown in the presence of arginine show a 60 % reduction in the active incorporation of radioactive arginine. This regulation of arginine transport is independent of the regulation of arginine biosynthesis. Previously, a mutant was isolated with a 90 % reduction of arginine transport. The mutation affected also the transport of ornithine and lysine. It was mapped and assigned to a locus named argP at minute 65 of the E. coli linkage map. Genetic studies showed that in argP/argP(+) merodiploids, the mutated argP allele is dominant. The argP(+) gene was cloned and sequenced. Analysis of the sequenced gene revealed that it is identical with iciA, an E. coli gene that encodes an inhibitor of chromosomal initiation of replication in vitro. The sequence analysis of the mutated argP gene identified a single mutation that led to the substitution of proline for serine in the C-terminal domain of the ArgP protein. This protein has homology with a large group of prokaryotic regulatory proteins known as the LysR family. Proteins from this family have been shown to function as transcriptional regulators. Here, it is shown that the ArgP protein activates the formation of the ArgK protein, an ATP-binding protein essential for the operation of the arginine transport system. In the presence of L-arginine, ArgP inhibits its own synthesis.
Collapse
Affiliation(s)
- R T Celis
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
64
|
Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999; 19:8272-80. [PMID: 10567552 PMCID: PMC84911 DOI: 10.1128/mcb.19.12.8272] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paired-homeodomain transcription factor PAX4 is expressed in the developing pancreas and along with PAX6 is required for normal development of the endocrine cells. In the absence of PAX4, the numbers of insulin-producing beta cells and somatostatin-producing delta cells are drastically reduced, while the numbers of glucagon-producing alpha cells are increased. To gain insight into PAX4 function, we cloned a full-length Pax4 cDNA from a beta-cell cDNA library and identified a bipartite consensus DNA binding sequence consisting of a homeodomain binding site separated from a paired domain binding site by 15 nucleotides. The paired half of this consensus sequence has similarities to the PAX6 paired domain consensus binding site, and the two proteins bind to common sequences in several islet genes, although with different relative affinities. When expressed in an alpha-cell line, PAX4 represses transcription through the glucagon or insulin promoters or through an isolated PAX4 binding site. This repression is not simply due to competition with the PAX6 transcriptional activator for the same binding site, since PAX4 fused to the unrelated yeast GAL4 DNA binding domain also represses transcription through the GAL4 binding site in the alpha-cell line and to a lesser degree in beta-cell lines and NIH 3T3 cells. Repressor activity maps to more than one domain within the molecule, although the homeodomain and carboxyl terminus give the strongest repression. PAX4 transcriptional regulation apparently plays a role only early in islet development, since Pax4 mRNA as determined by reverse transcriptase PCR peaks at embryonic day 13.5 in the fetal mouse pancreas and is undetectable in adult islets. In summary, PAX4 can function as a transcriptional repressor and is expressed early in pancreatic development, which may allow it to suppress alpha-cell differentiation and permit beta-cell differentiation.
Collapse
Affiliation(s)
- S B Smith
- Hormone Research Institute, University of California, San Francisco, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
65
|
Olekhnovich IN, Kadner RJ. RNA polymerase alpha and sigma(70) subunits participate in transcription of the Escherichia coli uhpT promoter. J Bacteriol 1999; 181:7266-73. [PMID: 10572130 PMCID: PMC103689 DOI: 10.1128/jb.181.23.7266-7273.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fundamental questions in bacterial gene regulation concern how multiple regulatory proteins interact with the transcription apparatus at a single promoter and what are the roles of protein contacts with RNA polymerase and changes in DNA conformation. Transcription of the Escherichia coli uhpT gene, encoding the inducible sugar phosphate transporter, is dependent on the response regulator UhpA and is stimulated by the cyclic AMP receptor protein (CAP). UhpA binds to multiple sites in the uhpT promoter between positions -80 and -32 upstream of the transcription start site, and CAP binds to a single site centered at position -103.5. The role in uhpT transcription of portions of RNA polymerase Esigma(70) holoenzyme which affect regulation at other promoters was examined by using series of alanine substitutions throughout the C-terminal domains of RpoA (residues 255 to 329) and of RpoD (residues 570 to 613). Alanine substitutions that affected in vivo expression of a uhpT-lacZ transcriptional fusion were tested for their effect on in vitro transcription activity by using reconstituted holoenzymes. Consistent with the binding of UhpA near the -35 region, residues K593 and K599 in the C-terminal region of RpoD were necessary for efficient uhpT expression in response to UhpA alone. Their requirement was overcome when CAP was also present. In addition, residues R265, G296, and S299 in the DNA-binding surface of the C-terminal domain of RpoA (alphaCTD) were important for uhpT transcription even in the presence of CAP. Substitutions at several other positions had effects in cells but not during in vitro transcription with saturating levels of the transcription factors. Two DNase-hypersensitive sites near the upstream end of the UhpA-binding region were seen in the presence of all three transcription factors. Their appearance required functional alphaCTD but not the presence of upstream DNA. These results suggest that both transcription activators depend on or interact with different subunits of RNA polymerase, although their role in formation of proper DNA geometry may also be crucial.
Collapse
Affiliation(s)
- I N Olekhnovich
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
66
|
Grande RA, Valderrama B, Morett E. Suppression analysis of positive control mutants of NifA reveals two overlapping promoters for Klebsiella pneumoniae rpoN. J Mol Biol 1999; 294:291-8. [PMID: 10610758 DOI: 10.1006/jmbi.1999.3232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of gene expression relies on direct molecular interactions between the RNA polymerase and transcription factors. Eubacterial enhancer-binding proteins (EBPs) activate transcription by binding to distant sites and, simultaneously, contacting the sigma(54)-holoenzyme form of the RNA polymerase (Esigma(54)). The interaction between the EBP and Esigma(54) is transient, such that it has been difficult to be studied biochemically. Therefore, the details of this molecular recognition event are not known. Genetic and physical evidences suggest that the highly conserved C3 region in the activation domain of the EBP has major determinants for positive control and for the interaction with Esigma(54). To further investigate the target of this region we searched for extragenic suppressors of some C3 region mutant derivatives of NifA. As a first step we mutagenized Klebsiella pneumoniae rpoN, the gene that codes for sigma(54). A mutant allele, rpoN1320, that suppressed two different NifA derivatives was obtained. Immunodetection of sigma(54) and transcriptional initiation studies demonstrated that the cause of the suppression was an enhanced expression of rpoN. A single point mutation was responsible for the phenotype. It mapped at the -10 region of an unidentified promoter, here denominated rpoNp1, and increased its similarity to the consensus. A second upstream promoter, denominated rpoNp2, was also identified. Its -10 region partially overlaps with the -35 region of rpoNp1. Interestingly, the promoter-up -10 mutation in rpoNp1 caused a reduction in the expression from rpoNp2, likely reflecting a stronger occupancy of the former promoter by the RNA polymerase at the expense of the latter. The presence of two overlapping promoters competing for the RNA polymerase implies a complex regulatory pattern that needs elucidation. The fact that increasing the concentration of sigma(54) in the cell can suppress positive control mutants of NifA adds further evidence for their direct interaction in the activation process.
Collapse
Affiliation(s)
- R A Grande
- Universidad Nacional Autónoma de México, Cuernavaca, Morelos, AP 510-3, México
| | | | | |
Collapse
|
67
|
Olekhnovich IN, Dahl JL, Kadner RJ. Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli. J Mol Biol 1999; 292:973-86. [PMID: 10512697 DOI: 10.1006/jmbi.1999.3127] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of promoters by multiple transcription factors might occur through favorable contacts of the activators with themselves or RNA polymerase, or by changes in DNA geometry that enhance formation of the transcription complex. Transcription of the Escherichia coli uhpT gene, encoding the organophosphate transporter, requires the response regulator UhpA and is stimulated by the global regulator protein CAP. CAP binds to the uhpT promoter at a single site, centered at -103.5 bp relative to the start of transcription, and UhpA binds to multiple sites between positions -80 and -32. Overexpression of UhpA did not reduce the degree of CAP stimulation of uhpT-lacZ expression, showing that CAP action is more complex than enhancement of the binding of UhpA. Footprinting experiments demonstrated that UhpA and CAP modestly stimulated each other's binding to the uhpT promoter, but did not affect the positioning of the binding sites. An in vitro transcription system was used to examine the contribution of each transcription factor at the uhpT promoter. Action of UhpA and CAP proteins was not affected by template supercoiling. Kinetic analyses of productive and abortive initiation showed that CAP acted both to stabilize by fivefold the open promoter complexes formed in the presence of UhpA and to enhance by twofold the rate of their formation. These results indicate that open complex formation requires UhpA and that CAP stabilizes the open complex.
Collapse
Affiliation(s)
- I N Olekhnovich
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
68
|
Baynham PJ, Brown AL, Hall LL, Wozniak DJ. Pseudomonas aeruginosa AlgZ, a ribbon-helix-helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activation. Mol Microbiol 1999; 33:1069-80. [PMID: 10476040 DOI: 10.1046/j.1365-2958.1999.01550.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Pseudomonas aeruginosa algD gene is the first gene of an operon encoding most of the enzymes necessary for biosynthesis of the exopolysaccharide alginate. Transcriptional activation of algD results in the high-level synthesis of alginate, an important P. aeruginosa virulence factor with antiphagocytic and adherence properties. Previously, we have identified a protein(s), AlgZ, expressed in mucoid P. aeruginosa CF isolates that specifically bound to sequences located 280 bp upstream of the algD promoter. Mutagenesis of the AlgZ DNA binding site and transcription assays were used to show that AlgZ was an activator of algD transcription. In the current study, the monomeric size of AlgZ was estimated to be between 6 kDa and 15 kDa by electroelution of a protein preparation from an SDS-PAGE gel and analysis of the fractions via protein staining and electrophoretic mobility shift assays. A biochemical enrichment procedure, resulting in a 130-fold enrichment for AlgZ, was devised, the protein identified and a partial amino-terminal sequence obtained. Using the P. aeruginosa Genome Project database, a complete sequence was obtained, and algZ was cloned and expressed in Escherichia coli. Expression of algZ was sufficient for the observed AlgZ DNA binding previously observed from extracts of P. aeruginosa. A protein database search revealed that AlgZ is homologous to the Mnt and Arc repressors of the ribbon-helix-helix family of DNA-binding proteins. An algZ deletion mutant was constructed in the mucoid CF isolate FRD1. The resulting strain was non-mucoid and exhibited no detectable algD transcription. As an indirect role in transcription would probably result in some residual algD transcription, these data suggest that AlgZ is an integral activator of algD and support the hypothesis that both AlgZ and the response regulator AlgR are involved in direct contact with RNA polymerase containing the alternative sigma factor, AlgT. The cloning of algZ is a crucial step in determining the mechanism of algD activation.
Collapse
Affiliation(s)
- P J Baynham
- Department of Microbiology and Immunology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
69
|
Adhya S, Geanacopoulos M, Lewis DE, Roy S, Aki T. Transcription regulation by repressosome and by RNA polymerase contact. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:1-9. [PMID: 10384265 DOI: 10.1101/sqb.1998.63.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The original model of repression of transcription initiation is steric interference of RNA polymerase binding to a promoter by its repressor protein bound to a DNA site that overlaps the promoter. From the results described here, we propose two other mechanisms of repressor action, both of which involve formation of higher-order DNA-multiprotein complexes. These models also explain the problem of RNA polymerase gaining access to a promoter in the condensed nucleoid in response to an inducing signal to initiate transcription.
Collapse
Affiliation(s)
- S Adhya
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- S Roy
- Department of Biophysics, Bose Institute, Calcutta, 700 054, India
| |
Collapse
|
71
|
Affiliation(s)
- F Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
72
|
Green J, Marshall FA. Identification of a surface of FNR overlapping activating region 1 that is required for repression of gene expression. J Biol Chem 1999; 274:10244-8. [PMID: 10187810 DOI: 10.1074/jbc.274.15.10244] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A library of Escherichia coli fnr mutants has been screened to identify FNR (regulator of fumarate and nitrate reduction) variants that are defective repressors, but competent activators. All but one of seventeen variants had substitutions close to or within the face of FNR that contains activating region 1 (AR1). Activating region 1 is known to contact the alpha subunit of RNA polymerase to facilitate transcription activation. It is now evident that this face also has a role in FNR-mediated repression. Single amino acid substitutions at Lys54, Gly74, Ala95, Met147, Leu193, Arg197, or Leu239, and double substitutions at Ser13 and Ser145, Cys16 and Ile45, Tyr69 and Ser133, or Lys164 and Phe191, impaired FNR-mediated repression of ndh without greatly affecting activation from model Class I (FNR site at -71.5) and Class II (FNR site at -41.5) FNR-activated promoters. Although repression was impaired in a second group of FNR variants with substitutions at Leu34, Arg72 and Leu193, Phe92, or Ser178, transcription activation from the simple FNR-dependent promoters was severely reduced. However, expression from pyfiD (FNR sites at -40.5 and -93.5) and a derivative lacking the site at -93.5, pyfiD-/+, remained relatively high indicating that this second group have a context-dependent activation defect as well as a repression defect. The prediction that the substitutions affecting repression were likely to be in solvent exposed regions of FNR was supported by analysis of peptides produced by partial proteolysis of FNR. Thus, FNR-mediated repression at promoters with multiple FNR sites requires regions of FNR that are different from, but overlap, AR1.
Collapse
Affiliation(s)
- J Green
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | | |
Collapse
|
73
|
Ryu S, Fujita N, Ishihama A, Adhya S. GalR-mediated repression and activation of hybrid lacUV5 promoter: differential contacts with RNA polymerase. Gene 1998; 223:235-45. [PMID: 9858739 DOI: 10.1016/s0378-1119(98)00237-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The GalR repressor regulates expression of genes of the gal regulon in Escherichia coli. We studied the regulatory effect of GalR in vitro on a heterologous promoter, lacUV5, by placing the GalR-binding site, OE, at different locations upstream of this promoter. Despite the fact that the lacUV5 promoter is transcribed efficiently by RNA polymerase (RNP) alone, GalR modulated transcription from many of the PlacUV5 variants. Depending on the location of OE and the neighboring DNA sequence, GalR repressed, activated or had no effect on the promoter. Both repression and activation involved formation of GalR-RNP-DNA ternary complexes and required an intact c-domain of the alpha subunit of the holoenzyme. These results support the differential contact model of a regulator action, in which a regulator differentially binds to, and lowers the energy of, intermediates of transcription initiation either to hinder or to facilitate a step of initiation. The nature of the contacts depends upon the context, i.e. the geometry of the ternary complex. The observed repression and activation effect of GalR on a heterologous promoter also underscores the point that a regulator is not a dedicated protein for repression or for activation.
Collapse
Affiliation(s)
- S Ryu
- Laboratory of Molecular Biology, National Cancer Institute, Bldg. 37/2E16, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|