51
|
Xiao Q, Luechapanichkul R, Zhai Y, Pei D. Specificity profiling of protein phosphatases toward phosphoseryl and phosphothreonyl peptides. J Am Chem Soc 2013; 135:9760-7. [PMID: 23758517 DOI: 10.1021/ja401692t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A combinatorial library method was developed to systematically profile the substrate specificity of protein phosphatases toward phosphoseryl (pS) and phosphothreonyl (pT) peptides. Application of this method and a previously reported phosphotyrosyl (pY) library screening technique to dual-specificity phosphatase (DUSP) VH1 of vaccinia virus revealed that VH1 is highly active toward both pS/pT and pY peptides. VH1 exhibits different and more stringent sequence specificity toward pS/pT than pY substrates. Unlike previously characterized protein tyrosine phosphatases (PTPs), the activity and specificity of VH1 are primarily determined by the amino acid residues C-terminal to the pS, pT, or pY residue. In contrast, the mammalian VH1-related (VHR) DUSP has intrinsically low catalytic activity toward pS and pT substrates, suggesting that its primary physiological function is to dephosphorylate pY residues in substrate proteins. This method is applicable to other DUSPs and protein-serine/threonine phosphatases, and the substrate specificity data will be useful for identifying the physiological substrates of these enzymes.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Ave., Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
52
|
Kang PJ, Hood-DeGrenier JK, Park HO. Coupling of septins to the axial landmark by Bud4 in budding yeast. J Cell Sci 2013; 126:1218-26. [PMID: 23345395 DOI: 10.1242/jcs.118521] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells of the budding yeast Saccharomyces cerevisiae select a site for polarized growth in a specific pattern that depends on their cell type. Haploid a and α cells bud in the axial budding pattern, which requires assembly of a landmark that includes the Bud4 protein. To understand how an axial bud site is established, we performed a structure-function analysis of Bud4. Bud4 contains DUF1709 (domain of unknown function), which is similar to a part of the anillin-homology domain, and a putative Pleckstrin homology (PH) domain near to its C terminus. Although its localization depends on septins, a conserved family of GTP-binding proteins, Bud4 is necessary for the stable inheritance of septin rings during cell division. Although some anillins interact directly with septins, we find that neither DUF1709 nor the PH domain is necessary for targeting Bud4 to the mother-bud neck. Instead, this C-terminal region is crucial for association of Bud4 with Bud3 and other components of the axial landmark. Remarkably, septins colocalize with Bud4 mutant proteins that lack these C-terminal domains, forming an arc or a single ring instead of a double ring during and after cytokinesis. Interestingly, overexpression of Bud4 also induces formation of extra Bud4 rings and arcs that are associated with septins. Analyses of a series of bud4 truncation mutants suggest that at least two domains in the central region play a redundant role in targeting Bud4 to the mother-bud neck and are thus likely to interact with septins. Taken together, these results indicate that Bud4 functions as a platform that links septins to the axial landmark.
Collapse
Affiliation(s)
- Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
53
|
Miteva YV, Budayeva HG, Cristea IM. Proteomics-based methods for discovery, quantification, and validation of protein-protein interactions. Anal Chem 2013; 85:749-68. [PMID: 23157382 PMCID: PMC3666915 DOI: 10.1021/ac3033257] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ileana M. Cristea
- Corresponding author: Ileana M. Cristea 210 Lewis Thomas Laboratory Department of Molecular Biology Princeton University Princeton, NJ 08544 Tel: 6092589417 Fax: 6092584575
| |
Collapse
|
54
|
Rowland M, Fontana W, Deeds E. Crosstalk and competition in signaling networks. Biophys J 2012; 103:2389-98. [PMID: 23283238 PMCID: PMC3514525 DOI: 10.1016/j.bpj.2012.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022] Open
Abstract
Signaling networks have evolved to transduce external and internal information into critical cellular decisions such as growth, differentiation, and apoptosis. These networks form highly interconnected systems within cells due to network crosstalk, where an enzyme from one canonical pathway acts on targets from other pathways. It is currently unclear what types of effects these interconnections can have on the response of networks to incoming signals. In this work, we employ mathematical models to characterize the influence that multiple substrates have on one another. These models build off of the atomistic motif of a kinase/phosphatase pair acting on a single substrate. We find that the ultrasensitive, switch-like response these motifs can exhibit becomes transitive: if one substrate saturates the enzymes and responds ultrasensitively, then all substrates will do so regardless of their degree of saturation. We also demonstrate that the phosphatases themselves can induce crosstalk even when the kinases are independent. These findings have strong implications for how we understand and classify crosstalk, as well as for the rational development of kinase inhibitors aimed at pharmaceutically modulating network behavior.
Collapse
Affiliation(s)
| | - Walter Fontana
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Eric J. Deeds
- Center for Bioinformatics, University of Kansas, Lawrence, Kansas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
55
|
Abstract
In the life sciences, a new paradigm is emerging that places networks of interacting molecules between genotype and phenotype. These networks are dynamically modulated by a multitude of factors, and the properties emerging from the network as a whole determine observable phenotypes. This paradigm is usually referred to as systems biology, network biology, or integrative biology. Mass spectrometry (MS)-based proteomics is a central life science technology that has realized great progress toward the identification, quantification, and characterization of the proteins that constitute a proteome. Here, we review how MS-based proteomics has been applied to network biology to identify the nodes and edges of biological networks, to detect and quantify perturbation-induced network changes, and to correlate dynamic network rewiring with the cellular phenotype. We discuss future directions for MS-based proteomics within the network biology paradigm.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH 8093, Switzerland.
| | | | | |
Collapse
|
56
|
Wloka C, Bi E. Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken) 2012; 69:710-26. [DOI: 10.1002/cm.21046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 01/22/2023]
|
57
|
Hergovich A, Hemmings BA. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol 2012; 23:794-802. [PMID: 22525225 DOI: 10.1016/j.semcdb.2012.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/11/2023]
Abstract
Over the past decade Hippo kinase signalling has been established as an essential tumour suppressor pathway controlling tissue growth in flies and mammals. All members of the Hippo core signalling cassette are conserved from yeast to humans, whereby the yeast analogues of Hippo, Mats and Lats are central components of the mitotic exit network and septation initiation network in budding and fission yeast, respectively. Here, we discuss how far core Hippo signalling components in Drosophila melanogaster and mammals have reported similar mitotic functions as already established for their highly conserved yeast counterparts.
Collapse
|
58
|
Hotz M, Leisner C, Chen D, Manatschal C, Wegleiter T, Ouellet J, Lindstrom D, Gottschling DE, Vogel J, Barral Y. Spindle pole bodies exploit the mitotic exit network in metaphase to drive their age-dependent segregation. Cell 2012; 148:958-72. [PMID: 22385961 PMCID: PMC3779431 DOI: 10.1016/j.cell.2012.01.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/18/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
Like many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance. In the absence of MEN signaling, Kar9 asymmetry is unstable and its preference for the old SPB is disrupted. Consistent with this, phosphorylation of Kar9 by the MEN kinases Dbf2 and Dbf20 is not required to break Kar9 symmetry but is instead required to maintain stable association of Kar9 with the old SPB throughout metaphase. We propose that MEN signaling links Kar9 regulation to SPB identity through biasing and stabilizing the age-insensitive, cyclin-B-dependent mechanism of symmetry breaking.
Collapse
Affiliation(s)
- Manuel Hotz
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian Leisner
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Daici Chen
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Cristina Manatschal
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Thomas Wegleiter
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Jimmy Ouellet
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| | - Derek Lindstrom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dan E. Gottschling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jackie Vogel
- Department of Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Yves Barral
- Institute of Biochemistry, Biology Department, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
59
|
Mass Spectrometric Tools for Systematic Analysis of Protein Phosphorylation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:3-32. [DOI: 10.1016/b978-0-12-396456-4.00014-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
60
|
Palani S, Meitinger F, Boehm ME, Lehmann WD, Pereira G. Cdc14-dependent dephosphorylation of Inn1 contributes to Inn1-Cyk3 complex formation. J Cell Sci 2012; 125:3091-6. [DOI: 10.1242/jcs.106021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Saccharomyces cerevisiae, the Cdc14 phosphatase plays a well-established role in reverting phosphorylation events on substrates of the mitotic cyclin-dependent kinase (M-Cdk1), thereby promoting mitotic exit and down-regulation of M-Cdk1 activity. Cdc14 localizes at the site of cell cleavage after M-Cdk1 inactivation, suggesting that Cdc14 may perform a critical, yet ill-defined, role during cytokinesis. Here, we identified Inn1, as a novel direct substrate of both M-Cdk1 and Cdc14. Cdc14 co-localizes with Inn1 at the cell division site and interacts with the C-terminal proline rich domain of Inn1 that mediates its binding to the SH3-domain containing proteins Hof1 and Cyk3. We show that phosphorylation of Inn1 by Cdk1 partially perturbs the interaction of Inn1 with Cyk3 thereby reducing the levels of Cyk3 at the cell division site. We propose that Cdc14 counteracts Cdk1 phosphorylation of Inn1 to facilitate Inn1-Cyk3 complex formation and so promote cytokinesis.
Collapse
|
61
|
Chin CF, Bennett AM, Ma WK, Hall MC, Yeong FM. Dependence of Chs2 ER export on dephosphorylation by cytoplasmic Cdc14 ensures that septum formation follows mitosis. Mol Biol Cell 2011; 23:45-58. [PMID: 22072794 PMCID: PMC3248903 DOI: 10.1091/mbc.e11-05-0434] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sequestration of Cdc14 from the cytoplasm ensures Chs2 ER retention after MEN activation. The interdependence of chromosome segregation, MEN activation, decrease in mitotic CDK activity, and Cdc14 dispersal provides an effective mechanism for cells to order late mitotic events. Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother–daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.
Collapse
Affiliation(s)
- Cheen Fei Chin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|