51
|
Li Y, Kong J, Peng X, Hou W, Qin X, Yu XF. Structural Insights into the High-efficiency Catalytic Mechanism of the Sterile α-Motif/Histidine-Aspartate Domain-containing Protein. J Biol Chem 2015; 290:29428-37. [PMID: 26438820 DOI: 10.1074/jbc.m115.663658] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Sterile α-motif/histidine-aspartate domain-containing protein (SAMHD1), a homo-tetrameric GTP/dGTP-dependent dNTP triphosphohydrolase, catalyzes the conversion of dNTP into deoxynucleoside and triphosphate. As the only characterized dNTP triphosphohydrolase in human cells, SAMHD1 plays an important role in human innate immunity, autoimmunity, and cell cycle control. Previous biochemical studies and crystal structures have revealed that SAMHD1 interconverts between an inactive monomeric or dimeric form and a dGTP/GTP-induced active tetrameric form. Here, we describe a novel state of SAMHD1 (109-626 amino acids, SAMHD1C) that is characterized by a rapid initial hydrolysis rate. Interestingly, the crystal structure showed that this novel SAMHD1 tetramer contains only GTP and has structural features distinct from the GTP/dNTP-bound SAMHD1 tetramer. Our work thus reveals structural features of SAMHD1 that may represent one of its biological assembly states in cells. The biochemical and structural information generated by the present study not only provides an ordered pathway for the assembly and activation of SAMHD1 but also provides insights into the potential mechanisms of the high-efficiency catalytic activity of this enzyme family in vivo.
Collapse
Affiliation(s)
- Yanhong Li
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Jia Kong
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xin Peng
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Wen Hou
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiaohong Qin
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and
| | - Xiao-Fang Yu
- From the School of Life Sciences, Tianjin University, Tianjin 300072 and the Institute of Virology and AIDS Research, First Hospital of Jilin University, 519 East Minzhu Avenue, Changchun 130061, Jilin Province, China
| |
Collapse
|
52
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
53
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
54
|
Tang C, Ji X, Wu L, Xiong Y. Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592. J Biol Chem 2015; 290:26352-9. [PMID: 26294762 DOI: 10.1074/jbc.m115.677435] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 01/02/2023] Open
Abstract
SAMHD1 is a cellular protein that plays key roles in HIV-1 restriction and regulation of cellular dNTP levels. Mutations in SAMHD1 are also implicated in the pathogenesis of chronic lymphocytic leukemia and Aicardi-Goutières syndrome. The anti-HIV-1 activity of SAMHD1 is negatively modulated by phosphorylation at residue Thr-592. The mechanism underlying the effect of phosphorylation on anti-HIV-1 activity remains unclear. SAMHD1 forms tetramers that possess deoxyribonucleotide triphosphate triphosphohydrolase (dNTPase) activity, which is allosterically controlled by the combined action of GTP and all four dNTPs. Here we demonstrate that the phosphomimetic mutation T592E reduces the stability of the SAMHD1 tetramer and the dNTPase activity of the enzyme. To better understand the underlying mechanisms, we determined the crystal structures of SAMHD1 variants T592E and T592V. Although the neutral substitution T592V does not perturb the structure, the charged T592E induces large conformational changes, likely triggered by electrostatic repulsion from a distinct negatively charged environment surrounding Thr-592. The phosphomimetic mutation results in a significant decrease in the population of active SAMHD1 tetramers, and hence the dNTPase activity is substantially decreased. These results provide a mechanistic understanding of how SAMHD1 phosphorylation at residue Thr-592 may modulate its cellular and antiviral functions.
Collapse
Affiliation(s)
- Chenxiang Tang
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Xiaoyun Ji
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| | - Li Wu
- the Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
55
|
Schwefel D, Boucherit VC, Christodoulou E, Walker PA, Stoye JP, Bishop KN, Taylor IA. Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx. Cell Host Microbe 2015; 17:489-99. [PMID: 25856754 PMCID: PMC4400269 DOI: 10.1016/j.chom.2015.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 01/31/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal "degron" sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication.
Collapse
Affiliation(s)
- David Schwefel
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Virginie C Boucherit
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Evangelos Christodoulou
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Philip A Walker
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Jonathan P Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK; Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Kate N Bishop
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
56
|
Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J. CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain. J Biol Chem 2015; 290:13279-92. [PMID: 25847232 DOI: 10.1074/jbc.m115.646588] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/06/2022] Open
Abstract
SAMHD1 is a nuclear deoxyribonucleoside triphosphate triphosphohydrolase that contributes to the control of cellular deoxyribonucleoside triphosphate (dNTP) pool sizes through dNTP hydrolysis and modulates the innate immune response to viruses. CyclinA2-CDK1/2 phosphorylates SAMHD1 at Thr-592, but how this modification controls SAMHD1 functions in proliferating cells is not known. Here, we show that SAMHD1 levels remain relatively unchanged during the cell division cycle in primary human T lymphocytes and in monocytic cell lines. Inactivation of the bipartite cyclinA2-CDK-binding site in the SAMHD1 C terminus described herein abolished SAMHD1 phosphorylation on Thr-592 during S and G2 phases thus interfering with DNA replication and progression of cells through S phase. The effects exerted by Thr-592 phosphorylation-defective SAMHD1 mutants were associated with activation of DNA damage checkpoint and depletion of dNTP concentrations to levels lower than those seen upon expression of wild type SAMHD1 protein. These disruptive effects were relieved by either mutation of the catalytic residues of the SAMHD1 phosphohydrolase domain or by a Thr-592 phosphomimetic mutation, thus linking the Thr-592 phosphorylation state to the control of SAMHD1 dNTPase activity. Our findings support a model in which phosphorylation of Thr-592 by cyclinA2-CDK down-modulates, but does not inactivate, SAMHD1 dNTPase in S phase, thereby fine-tuning SAMHD1 control of dNTP levels during DNA replication.
Collapse
Affiliation(s)
- Junpeng Yan
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | - Caili Hao
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106
| | | | - Selene Swanson
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Laurence Florens
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and
| | - Michael P Washburn
- the Stowers Institute for Medical Research, Kansas City, Missouri 64110, and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jinwoo Ahn
- the Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jacek Skowronski
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106, Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260,
| |
Collapse
|
57
|
Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF. The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. ACTA ACUST UNITED AC 2015; 71:516-24. [PMID: 25760601 DOI: 10.1107/s1399004714027527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022]
Abstract
SAMHD1 is the only known eukaryotic deoxynucleoside triphosphate triphosphohydrolase (dNTPase) and is a major regulator of intracellular dNTP pools. It has been reported to be a potent inhibitor of retroviruses such as HIV-1 and endogenous retrotransposons. Previous crystal structures have revealed that SAMHD1 is activated by dGTP-dependent tetramer formation. However, recent data have indicated that the primary activator of SAMHD1 is GTP, not dGTP. Therefore, how its dNTPase activity is regulated needs to be further clarified. Here, five crystal structures of the catalytic core of SAMHD1 in complex with different combinations of GTP and dNTPs are reported, including a GTP-bound dimer and four GTP/dNTP-bound tetramers. The data show that human SAMHD1 contains two unique activator-binding sites in the allosteric pocket. The primary activator GTP binds to one site and the substrate dNTP (dATP, dCTP, dUTP or dTTP) occupies the other. Consequently, both GTP and dNTP are required for tetramer activation of the enzyme. In the absence of substrate binding, SAMHD1 adopts an inactive dimer conformation even when complexed with GTP. Furthermore, SAMHD1 activation is regulated by the concentration of dNTP. Thus, the level of dNTP pools is elegantly regulated by the self-sensing ability of SAMHD1 through a novel activation mechanism.
Collapse
Affiliation(s)
- Chun Feng Zhu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Wei Wei
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Yu Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Yong Gong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Xiao Fang Yu
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
58
|
Singh D, Gawel D, Itsko M, Hochkoeppler A, Krahn JM, London RE, Schaaper RM. Structure of Escherichia coli dGTP triphosphohydrolase: a hexameric enzyme with DNA effector molecules. J Biol Chem 2015; 290:10418-29. [PMID: 25694425 DOI: 10.1074/jbc.m115.636936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli dgt gene encodes a dGTP triphosphohydrolase whose detailed role still remains to be determined. Deletion of dgt creates a mutator phenotype, indicating that the dGTPase has a fidelity role, possibly by affecting the cellular dNTP pool. In the present study, we have investigated the structure of the Dgt protein at 3.1-Å resolution. One of the obtained structures revealed a protein hexamer that contained two molecules of single-stranded DNA. The presence of DNA caused significant conformational changes in the enzyme, including in the catalytic site of the enzyme. Dgt preparations lacking DNA were able to bind single-stranded DNA with high affinity (Kd ∼ 50 nM). DNA binding positively affected the activity of the enzyme: dGTPase activity displayed sigmoidal (cooperative) behavior without DNA but hyperbolic (Michaelis-Menten) kinetics in its presence, consistent with a specific lowering of the apparent Km for dGTP. A mutant Dgt enzyme was also created containing residue changes in the DNA binding cleft. This mutant enzyme, whereas still active, was incapable of DNA binding and could no longer be stimulated by addition of DNA. We also created an E. coli strain containing the mutant dgt gene on the chromosome replacing the wild-type gene. The mutant also displayed a mutator phenotype. Our results provide insight into the allosteric regulation of the enzyme and support a physiologically important role of DNA binding.
Collapse
Affiliation(s)
- Deepa Singh
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Damian Gawel
- the Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, 01-813 Warsaw, Poland, and
| | - Mark Itsko
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Juno M Krahn
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Robert E London
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Roel M Schaaper
- From the Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
59
|
Urquijo-Sánchez S, Taborda-Vanegas NA, Rugeles-López MT. Factores solubles con actividad antiviral: en búsqueda de nuevos blancos terapéuticos para la infección por el VIH-1. IATREIA 2014. [DOI: 10.17533/udea.iatreia.18039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Los mecanismos innatos antivirales han resultado de gran interés debido a su uso potencial para la prevención y tratamiento de la infección por el VIH. En particular, los factores solubles antivirales han sido objeto de múltiples investigaciones por su capacidad de inhibir diferentes pasos del ciclo replicativo viral y de potenciar la respuesta inmune del hospedero. Entre estos factores solubles se destacan TRIM-5α, APOBEC3G, SAMHD1, ELAFIN, SERPINA1 y SLPI, que actúan directamente sobre la partícula viral o la célula, o promueven la producción de moléculas involucradas en la respuesta inmune contra el virus. Algunos de ellos se han correlacionado con un bajo riesgo de adquirir la infección por el VIH o con una lenta progresión a sida. La exploración de los mecanismos antivirales de estas proteínas es requisito para el desarrollo de nuevas alternativas terapéuticas.
Collapse
|
60
|
A continuous enzyme-coupled assay for triphosphohydrolase activity of HIV-1 restriction factor SAMHD1. Antimicrob Agents Chemother 2014; 59:186-92. [PMID: 25331707 PMCID: PMC4291348 DOI: 10.1128/aac.03903-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of deoxynucleoside triphosphate (dNTP)-based drugs requires a quantitative understanding of any inhibition, activation, or hydrolysis by off-target cellular enzymes. SAMHD1 is a regulatory dNTP-triphosphohydrolase that inhibits HIV-1 replication in human myeloid cells. We describe here an enzyme-coupled assay for quantifying the activation, inhibition, and hydrolysis of dNTPs, nucleotide analogues, and nucleotide analogue inhibitors by triphosphohydrolase enzymes. The assay facilitates mechanistic studies of triphosphohydrolase enzymes and the quantification of off-target effects of nucleotide-based antiviral and chemotherapeutic agents.
Collapse
|
61
|
Koharudin LMI, Wu Y, DeLucia M, Mehrens J, Gronenborn AM, Ahn J. Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J Biol Chem 2014; 289:32617-27. [PMID: 25288794 DOI: 10.1074/jbc.m114.591958] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) plays a critical role in inhibiting HIV infection, curtailing the pool of dNTPs available for reverse transcription of the viral genome. Recent structural data suggested a compelling mechanism for the regulation of SAMHD1 enzymatic activity and revealed dGTP-induced association of two inactive dimers into an active tetrameric enzyme. Here, we present the crystal structures of SAMHD1 catalytic core (residues 113-626) tetramers, complexed with mixtures of nucleotides, including dGTP/dATP, dGTP/dCTP, dGTP/dTTP, and dGTP/dUTP. The combined structural and biochemical data provide insight into dNTP promiscuity at the secondary allosteric site and how enzymatic activity is modulated. In addition, we present biochemical analyses of GTP-induced SAMHD1 full-length tetramerization and the structure of SAMHD1 catalytic core tetramer in complex with GTP/dATP, revealing the structural basis of GTP-mediated SAMHD1 activation. Altogether, the data presented here advance our understanding of SAMHD1 function during cellular homeostasis.
Collapse
Affiliation(s)
- Leonardus M I Koharudin
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Ying Wu
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Maria DeLucia
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jennifer Mehrens
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Angela M Gronenborn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Jinwoo Ahn
- From the Department of Structural Biology and Pittsburgh Center for HIV-Host Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
62
|
Abstract
The sterile alpha motif and HD domain-containing protein 1 (SAMHD1), a dNTPase, prevents the infection of nondividing cells by retroviruses, including HIV, by depleting the cellular dNTP pool available for viral reverse transcription. SAMHD1 is a major regulator of cellular dNTP levels in mammalian cells. Mutations in SAMHD1 are associated with chronic lymphocytic leukemia (CLL) and the autoimmune condition Aicardi Goutières syndrome (AGS). The dNTPase activity of SAMHD1 can be regulated by dGTP, with which SAMHD1 assembles into catalytically active tetramers. Here we present extensive biochemical and structural data that reveal an exquisite activation mechanism of SAMHD1 via combined action of both GTP and dNTPs. We obtained 26 crystal structures of SAMHD1 in complex with different combinations of GTP and dNTP mixtures, which depict the full spectrum of GTP/dNTP binding at the eight allosteric and four catalytic sites of the SAMHD1 tetramer. Our data demonstrate how SAMHD1 is activated by binding of GTP or dGTP at allosteric site 1 and a dNTP of any type at allosteric site 2. Our enzymatic assays further reveal a robust regulatory mechanism of SAMHD1 activity, which bares resemblance to that of the ribonuclease reductase responsible for cellular dNTP production. These results establish a complete framework for a mechanistic understanding of the important functions of SAMHD1 in the regulation of cellular dNTP levels, as well as in HIV restriction and the pathogenesis of CLL and AGS.
Collapse
|
63
|
Mathews CK. Deoxyribonucleotides as genetic and metabolic regulators. FASEB J 2014; 28:3832-40. [PMID: 24928192 DOI: 10.1096/fj.14-251249] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
For >35 yr, we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the 4 canonical deoxyribonucleoside 5'-triphosphates (dNTPs) at the replisome. Since this field was last reviewed, ∼8 yr ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in Escherichia coli and in yeast. Finally, ribonucleoside triphosphate (rNTP) pools have been shown to be critical determinants of DNA replication fidelity. These developments are discussed in this review article.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
64
|
Mouse knockout models for HIV-1 restriction factors. Cell Mol Life Sci 2014; 71:3749-66. [PMID: 24854580 PMCID: PMC4160573 DOI: 10.1007/s00018-014-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Infection of cells with human immunodeficiency virus 1 (HIV-1) is controlled by restriction factors, host proteins that counteract a variety of steps in the life cycle of this lentivirus. These include SAMHD1, APOBEC3G and tetherin, which block reverse transcription, hypermutate viral DNA and prevent progeny virus release, respectively. These and other HIV-1 restriction factors are conserved and have clear orthologues in the mouse. This review summarises studies in knockout mice lacking HIV-1 restriction factors. In vivo experiments in such animals have not only validated in vitro data obtained from cultured cells, but have also revealed new findings about the biology of these proteins. Indeed, genetic ablation of HIV-1 restriction factors in the mouse has provided evidence that restriction factors control retroviruses and other viruses in vivo and has led to new insights into the mechanisms by which these proteins counteract infection. For example, in vivo experiments in knockout mice demonstrate that virus control exerted by restriction factors can shape adaptive immune responses. Moreover, the availability of animals lacking restriction factors opens the possibility to study the function of these proteins in other contexts such as autoimmunity and cancer. Further in vivo studies of more recently identified HIV-1 restriction factors in gene targeted mice are, therefore, justified.
Collapse
|
65
|
Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V. Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J Biol Chem 2014; 289:18339-46. [PMID: 24828500 PMCID: PMC4140260 DOI: 10.1074/jbc.m114.571091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deoxyribonucleotide triphosphohydrolase SAMHD1 restricts lentiviral infection by depleting the dNTPs required for viral DNA synthesis. In cultured human fibroblasts SAMHD1 is expressed maximally during quiescence preventing accumulation of dNTPs outside S phase. siRNA silencing of SAMHD1 increases dNTP pools, stops cycling human cells in G1, and blocks DNA replication. Surprisingly, knock-out of the mouse gene does not affect the well being of the animals. dNTPs are both substrates and allosteric effectors for SAMHD1. In the crystal structure each subunit of the homotetrameric protein contains one substrate-binding site and two nonidentical effector-binding sites, site 1 binding dGTP, site 2 dGTP or dATP. Here we compare allosteric properties of pure recombinant human and mouse SAMHD1. Both enzymes are activated 3–4-fold by allosteric effectors. We propose that in quiescent cells where SAMHD1 is maximally expressed GTP binds to site 1 with very high affinity, stabilizing site 2 of the tetrameric structure. Any canonical dNTP can bind to site 2 and activate SAMHD1, but in cells only dATP or dTTP are present at sufficient concentrations. The apparent Km for dATP at site 2 is ∼10 μm for mouse and 1 μm for human SAMHD1, for dTTP the corresponding values are 50 and 2 μm. Tetrameric SAMHD1 is activated for the hydrolysis of any dNTP only after binding of a dNTP to site 2. The lower Km constants for human SAMHD1 induce activation at lower cellular concentrations of dNTPs thereby limiting the size of dNTP pools more efficiently in quiescent human cells.
Collapse
Affiliation(s)
- Cristina Miazzi
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Paola Ferraro
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giovanna Pontarin
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Chiara Rampazzo
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Peter Reichard
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| | - Vera Bianchi
- From the Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
66
|
GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc Natl Acad Sci U S A 2014; 111:E1843-51. [PMID: 24753578 DOI: 10.1073/pnas.1401706111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 restriction factor sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1) is a tetrameric protein that catalyzes the hydrolysis of all dNTPs to the deoxynucleoside and tripolyphosphate, which effectively depletes the dNTP substrates of HIV reverse transcriptase. Here, we establish that SAMHD1 is activated by GTP binding to guanine-specific activator sites (A1) as well as coactivation by substrate dNTP binding to a distinct set of nonspecific activator sites (A2). Combined activation by GTP and dNTPs results in a long-lived tetrameric form of SAMHD1 that persists for hours, even after activating nucleotides are withdrawn from the solution. These results reveal an ordered model for assembly of SAMHD1 tetramer from its inactive monomer and dimer forms, where GTP binding to the A1 sites generates dimer and dNTP binding to the A2 and catalytic sites generates active tetramer. Thus, cellular regulation of active SAMHD1 is not determined by GTP alone but instead, the levels of all dNTPs and the generation of a persistent tetramer that is not in equilibrium with free activators. The significance of the long-lived activated state is that SAMHD1 can remain active long after dNTP pools have been reduced to a level that would lead to inactivation. This property would be important in resting CD4(+) T cells, where dNTP pools are reduced to nanomolar levels to restrict infection by HIV-1.
Collapse
|
67
|
Souza TML, Temerozo JR, Giestal-de-Araujo E, Bou-Habib DC. The effects of neurotrophins and the neuropeptides VIP and PACAP on HIV-1 infection: histories with opposite ends. Neuroimmunomodulation 2014; 21:268-82. [PMID: 24603065 DOI: 10.1159/000357434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
The nerve growth factor (NGF) and other neurotrophins, and the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are largely present in human tissue and can exert modulatory activities on nervous, endocrine and immune system functions. NGF, VIP and PACAP receptors are expressed systemically in organisms, and thus these mediators exhibit pleiotropic natures. The human immunodeficiency virus type 1 (HIV-1), the causal agent of the acquired immunodeficiency syndrome (AIDS), infects immune cells, and its replication is modulated by a number of endogenous factors that interact with HIV-1-infected cells. NGF, VIP and PACAP can also affect HIV-1 virus particle production upon binding to their receptors on the membranes of infected cells, which triggers cell signaling pathways that modify the HIV-1 replicative cycle. These molecules exert opposite effects on HIV-1 replication, as NGF and other neurotrophins enhance and VIP and PACAP reduce viral production in HIV-1-infected human primary macrophages. The understanding of AIDS pathogenesis should consider the mechanisms by which the replication of HIV-1, a pathogen that causes chronic morbidity, is influenced by neurotrophins, VIP and PACAP, i.e. molecules that exert a broad spectrum of physiological activities on the neuroimmunoendocrine axis. In this review, we will present the main effects of these two groups of mediators on the HIV-1 replicative cycle, as well as the mechanisms that underlie their abilities to modulate HIV-1 production in infected immune cells, and discuss the possible repercussion of the cross talk between NGF and both neuropeptides on the pathogenesis of HIV-1 infection.
Collapse
Affiliation(s)
- Thiago Moreno L Souza
- Laboratory of Respiratory Viruses, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
68
|
Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J. SAMHD1 Host Restriction Factor: A Link with Innate Immune Sensing of Retrovirus Infection. J Mol Biol 2013; 425:4981-94. [DOI: 10.1016/j.jmb.2013.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023]
|