51
|
Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K. Opening Pandora's jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. FUTURE NEUROLOGY 2012; 7:749-771. [PMID: 23308041 DOI: 10.2217/fnl.12.68] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CRMP2, also known as DPYSL2/DRP2, Unc-33, Ulip or TUC2, is a cytosolic phosphoprotein that mediates axon/dendrite specification and axonal growth. Mapping the CRMP2 interactome has revealed previously unappreciated functions subserved by this protein. Together with its canonical roles in neurite growth and retraction and kinesin-dependent axonal transport, it is now known that CRMP2 interacts with numerous binding partners to affect microtubule dynamics; protein endocytosis and vesicular cycling, synaptic assembly, calcium channel regulation and neurotransmitter release. CRMP2 signaling is regulated by post-translational modifications, including glycosylation, oxidation, proteolysis and phosphorylation; the latter being a fulcrum of CRMP2 functions. Here, the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders are discussed and evidence is presented for therapeutic strategies targeting CRMP2 functions.
Collapse
Affiliation(s)
- Rajesh Khanna
- Program in Medical Neurosciences, Paul & Carole Stark Neurosciences Research Institute Indianapolis, IN 46202, USA ; Departments of Pharmacology & Toxicology, Indianapolis, IN 46202, USA ; Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA ; Sophia Therapeutics LLC, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
52
|
Wolff C, Carrington B, Varrin-Doyer M, Vandendriessche A, Van der Perren C, Famelart M, Gillard M, Foerch P, Rogemond V, Honnorat J, Lawson A, Miller K. Drug binding assays do not reveal specific binding of lacosamide to collapsin response mediator protein 2 (CRMP-2). CNS Neurosci Ther 2012; 18:493-500. [PMID: 22672303 DOI: 10.1111/j.1755-5949.2012.00313.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS Lacosamide (LCM; SPM 927, Vimpat®) is an antiepileptic drug (AED) used as adjunctive treatment for adults with partial-onset seizures. LCM has a different mode of action from traditional sodium channel blocking AEDs in that it selectively enhances slow inactivation of sodium channels without affecting fast inactivation. Initial investigations suggested that LCM might have an additional mode of action by binding to the collapsin response mediator protein 2 (CRMP-2), which is further investigated here. METHODS LCM binding to native and cloned human CRMP-2 was determined using radioligand binding experiments and surface plasmon resonance measurements. RESULTS No specific binding of [(3) H]LCM (free concentration 100-1450 nM) to isolated or membrane bound human CRMP-2 expressed in mammalian cell systems and bacteria was observed. Surface plasmon resonance analysis also showed that LCM, over a concentration range of 0.39-100 μM, does not specifically bind to human CRMP-2. CONCLUSION The diverse drug binding methods employed here are well suited to detect specific binding of LCM to CRMP-2 in the micromolar range, yet the results obtained were all negative. Results of this study suggest that LCM does not specifically bind to CRMP-2.
Collapse
|
53
|
Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Lett 2012; 586:3813-8. [PMID: 23022559 DOI: 10.1016/j.febslet.2012.09.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022]
Abstract
The axon/dendrite specification collapsin response mediator protein-2 (CRMP-2) bidirectionally regulates N-type voltage-gated Ca(2+) channels (CaV2.2). But how cyclin dependent kinase 5 (Cdk5)-mediated phosphorylation of CRMP-2 affects its interaction/regulation with CaV2.2 is unknown. CRMP-2-mediated enhancement of currents via CaV2.2 was not observed with a Cdk5 phospho-null CRMP-2-S522A mutant or in cells expressing an inactive Cdk5. Concomitant knockdown of endogenous CRMP2 and overexpression of CRMP2-S522A mutant refractory to knockdown phenocopied the reduction in Ca(2+) influx while the Rho kinase CRMP2-T555A mutant was ineffective. Cdk5-phosphorylated CRMP-2 had increased association with CaV2.2. These results identify an important role for Cdk5 in CRMP2-mediated CaV2.2 regulation.
Collapse
|
54
|
Obreja O, Hirth M, Turnquist B, Rukwied R, Ringkamp M, Schmelz M. The Differential Effects of Two Sodium Channel Modulators on the Conductive Properties of C-Fibers in Pig Skin In Vivo. Anesth Analg 2012; 115:560-71. [DOI: 10.1213/ane.0b013e3182542843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
55
|
Béguin C, Potter DN, Carlezon WA, Stöhr T, Cohen BM. Effects of the anticonvulsant lacosamide compared to valproate and lamotrigine on cocaine-enhanced reward in rats. Brain Res 2012; 1479:44-51. [PMID: 22940183 DOI: 10.1016/j.brainres.2012.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/01/2012] [Accepted: 08/16/2012] [Indexed: 01/05/2023]
Abstract
Some drugs developed as anticonvulsants (notably, valproate and lamotrigine) have therapeutic effects in bipolar and related disorders. Lacosamide, a recently approved anticonvulsant, has unique effects on sodium channels that may play a role in producing the mood-stabilizing effects of anticonvulsant drugs. We tested whether lacosamide would have effects similar to or different from valproate and lamotrigine in a model of reward and elevated mood. The intracranial self-stimulation (ICSS) test is sensitive to the function of brain reward systems. Changes in ICSS may model aspects of disorders characterized by abnormalities of reward and motivation. Cocaine elevates mood, and reduction of cocaine-induced facilitation of ICSS has been used to predict antimanic-like or mood stabilizing effects of drugs. We tested lacosamide, lamotrigine, and valproate in the rat ICSS test alone or in the presence of cocaine. A high dose of lacosamide (30 mg/kg) significantly elevated ICSS thresholds, indicating that it reduced the rewarding impact of medial forebrain bundle stimulation. Lower doses (3-10 mg/kg) did not alter ICSS, but blocked the cocaine-induced lowering of ICSS thresholds. The highest doses of valproate (300 mg/kg) and lamotrigine (30 mg/kg) also elevated ICSS thresholds, and only these high doses significantly lowered cocaine-induced effects. Of the drugs tested, only lacosamide significantly attenuated the reward-facilitating effects of cocaine at doses that had no effects on ICSS response in the absence of cocaine. Abnormalities of mood and reward are common in psychiatric disorders, and these results suggest that lacosamide deserves further study in models of these disorders.
Collapse
Affiliation(s)
- Cécile Béguin
- Mailman Research Center, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
56
|
Wilson SM, Schmutzler BS, Brittain JM, Dustrude ET, Ripsch MS, Pellman JJ, Yeum TS, Hurley JH, Hingtgen CM, White FA, Khanna R. Inhibition of transmitter release and attenuation of anti-retroviral-associated and tibial nerve injury-related painful peripheral neuropathy by novel synthetic Ca2+ channel peptides. J Biol Chem 2012; 287:35065-35077. [PMID: 22891239 DOI: 10.1074/jbc.m112.378695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
N-type Ca(2+) channels (CaV2.2) are a nidus for neurotransmitter release and nociceptive transmission. However, the use of CaV2.2 blockers in pain therapeutics is limited by side effects resulting from inhibition of the physiological functions of CaV2.2 within the CNS. We identified an anti-nociceptive peptide (Brittain, J. M., Duarte, D. B., Wilson, S. M., Zhu, W., Ballard, C., Johnson, P. L., Liu, N., Xiong, W., Ripsch, M. S., Wang, Y., Fehrenbacher, J. C., Fitz, S. D., Khanna, M., Park, C. K., Schmutzler, B. S., Cheon, B. M., Due, M. R., Brustovetsky, T., Ashpole, N. M., Hudmon, A., Meroueh, S. O., Hingtgen, C. M., Brustovetsky, N., Ji, R. R., Hurley, J. H., Jin, X., Shekhar, A., Xu, X. M., Oxford, G. S., Vasko, M. R., White, F. A., and Khanna, R. (2011) Suppression of inflammatory and neuropathic pain by uncoupling CRMP2 from the presynaptic Ca(2+) channel complex. Nat. Med. 17, 822-829) derived from the axonal collapsin response mediator protein 2 (CRMP2), a protein known to bind and enhance CaV2.2 activity. Using a peptide tiling array, we identified novel peptides within the first intracellular loop (CaV2.2(388-402), "L1") and the distal C terminus (CaV1.2(2014-2028) "Ct-dis") that bound CRMP2. Microscale thermophoresis demonstrated micromolar and nanomolar binding affinities between recombinant CRMP2 and synthetic L1 and Ct-dis peptides, respectively. Co-immunoprecipitation experiments showed that CRMP2 association with CaV2.2 was inhibited by L1 and Ct-dis peptides. L1 and Ct-dis, rendered cell-penetrant by fusion with the protein transduction domain of the human immunodeficiency virus TAT protein, were tested in in vitro and in vivo experiments. Depolarization-induced calcium influx in dorsal root ganglion (DRG) neurons was inhibited by both peptides. Ct-dis, but not L1, peptide inhibited depolarization-stimulated release of the neuropeptide transmitter calcitonin gene-related peptide in mouse DRG neurons. Similar results were obtained in DRGs from mice with a heterozygous mutation of Nf1 linked to neurofibromatosis type 1. Ct-dis peptide, administered intraperitoneally, exhibited antinociception in a zalcitabine (2'-3'-dideoxycytidine) model of AIDS therapy-induced and tibial nerve injury-related peripheral neuropathy. This study suggests that CaV peptides, by perturbing interactions with the neuromodulator CRMP2, contribute to suppression of neuronal hypersensitivity and nociception.
Collapse
Affiliation(s)
- Sarah M Wilson
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brian S Schmutzler
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joel M Brittain
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Erik T Dustrude
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew S Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jessica J Pellman
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Tae-Sung Yeum
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Joyce H Hurley
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Cynthia M Hingtgen
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Fletcher A White
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Rajesh Khanna
- Department of Program in Medical Neurosciences, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202; Sophia Therapeutics LLC, Indianapolis, Indiana 46202.
| |
Collapse
|
57
|
Abstract
Ion channels are targets of many therapeutically useful agents, and worldwide sales of ion channel-targeted drugs are estimated to be approximately US$12 billion. Nevertheless, considering that over 400 genes encoding ion channel subunits have been identified, ion channels remain significantly under-exploited as therapeutic targets. This is at least partly due to limitations in high-throughput assay technologies that support screening and lead optimization. Will the recent developments in automated electrophysiology rectify this situation? What are the other major limitations and can they be overcome? In this article, we review the status of ion channel drug discovery, discuss current challenges and propose alternative approaches that may facilitate the discovery of new drugs in the future.
Collapse
|
58
|
Wilson SM, Xiong W, Wang Y, Ping X, Head JD, Brittain JM, Gagare PD, Ramachandran PV, Jin X, Khanna R. Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience 2012; 210:451-66. [PMID: 22433297 DOI: 10.1016/j.neuroscience.2012.02.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/12/2023]
Abstract
Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide [LCM]), which acts on both voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP2), an axonal growth/guidance protein. LCM inhibited CRMP2-mediated neurite outgrowth, an effect phenocopied by CRMP2 knockdown. Mutation of LCM-binding sites in CRMP2 reduced the neurite inhibitory effect of LCM by ∼8-fold. LCM also reduced CRMP2-mediated tubulin polymerization. Thus, LCM selectively impairs CRMP2-mediated microtubule polymerization, which underlies its neurite outgrowth and branching. To determine whether LCM inhibits axon sprouting in vivo, LCM was injected into rats subjected to partial cortical isolation, an animal model of posttraumatic epileptogenesis that exhibits axon sprouting in cortical pyramidal neurons. Two weeks following injury, excitatory synaptic connectivity of cortical layer V pyramidal neurons was mapped using patch clamp recordings and laser scanning photostimulation of caged glutamate. In comparison with injured control animals, there was a significant decrease in the map size of excitatory synaptic connectivity in LCM-treated rats, suggesting that LCM treatment prevented enhanced excitatory synaptic connectivity due to posttraumatic axon sprouting. These findings suggest, for the first time, that LCM's mode of action involves interactions with CRMP2 to inhibit posttraumatic axon sprouting.
Collapse
Affiliation(s)
- S M Wilson
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Lees G, Errington AC. Lacosamide: Novel action mechanisms and emerging targets in epilepsy and pain. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2011. [DOI: 10.1016/j.tacc.2011.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
61
|
Lacosamide has protective disease modifying properties in experimental vincristine neuropathy. Neuropharmacology 2011; 61:600-7. [DOI: 10.1016/j.neuropharm.2011.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/26/2011] [Accepted: 05/02/2011] [Indexed: 01/01/2023]
|
62
|
Wang Y, Wilson SM, Brittain JM, Ripsch MS, Salomé C, Park KD, White FA, Khanna R, Kohn H. Merging Structural Motifs of Functionalized Amino Acids and α-Aminoamides Results in Novel Anticonvulsant Compounds with Significant Effects on Slow and Fast Inactivation of Voltage-gated Sodium Channels and in the Treatment of Neuropathic Pain. ACS Chem Neurosci 2011; 2:317-322. [PMID: 21765969 DOI: 10.1021/cn200024z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We recently reported that merging key structural pharmacophores of the anticonvulsant drugs lacosamide (a functionalized amino acid) with safinamide (an α-aminoamide) resulted in novel compounds with anticonvulsant activities superior to that of either drug alone. Here, we examined the effects of six such chimeric compounds on Na(+)-channel function in central nervous system catecholaminergic (CAD) cells. Using whole-cell patch clamp electrophysiology, we demonstrated that these compounds affected Na(+) channel fast and slow inactivation processes. Detailed electrophysiological characterization of two of these chimeric compounds that contained either an oxymethylene ((R)-7) or a chemical bond ((R)-11) between the two aromatic rings showed comparable effects on slow inactivation, use-dependence of block, development of slow inactivation, and recovery of Na(+) channels from inactivation. Both compounds were equally effective at inducing slow inactivation; (R)-7 shifted the fast inactivation curve in the hyperpolarizing direction greater than (R)-11, suggesting that in the presence of (R)-7, a larger fraction of the channels are in an inactivated state. None of the chimeric compounds affected veratridine- or KCl-induced glutamate release in neonatal cortical neurons. There was modest inhibition of KCl-induced calcium influx in cortical neurons. Finally, a single intraperitoneal administration of (R)-7, but not (R)-11, completely reversed mechanical hypersensitivity in a tibial-nerve injury model of neuropathic pain. The strong effects of (R)-7 on slow and fast inactivation of Na(+) channels may contribute to its efficacy and provide a promising novel therapy for neuropathic pain, in addition to its antiepileptic potential.
Collapse
Affiliation(s)
- Yuying Wang
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Wilson
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Joel M. Brittain
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Matthew S. Ripsch
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christophe Salomé
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ki Duk Park
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Fletcher A. White
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Rajesh Khanna
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Harold Kohn
- Department Pharmacology and Toxicology, ‡Department of Anesthesia, and §Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Department of Chemistry and ⊥Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
63
|
Brittain JM, Duarte DB, Wilson SM, Zhu W, Ballard C, Johnson PL, Liu N, Xiong W, Ripsch MS, Wang Y, Fehrenbacher JC, Fitz SD, Khanna M, Park CK, Schmutzler BS, Cheon BM, Due MR, Brustovetsky T, Ashpole NM, Hudmon A, Meroueh SO, Hingtgen CM, Brustovetsky N, Ji RR, Hurley JH, Jin X, Shekhar A, Xu XM, Oxford GS, Vasko MR, White FA, Khanna R. Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca²⁺ channel complex. Nat Med 2011; 17:822-9. [PMID: 21642979 DOI: 10.1038/nm.2345] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/07/2011] [Indexed: 11/09/2022]
Abstract
The use of N-type voltage-gated calcium channel (CaV2.2) blockers to treat pain is limited by many physiological side effects. Here we report that inflammatory and neuropathic hypersensitivity can be suppressed by inhibiting the binding of collapsin response mediator protein 2 (CRMP-2) to CaV2.2 and thereby reducing channel function. A peptide of CRMP-2 fused to the HIV transactivator of transcription (TAT) protein (TAT-CBD3) decreased neuropeptide release from sensory neurons and excitatory synaptic transmission in dorsal horn neurons, reduced meningeal blood flow, reduced nocifensive behavior induced by formalin injection or corneal capsaicin application and reversed neuropathic hypersensitivity produced by an antiretroviral drug. TAT-CBD3 was mildly anxiolytic without affecting memory retrieval, sensorimotor function or depression. At doses tenfold higher than that required to reduce hypersensitivity in vivo, TAT-CBD3 caused a transient episode of tail kinking and body contortion. By preventing CRMP-2-mediated enhancement of CaV2.2 function, TAT-CBD3 alleviated inflammatory and neuropathic hypersensitivity, an approach that may prove useful in managing chronic pain.
Collapse
Affiliation(s)
- Joel M Brittain
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
|
65
|
Wang Y, Khanna R. VOLTAGE-GATED CALCIUM CHANNELS ARE NOT AFFECTED BY THE NOVEL ANTI-EPILEPTIC DRUG LACOSAMIDE. Transl Neurosci 2011; 2:13-22. [PMID: 21949591 PMCID: PMC3178266 DOI: 10.2478/s13380-011-0002-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The novel anti-epileptic drug lacosamide targets two proteins - voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP-2) - suggesting dual modes of action for lacosamide. We recently identified the neurite outgrowth and axonal guidance protein CRMP-2 as a novel partner and regulator of the presynaptic N-type voltage-gated Ca(2+) channel (CaV2.2) [Brittain et al., J. Biol. Chem. 284: 31375-31390 (2009)]. Here we examined the effects of lacosamide on voltage-gated Ba(2+) channels. Lacosamide did not affect Ba(2+) currents via N- and P/Q- channels in rat hippocampal neurons or L-type Ca(2+) channels in a mouse CNS neuronal cell line, respectively. N-type Ba(2+) currents, augmented by CRMP-2 expression, were also unaffected by acute or chronic lacosamide exposure. These results establish that the anti-epileptic mode of action of lacosamide does not involve these voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Paul and Carole Stark Neurosciences, Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| | - Rajesh Khanna
- Department of Pharmacology and Toxicology, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
- Paul and Carole Stark Neurosciences, Research Institute, Indiana University, School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
66
|
Wang Y, Park KD, Salomé C, Wilson SM, Stables JP, Liu R, Khanna R, Kohn H. Development and characterization of novel derivatives of the antiepileptic drug lacosamide that exhibit far greater enhancement in slow inactivation of voltage-gated sodium channels. ACS Chem Neurosci 2011; 2:90-106. [PMID: 21532923 DOI: 10.1021/cn100089b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The novel antiepileptic drug, (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide, Vimpat(®) ((R)-1)), was recently approved in the US and Europe for adjuvant treatment of partial-onset seizures in adults. (R)-1 preferentially enhances slow inactivation of voltage-gated Na(+) currents, a pharmacological process relevant in the hyperexcitable neuron. We have advanced a strategy to identify lacosamide binding partners by attaching affinity bait (AB) and chemical reporter (CR) groups to (R)-1 to aid receptor detection and isolation. We showed that select lacosamide AB and AB&CR derivatives exhibited excellent activities similar to (R)-1 in the maximal electroshock seizure model in rodents. Here, we examined the effect of these lacosamide AB and AB&CR derivatives and compared them with (R)-1 on Na(+) channel function in CNS catecholaminergic (CAD) cells. Using whole-cell patch clamp electrophysiology, we demonstrated that the test compounds do not affect the Na(+) channel fast inactivation process, that they were far better modulators of slow inactivation than (R)-1, and that modulation of the slow inactivation process was stereospecific. The lacosamide AB agents that contained either an electrophilic isothiocyanate ((R)-5) or a photolabile azide ((R)-8) unit upon AB activation gave modest levels of permanent Na(+) channel slow inactivation, providing initial evidence that these compounds may have covalently reacted with their cognate receptor(s). Our findings support the further use of these agents to delineate the (R)-1-mediated Na(+) channel slow inactivation process.
Collapse
Affiliation(s)
| | - Ki Duk Park
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy
| | - Christophe Salomé
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy
| | | | - James P. Stables
- Epilepsy Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Boulevard, Suite 2106, Rockville, Maryland 20892, United States
| | - Rihe Liu
- Carolina Center for Genome Sciences
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy
| | - Rajesh Khanna
- Departments of Pharmacology and Toxicology
- Program in Medical Neuroscience
| | - Harold Kohn
- Department of Chemistry
- Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy
| |
Collapse
|
67
|
Novy J, Patsalos PN, Sander JW, Sisodiya SM. Lacosamide neurotoxicity associated with concomitant use of sodium channel-blocking antiepileptic drugs: a pharmacodynamic interaction? Epilepsy Behav 2011; 20:20-3. [PMID: 21056937 DOI: 10.1016/j.yebeh.2010.10.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 10/18/2022]
Abstract
Lacosamide is a new antiepileptic drug (AED) apparently devoid of major pharmacokinetic interactions. Data from a small postmarketing assessment suggest people who had lacosamide co-prescribed with a voltage-gated sodium channel (VGSC)-blocking AED seemed more likely to discontinue lacosamide because of tolerability problems. Among 39 people with refractory epilepsy who developed neurotoxicity (diplopia, dizziness, drowsiness) on lacosamide treatment given in combination with VGSC-blocking AEDs, we identified 7 (17.9%) without any changes in serum levels of other AEDs in whom the symptoms were ameliorated by dose reduction of the concomitant VGSC-blocking AED. Symptoms in these people seem to have arisen from a pharmacodynamic interaction between lacosamide and other VGSC-blocking AEDs. Slow-inactivated VGSCs targeted by lacosamide might be more sensitive to the effects of conventional VGSC-blocking AEDs. Advising people to reduce concomitantly the conventional VGSC-blocking AEDs during lacosamide uptitration in cases of neurotoxicity might improve the tolerability of combination treatment.
Collapse
Affiliation(s)
- Jan Novy
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | |
Collapse
|